1
|
Zhan J, Wang W, Luo D, Chen Q, Yu S, Yan L, Chen K. Transmission of multidrug-resistant tuberculosis in Jiangxi, China, and associated risk factors. Microbiol Spectr 2024; 12:e0355523. [PMID: 39356166 PMCID: PMC11537056 DOI: 10.1128/spectrum.03555-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
In order to effectively combat the urgent threat of multidrug-resistant tuberculosis (MDR-TB), it is imperative to gain a comprehensive understanding of the drug-resistant profiles, transmission dynamics, and associated risk factors. Our study encompassed a population-based retrospective analysis with 130 MDR-TB patients from 2018 to 2021. The research methodology incorporated whole-genome sequencing, drug susceptibility testing , and logistic regression analysis to discern the risk factors of genomic clustering linked to recent transmission. The findings from phenotypic drug resistance assessments revealed notable resistance rates: ethambutol at 62.3% (81/130), streptomycin at 72.3% (94/130), levofloxacin at 51.5% (67/130), and moxifloxacin at 50.0% (65/130). Furthermore, among all patients, 38 individuals (29.23%, 38/130) were found to be part of 17 clusters, indicating instances of recent MDR-TB transmission. The genomic clustering patients were deeply investigated. Lineage 2.2.1 was established as the primary sub-lineage (86.15%, 112/130), followed by lineage 4 (9.23%, 12/130). Moreover, the logistic regression analysis underscored that unemployment, farming occupations, and prior TB treatment were identified as significant risk factors for recent transmission. IMPORTANCE The high prevalence of multidrug-resistant tuberculosis (MDR-TB) in Jiangxi Province highlights the importance of understanding the genetic background and drug resistance patterns of these strains. This knowledge is crucial for developing effective control methods. Furthermore, in light of the significance of preventing transmission among tuberculosis patients, whole-genome sequencing was utilized to investigate the recent transmission of MDR-TB and identify associated risk factors. The findings revealed that individuals in the farming sector, those who are unemployed, and patients with a history of tuberculosis treatment are at elevated risk. Consequently, targeted public interventions for these at-risk groups are imperative.
Collapse
Affiliation(s)
- Jiahuan Zhan
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Dong Luo
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shengming Yu
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liang Yan
- Department of Clinical Laboratory, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Kaisen Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Pinhata JMW, Ferrazoli L, Mendes FDF, Gonçalves MG, Rabello MCDS, Ghisi KT, Simonsen V, Cavalin RF, Lindoso AABP, de Oliveira RS. A descriptive study on isoniazid resistance-associated mutations, clustering and treatment outcomes of drug-resistant tuberculosis in a high burden country. Eur J Clin Microbiol Infect Dis 2024; 43:73-85. [PMID: 37943394 DOI: 10.1007/s10096-023-04693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE To describe katG and inhA mutations, clinical characteristics, treatment outcomes and clustering of drug-resistant tuberculosis (TB) in the State of São Paulo, southeast Brazil. METHODS Mycobacterium tuberculosis isolates from patients diagnosed with drug-resistant TB were screened for mutations in katG and inhA genes by line probe assay and Sanger sequencing, and typed by IS6110-restriction fragment-length polymorphism for clustering assessment. Clinical, epidemiological and demographic data were obtained from surveillance information systems for TB. RESULTS Among the 298 isolates studied, 127 (42.6%) were isoniazid-monoresistant, 36 (12.1%) polydrug-resistant, 93 (31.2%) MDR, 16 (5.4%) pre-extensively drug-resistant (pre-XDR), 9 (3%) extensively drug-resistant (XDR) and 17 (5.7%) susceptible after isoniazid retesting. The frequency of katG 315 mutations alone was higher in MDR isolates, while inhA promoter mutations alone were more common in isoniazid-monoresistant isolates. Twenty-six isolates phenotypically resistant to isoniazid had no mutations either in katG or inhA genes. The isolates with inhA mutations were found more frequently in clusters (75%) when compared to the isolates with katG 315 mutations (59.8%, p = 0.04). In our population, being 35-64 years old, presenting MDR-, pre-XDR- or XDR-TB and being a retreatment case were associated with unfavourable TB treatment outcomes. CONCLUSION We found that katG and inhA mutations were not equally distributed between isoniazid-monoresistant and MDR isolates. In our population, clustering was higher for isolates with inhA mutations. Finally, unfavourable TB outcomes were associated with specific factors.
Collapse
Affiliation(s)
- Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil.
| | - Lucilaine Ferrazoli
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Flávia de Freitas Mendes
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Maria Gisele Gonçalves
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | | | - Kelen Teixeira Ghisi
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | - Vera Simonsen
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| | | | | | - Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), Av. Dr. Arnaldo, 351, 9º Andar, São Paulo, SP, 01246-000, Brazil
| |
Collapse
|
3
|
Bello GL, Morais FCL, de Jesus SP, Wolf JM, Gehlen M, de Almeida IN, Figueiredo LJDA, Soares TDS, Barcellos RB, Dalla Costa ER, de Miranda SS, Rossetti MLR. Rapid detection of Mycobacterium tuberculosis DNA and genetic markers for Isoniazid resistance in Ziehl-Neelsen stained slides. Mem Inst Oswaldo Cruz 2020; 115:e190407. [PMID: 32321155 PMCID: PMC7164399 DOI: 10.1590/0074-02760190407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Early diagnosis of tuberculosis (TB) and identification of strains of Mycobacterium tuberculosis resistant to anti-TB drugs are considered the main factors for disease control. OBJECTIVES To standardise a real-time polymerase chain reaction (qPCR) assay technique and apply it to identify mutations involved in M. tuberculosis resistance to Isoniazid (INH) directly in Ziehl-Neelsen (ZN) stained slides. METHODS Were analysed 55 independent DNA samples extracted from clinical isolates of M. tuberculosis by sequencing. For application in TB diagnosis resistance, 59 ZN-stained slides were used. The sensitivity, specificity and Kappa index, with a 95% confidence interval (CI95%), were determined. FINDINGS The agreement between the tests was, for the katG target, the Kappa index of 0.89 (CI95%: 0.7-1.0). The sensitivity and specificity were 97.6% (CI95%: 87.7-99.9) and 91.7% (CI95%: 61.5-99.5), respectively. For inhA, the Kappa index was 0.92 (CI95%: 0.8-1.0), the sensitivity and specificity were 94.4% (CI95%: 72.7-99.8) and 97.3% (CI95%: 85.8-99.9), respectively. The use of ZN-stained slides for drug-resistant TB detection showed significant results when compared to other standard tests for drug resistance. MAIN CONCLUSIONS qPCR genotyping proved to be an efficient method to detect genes that confer M. tuberculosis resistance to INH. Thus, qPCR genotyping may be an alternative instead of sequencing.
Collapse
Affiliation(s)
- Graziele Lima Bello
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Franciele Costa Leite Morais
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Sheile Pinheiro de Jesus
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Jonas Michel Wolf
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
| | - Mirela Gehlen
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Pneumologia, Porto Alegre, RS, Brasil
| | - Isabela Neves de Almeida
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório de Pesquisa em Micobactérias, Belo Horizonte, MG, Brasil
| | - Lida Jouca de Assis Figueiredo
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório de Pesquisa em Micobactérias, Belo Horizonte, MG, Brasil
| | | | - Regina Bones Barcellos
- Secretaria do Estado do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
- Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
| | - Elis Regina Dalla Costa
- Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
- AstraZeneca do Brasil, Cotia, SP, Brasil
| | - Silvana Spíndola de Miranda
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório de Pesquisa em Micobactérias, Belo Horizonte, MG, Brasil
| | - Maria Lucia Rosa Rossetti
- Universidade Luterana do Brasil, Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada à Saúde, Canoas, RS, Brasil
- Universidade Luterana do Brasil, Graduação em Biomedicina, Canoas, RS, Brasil
- Secretaria do Estado do Rio Grande do Sul, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
- Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Clínica Médica, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Molecular characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from a high-burden tuberculosis state in Brazil. Epidemiol Infect 2020; 147:e216. [PMID: 31364547 PMCID: PMC6624858 DOI: 10.1017/s0950268819001006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death among infectious diseases worldwide. Among the estimated cases of drug-resistant TB, approximately 60% occur in the BRICS countries (Brazil, Russia, India, China and South Africa). Among Brazilian states, primary and acquired multidrug-resistant TB (MDR-TB) rates were the highest in Rio Grande do Sul (RS). This study aimed to perform molecular characterisation of MDR-TB in the State of RS, a high-burden Brazilian state. We performed molecular characterisation of MDR-TB cases in RS, defined by drug susceptibility testing, using 131 Mycobacterium tuberculosis (M.tb) DNA samples from the Central Laboratory. We carried out MIRU-VNTR 24loci, spoligotyping, sequencing of the katG, inhA and rpoB genes and RDRio sublineage identification. The most frequent families found were LAM (65.6%) and Haarlem (22.1%). RDRio deletion was observed in 42 (32%) of the M.tb isolates. Among MDR-TB cases, eight (6.1%) did not present mutations in the studied genes. In 116 (88.5%) M.tb isolates, we found mutations associated with rifampicin (RIF) resistance in rpoB gene, and in 112 isolates (85.5%), we observed mutations related to isoniazid resistance in katG and inhA genes. An insertion of 12 nucleotides (CCAGAACAACCC) at the 516 codon in the rpoB gene, possibly responsible for a decreased interaction of RIF and RNA polymerase, was found in 19/131 of the isolates, belonging mostly to LAM and Haarlem families. These results enable a better understanding of the dynamics of transmission and evolution of MDR-TB in the region.
Collapse
|
5
|
Molecular Detection of Isoniazid and Rifampin Resistance in Mycobacterium tuberculosis Isolates from Lorestan Province, Iran from 2014 to 2017. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.81436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhang MJ, Ren WZ, Sun XJ, Liu Y, Liu KW, Ji ZH, Gao W, Yuan B. GeneChip analysis of resistant Mycobacterium tuberculosis with previously treated tuberculosis in Changchun. BMC Infect Dis 2018; 18:234. [PMID: 29788948 PMCID: PMC5964880 DOI: 10.1186/s12879-018-3131-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/04/2018] [Indexed: 11/29/2022] Open
Abstract
Background With the widespread use of rifampicin and isoniazid, bacterial resistance has become a growing problem. Additionally, the lack of relevant baseline information for the frequency of drug-resistant tuberculosis (TB) gene mutations is a critical issue, and the incidence of this infection in the city of Changchun has not investigated to date. However, compared with the slow traditional methods of drug susceptibility testing, recently developed detection methods, such as rifampicin and isoniazid resistance-related gene chip techniques, allow for rapid, easy detection and simultaneous testing for mutation frequency and drug resistance. Methods In this study, the rifampicin and isoniazid resistance-related gene mutation chip method was employed for an epidemiological investigation. To assess the gene mutation characteristics of drug-resistant TB and evaluate the chip method, we tested 2143 clinical specimens from patients from the infectious diseases hospital of Changchun city from January to December 2016. The drug sensitivity test method was used as the reference standard. Results The following mutation frequencies of sites in the rifampicin resistance gene rpoB were found: Ser531Leu (52.6%), His526Tyr (12.3%), and Leu511Pro (8.8%). The multidrug-resistance (MDR)-TB mutation frequency was 34.7% for rpoB Ser531Leu and katG Ser315Thr, 26.4% for rpoB Ser531Leu and inhA promoter − 15 (C → T), and 10.7% for rpoB His526Tyr and katG Ser315Thr. In addition, drug susceptibility testing served as a reference standard. In previously treated clinical cases, the sensitivity and specificity of GeneChip were 83.1 and 98.7% for rifampicin resistance, 79.9 and 99.6% for isoniazid resistance, and 74.1 and 99.8% for MDR-TB. Conclusions Our experimental results show that the chip method is accurate and reliable; it can be used to detect the type of drug-resistant gene mutation in clinical specimens. Moreover, this study can be used as a reference for future research on TB resistance baselines. Electronic supplementary material The online version of this article (10.1186/s12879-018-3131-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ming-Jin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.,Department of Infectious Diseases, Changchun Infectious Hospital, Changchun, 130123, Jilin, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Xue-Juan Sun
- Department of Infectious Diseases, Changchun Infectious Hospital, Changchun, 130123, Jilin, China
| | - Yang Liu
- Department of Infectious Diseases, Changchun Infectious Hospital, Changchun, 130123, Jilin, China
| | - Ke-Wei Liu
- Department of Infectious Diseases, Changchun Infectious Hospital, Changchun, 130123, Jilin, China
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
7
|
Genotypic diversity of Mycobacterium tuberculosis in Buenos Aires, Argentina. INFECTION GENETICS AND EVOLUTION 2018; 62:1-7. [PMID: 29630937 DOI: 10.1016/j.meegid.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022]
Abstract
Buenos Aires is an overpopulated port city historically inhabited by people of European descent. Together with its broader metropolitan area, the city exhibits medium tuberculosis rates, and receives migrants, mainly from tuberculosis highly endemic areas of Argentina and neighboring countries. This work was aimed to gain insight into the Mycobacterium tuberculosis population structure in two suburban districts of Buenos Aires which are illustrative of the overall situation of tuberculosis in Argentina. The Lineage 4 Euro-American accounted for >99% of the 816 isolates analyzed (one per patient). Frequencies of spoligotype families were T 35.9%, LAM 33.2%, Haarlem 19.5%, S 3.2%, X 1.5%, Ural 0.7%, BOV 0.2%, Beijing 0.2%, and Cameroon 0.2%. Unknown signatures accounted for 5.3% isolates. Of 55 spoligotypes not matching any extant shared international type (SIT) in SITVIT database, 22 fitted into 15 newly-issued SITs. Certain autochthonous South American genotypes were found to be actively evolving. LAM3, which is wild type for RDrio, was the predominant LAM subfamily in both districts and the RDrio signature was rare among autochthonous, newly created, SITs and orphan patterns. Two genotypes that are rarely observed in neighboring countries ̶ SIT2/H2 and SIT159/T1 Tuscany ̶ were conspicuously represented in Argentina. The infrequent Beijing patterns belonged to Peruvian patients. We conclude that the genotype diversity observed reflects the influence of the Hispanic colonization and more recent immigration waves from Mediterranean and neighboring countries. Unlike in Brazil, the RDrio type does not play a major role in the tuberculosis epidemic in Buenos Aires.
Collapse
|