1
|
Abdelmassih MM, Ismail MM, Kashef MT, Essam T. Repurposing fusidic acid as an antimicrobial against enterococci with a low probability of resistance development. Int Microbiol 2024; 27:1807-1819. [PMID: 38532184 PMCID: PMC11611940 DOI: 10.1007/s10123-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
Drug repurposing constitutes a strategy to combat antimicrobial resistance, by using agents with known safety, pharmacokinetics, and pharmacodynamics. Previous studies have implemented new fusidic acid (FA) front-loading-dose regimens, allowing higher serum levels than those achievable with ordinary doses. As susceptibility breakpoints are affected by serum level, we evaluated the repurposing of FA as an antimicrobial product against enterococci. FA minimum inhibitory concentrations (MICs) against standard enterococci strains; Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 27270 were 2 and 4 µg/mL, respectively. The MIC against 98 enterococcal clinical isolates was ≤ 8 µg/mL; all would be susceptible if categorized according to recalculated breakpoints (≥ 16 µg/mL), based on the serum level achieved using the front-loading regimen. FA administration in vivo, using the BALB/c mouse infection model, significantly reduced bacterial burden by two to three log10 units in the liver and spleen of mice infected with vancomycin-susceptible and -resistant strains. Exposure of the standard enterococcal strains to increasing, but not fixed, FA concentrations resulted in resistant strains (MIC = 128 µg/mL), with thicker cell walls and slower growth rates. Only one mutation (M651I) was detected in the fusA gene of the resistant strain derived from serial passage of E. faecium ATCC 27270, which was retained in the revertant strain after passage in the FA-free medium. In conclusion, FA can be repurposed as an antimicrobial drug against enterococci with a low probability of mutational resistance development, and can be employed for treatment of infections attributable to vancomycin-resistant enterococci.
Collapse
Affiliation(s)
- Mark M Abdelmassih
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Maha M Ismail
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Tamer Essam
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
André C, Islam MM, Paschalis E, Bispo PJM. Comparative In Vitro Activity of New Lipoglycopeptides and Vancomycin Against Ocular Staphylococci and Their Toxicity on the Human Corneal Epithelium. Cornea 2023; 42:615-623. [PMID: 36455096 PMCID: PMC10060036 DOI: 10.1097/ico.0000000000003197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE The purpose of this study was to assess the potential of new lipoglycopeptides as novel topical therapies for improved treatment of recalcitrant ocular infections. We evaluated the in vitro antimicrobial activity of oritavancin, dalbavancin, and telavancin compared with vancomycin (VAN) against a large collection of ocular staphylococcal isolates and their cytotoxicity on human corneal epithelial cells (HCECs). METHODS Antimicrobial susceptibility testing was performed by broth microdilution against 223 Staphylococcus spp. clinical isolates. Time-kill kinetics were determined for methicillin-resistant strains of Staphylococcus aureus (MRSA) (n = 2) and Staphylococcus epidermidis (MRSE) (n = 1). In vitro cytotoxicity assays were performed with AlamarBlue and live/dead staining on HCECs. RESULTS All new lipoglycopeptides showed strong in vitro potency against ocular staphylococci, including multidrug-resistant MRSA strains, with dalbavancin showing a slightly higher potency overall [minimum inhibitory concentration (MIC) 90 0.06 μg/mL] compared with telavancin and oritavancin (MIC 90 0.12 μg/mL), whereas VAN had the lowest potency (MIC 90 2 μg/mL). Oritavancin exerted rapid bactericidal activity within 1 h for MRSA and 2 h for MRSE. All other drugs were bactericidal within 24 h. At a concentration commonly used for topical preparations (25 mg/mL), cytotoxicity was observed for VAN after 5 min of incubation, whereas reduction in HCEC viability was not seen for telavancin and was less affected by oritavancin and dalbavancin. Cytotoxicity at 25 mg/mL was seen for all drugs at 30 and 60 min but was significantly reduced or undetected for lower concentrations. CONCLUSIONS Our study demonstrates that new lipoglycopeptides have substantially better in vitro antimicrobial activity against ocular staphylococcal isolates compared with VAN, with a similar or improved toxicity profile on HCECs.
Collapse
Affiliation(s)
- Camille André
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA; and
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Eleftherios Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Schepens Eye Research Institute, Harvard Medical School, Boston, MA
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
- Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA; and
| |
Collapse
|
3
|
Munteanu AC, Uivarosi V. Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics 2021; 13:874. [PMID: 34199283 PMCID: PMC8232020 DOI: 10.3390/pharmaceutics13060874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The widespread use of antibiotics has resulted in the emergence of drug-resistant populations of microorganisms. Clearly, one can see the need to develop new, more effective, antimicrobial agents that go beyond the explored 'chemical space'. In this regard, their unique modes of action (e.g., reactive oxygen species (ROS) generation, redox activation, ligand exchange, depletion of substrates involved in vital cellular processes) render metal complexes as promising drug candidates. Several Ru (II/III) complexes have been included in, or are currently undergoing, clinical trials as anticancer agents. Based on the in-depth knowledge of their chemical properties and biological behavior, the interest in developing new ruthenium compounds as antibiotic, antifungal, antiparasitic, or antiviral drugs has risen. This review will discuss the advantages and disadvantages of Ru (II/III) frameworks as antimicrobial agents. Some aspects regarding the relationship between their chemical structure and mechanism of action, cellular localization, and/or metabolism of the ruthenium complexes in bacterial and eukaryotic cells are discussed as well. Regarding the antiviral activity, in light of current events related to the Covid-19 pandemic, the Ru (II/III) compounds used against SARS-CoV-2 (e.g., BOLD-100) are also reviewed herein.
Collapse
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| |
Collapse
|
4
|
Li QQ, Luo J, Liu XQ, Kwon DY, Kang OH. Eleutheroside K isolated from Acanthopanax henryi (Oliv.) Harms suppresses methicillin resistance of Staphylococcus aureus. Lett Appl Microbiol 2020; 72:669-676. [PMID: 32955753 DOI: 10.1111/lam.13389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/03/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023]
Abstract
Acanthopanax (A.) henryi (Oliv.) Harms contain many bioactive compounds commonly used in traditional Chinese medicine. The objective of the present study was to investigate the antibacterial activity of the single constituent, Eleutheroside K (ETSK) isolated from the leaves of A. henryi (Oliv.) Harms, against methicillin-resistant Staphylococcus (S.) aureus (MRSA). Broth microdilution assay was used to measure the minimal inhibitory concentration (MIC) and the MIC values of ETSK against eight clinical S. aureus strains were all 50 µg ml-1 . At sub-inhibitory concentrations, a synergistic effect between oxacillin (OXA) and ETSK was confirmed using checkerboard dilution assay and time-kill curve analysis. The bacteriostatic effect became more pronounced when ETSK was used in combination with detergent (Triton X-100) or ATPase inhibitor (N, N'-dicyclohexylcarbodiimide). According to western blot analysis, the down-regulated expression of Penicillin-binding protein 2a (PBP2a) further validated that the bacterial activity was inhibited when treated with ETSK in a dose-dependent manner. Results based on our study verified that ETSK significantly suppressed MRSA infections and emphasized the potential application of ETSK as a novel anti-MRSA natural drug.
Collapse
Affiliation(s)
- Q-Q Li
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| | - J Luo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - X-Q Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - D-Y Kwon
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| | - O-H Kang
- Department of Oriental Pharmacy, College of Pharmacy and Wonkwang Oriental Medicines Research Institute, Wonkwang University, Jeonbuk, Korea
| |
Collapse
|
5
|
Andrade AL, de Vasconcelos MA, Arruda FVDS, do Nascimento Neto LG, Carvalho JMDS, Gondim ACS, Lopes LGDF, Sousa EHS, Teixeira EH. Antimicrobial activity and antibiotic synergy of a biphosphinic ruthenium complex against clinically relevant bacteria. BIOFOULING 2020; 36:442-454. [PMID: 32447980 DOI: 10.1080/08927014.2020.1771317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the antibacterial activity, antibiotic-associated synergy, and anti-biofilm activity of the ruthenium complex, cis-[RuCl2 (dppb) (bqdi)]2+ (RuNN). RuNN exhibited antimicrobial activity against Gram-positive bacteria with minimum inhibitory concentration (MIC) values ranging from 15.6 to 62.5 µg ml-1 and minimum bactericidal concentration (MBC) values ranging from 62.5 to 125 µg ml-1. A synergistic effect against Staphylococcus spp. was observed when RuNN was combined with ampicillin, and the range of associated fractional inhibitory concentration index (FICI) values was 0.187 to 0.312. A time-kill curve indicated the bactericidal activity of RuNN in the first 1-5 h. In general, RuNN inhibited biofilm formation and disrupted mature biofilms. Furthermore, RuNN altered the cellular morphology of S. aureus biofilms. Further, RuNN did not cause hemolysis of erythrocytes. The results of this study provide evidence that RuNN is a novel therapeutic candidate to treat bacterial infections caused by Staphylococcus biofilms.
Collapse
Affiliation(s)
- Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brasil
- Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoró, RN, Brazil
- Universidade do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, MG, Brazil
| | - Francisco Vassiliepe de Sousa Arruda
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brasil
- Curso de Odontologia, Centro Universitário Inta - Uninta, Sobral, CE, Brasil
| | - Luiz Gonzaga do Nascimento Neto
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brasil
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Limoeiro do Norte, CE, Brasil
| | - José Marcos da Silveira Carvalho
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Ana Claudia Silva Gondim
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
6
|
Lai CF, Xiao WB, Yan HC, Yang H, Wang LX, Guan H, Peng QJ, Deng ZR, Chen JW, An LK, Shi L. ZTW-41, a Potent Indolizinoquinoline-5,12-Dione Derivative Against Drug-Resistant Staphylococci and Enterococci Bacteria. Microb Drug Resist 2020; 26:100-109. [PMID: 31441704 DOI: 10.1089/mdr.2019.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
ZTW-41, an indolizinoquinoline-5,12-dione derivative, was investigated for antibacterial activity against Gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA). In our study, the MIC90s (minimum inhibitory concentrations) of ZTW-41 against MRSA (MRSA, n = 200), methicillin-sensitive S. aureus (MSSA, n = 100), Enterococcus faecalis (E. faecalis, n = 32), and Enterococcus faecium (E. faecium n = 32) were 0.25, 0.25, 0.125, and 8 μg/mL, respectively, whereas the MBC90s (minimum bactericidal concentrations) were 2, 1, 1, and >32 μg/mL, respectively. ZTW-41 maintained its potency at different pH levels (range 5-9) and in starting inoculum size up to 107 CFU/mL. The presence of human serum (25-75%) increased ZTW-41 MICs by two- to eightfold. Time-kill curves showed that ZTW-41 had bactericidal activity against MRSA, MSSA, and E. faecalis strains within 8 hours, and rebound growth occurred after 8 hours except at higher multiples of the MIC (4 × and 8 × ). In the acute toxicity study, no mortality or signs of toxicity was noted in mice after 14 days of observation at doses <50 mg/kg. ZTW-41 exhibited good selectivity indices (SIs) (SI = IC50/MIC90) ranging from 1.12 to 71.76 against clinical isolates, demonstrating excellent therapeutic selectivity in MRSA, MSSA, and E. faecalis strains. Moreover, the in vivo efficacy (effective dose [ED]50 = 6.59 mg/kg) of ZTW-41 was found comparable with vancomycin. Collectively, our favorable results supported ZTW-41 as a promising investigational candidate for treating drug-resistant bacteria infection.
Collapse
Affiliation(s)
- Chong-Fa Lai
- Southern Medical University, Guangzhou, China.,General Hospital of Southern Theatre Command, Guangzhou, China
| | - Wei-Bin Xiao
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Hua-Cheng Yan
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Hui Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lu-Xia Wang
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Hui Guan
- General Hospital of Southern Theatre Command, Guangzhou, China
| | - Qiu-Ju Peng
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Zhi-Rong Deng
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, China
| | - Jian-Wen Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Lei Shi
- Southern Medical University, Guangzhou, China.,General Hospital of Southern Theatre Command, Guangzhou, China
| |
Collapse
|
7
|
Jahanbakhsh S, Singh NB, Yim J, Rose WE, Rybak MJ. Evaluation of Telavancin Alone and Combined with Ceftaroline or Rifampin against Methicillin-Resistant Staphylococcus aureus in an In Vitro Biofilm Model. Antimicrob Agents Chemother 2018; 62:e00567-18. [PMID: 29784849 PMCID: PMC6105779 DOI: 10.1128/aac.00567-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Infections caused by biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) bacteria are challenging due to increasing antibiotic resistance. Synergistic activities of lipopeptides and lipoglycopeptides with β-lactams have been demonstrated for MRSA, but little is known about biofilm-embedded organisms. Our objective was to evaluate two telavancin (TLV) dosage regimens (7.5 mg/kg of body weight and 10 mg/kg every 24 h [q24h]) alone and in combination with ceftaroline (CPT) (600 mg every 8 h [q8h]) or rifampin (RIF) (450 mg every 12 h [q12h]) against two biofilm-producing MRSA strains (494 and N315). Pharmacokinetic/pharmacodynamic CDC biofilm reactor models with polyurethane coupons were used to evaluate the efficacies of the antibiotic combinations over 72 h. Overall, there were no significant differences observed between the two TLV dosing regimens either alone or in combination with RIF or CPT against these strains. Both TLV dosing regimens and CPT alone demonstrated killing but did not reach bactericidal reduction at 72 h. However, both TLV regimens in combination with RIF demonstrated enhanced activity against both strains, with a rapid decrease in CFU/ml at 4 h that was bactericidal and maintained over the 72-h experiment (-Δ3.75 log10 CFU/ml from baseline; P < 0.0001). Of interest, no enhanced activity was observed for TLV combined with CPT. No development of resistance was observed in any of the combination models. However, resistance to RIF developed as early as 24 h, with MIC values exceeding 32 mg/liter. Our results show that TLV plus RIF displayed therapeutic improvement against biofilm-producing MRSA. These results suggest that TLV at 7.5 and 10 mg/kg q24h are equally effective in eradicating biofilm-associated MRSA strains in vitro.
Collapse
Affiliation(s)
- Seyedehameneh Jahanbakhsh
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Nivedita B Singh
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Juwon Yim
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Warren E Rose
- School of Pharmacy and Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Sweeney D, Shinabarger DL, Smart JI, Bruss J, Pillar CM. Evaluation of the bactericidal activity of Telavancin against Staphylococcus aureus using revised testing guidelines. Diagn Microbiol Infect Dis 2017; 89:83-85. [PMID: 28669676 DOI: 10.1016/j.diagmicrobio.2017.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The in vitro broth microdilution testing method for telavancin, a lipoglycopeptide active against S. aureus, was revised in 2014 to include polysorbate-80 in the test media. This study evaluates the bactericidal activity of telavancin against S. aureus in media containing polysorbate-80 by in vitro time-kill analysis alongside relevant comparators.
Collapse
|