1
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025; 200:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anmin Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Ku RH, Lu HF, Li LH, Yeh TY, Lin YT, Yang TC. Roles of the rpoEc-chrR-chrA operon in superoxide tolerance and β-lactam susceptibility of Stenotrophomonas maltophilia. Front Cell Infect Microbiol 2025; 15:1492008. [PMID: 39967789 PMCID: PMC11832516 DOI: 10.3389/fcimb.2025.1492008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction The rpoE-chrR pair is a regulatory system used by photosynthetic microorganisms to overcome singlet oxygen stress. rpoE and chrR encode the sigma factor σE and anti-sigma factor ChrR, respectively. Stenotrophomonas maltophilia, an opportunistic pathogen, is a multidrug-resistant gram-negative bacterium. Although it is not a photosynthetic microorganism, a rpoE-chrR homolog (smlt2377-smlt2378) was found in the S. maltophilia genome. In this study, we aimed to assess the significance of σEc-ChrR pair in oxidative stress alleviation and antibiotic susceptibility of S. maltophilia KJ. Methods Reverse transcription-polymerase chain reaction was used to validate the presence of operon. The contribution of rpoEc-chrR-chrA operon to oxidative stress alleviation and antibiotic susceptibility was evaluated using mutant constructs and stress-tolerance assays. RNA-seq transcriptome assay of wild-type KJ, KJΔChrR (chrR mutant), and KJΔChrRΔRpoEc (chrR/rpoEc double mutant) was performed to reveal the σEc regulon. Results The rpoEc-chrR pair and downstream chrA formed an operon. Inactivation of chrR upregulated the expression of rpoEc-chrR-chrA operon in an σEc- and ChrA-dependent manner. σEc activation contributed to superoxide tolerance and increased β-lactam susceptibility but did not affect the tolerance to singlet oxygen and hydrogen peroxide. Transcriptome analysis revealed that expression of the nine-gene cluster, smlt2375-smlt2367, was significantly upregulated in KJΔChrR and reverted to the wild-type level in KJΔChrRΔRpoEc. smlt2375-smlt2367 cluster was located upstream of the rpoEc-chrR-chrA operon and divergently transcribed, seeming to be involved in membrane lipid modification. Deletion of smlt2375-smlt2367 cluster from the chromosome of KJΔChrR reverted the superoxide tolerance and β-lactam susceptibility to the wild-type level. Discussion The rpoEc-chrR pair of S. maltophilia was involved in superoxide tolerance and β-lactam susceptibility. Notably, a novel regulatory circuit involving rpoEc-chrR-chrA operon and smlt2375-smlt2367 cluster was revealed.
Collapse
Affiliation(s)
- Ren-Hsuan Ku
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yu Yeh
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
MacDermott-Opeskin HI, Wilson KA, O'Mara ML. The Impact of Antimicrobial Peptides on the Acinetobacter baumannii Inner Membrane Is Modulated by Lipid Polyunsaturation. ACS Infect Dis 2023; 9:815-826. [PMID: 36920795 DOI: 10.1021/acsinfecdis.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The Gram-negative pathogen Acinetobacter baumannii is a primary contributor to nosocomial multi-drug-resistant (MDR) infections. To combat the rise of MDR infections, novel features of A. baumannii need to be considered for the development of new treatment options. One such feature is the preferential scavenging of exogenous lipids, including host-derived polyunsaturated fatty acids (PUFAs), for membrane phospholipid synthesis. These alterations in membrane composition impact both the lipid chemistry and the membrane biophysical properties. In this work we examine how antimicrobial peptides (AMPs) interact with the inner membranes of A. baumannii in the presence and absence of polyunsaturated phospholipids. Using coarse-grained molecular dynamics simulations of complex A. baumannii inner membrane models derived from lipidomes of bacteria grown in the presence and absence of PUFAs, we examine the impact of the adsorption of four prototypical AMPs (CAMEL, LL-37, pexiganan, and magainin-2) on the membrane biophysical properties. Our simulations reveal that the impact of AMP adsorption on the membrane biophysical properties was dependent on both the membrane composition and the specific AMP involved. Both lipid headgroup charge and tail unsaturation played important roles in driving the interactions that occurred both within the membrane and between the membrane and AMPs. The changes to the membrane biophysical properties also showed a complex relationship with the AMP's physical properties, such as AMP charge, chain length, and charge-to-mass ratio. Cumulatively, this work highlights the importance of studying AMPs using a complex membrane environment and provides insights into the mechanistic action of AMPs in polyunsaturated lipid-rich bacterial membranes.
Collapse
Affiliation(s)
- Hugo I MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia
| | - Katie A Wilson
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.,Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7 Canada
| | - Megan L O'Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
5
|
Wu B, Shao Y, Zhao W, Zheng Y, Wang Y, Sun D. Dual functions of epigallocatechin gallate surface-modified Au nanorods@selenium composites for near-infrared-II light-responsive synergistic antibacterial therapy. J Biomater Appl 2022; 36:1812-1825. [PMID: 35232312 DOI: 10.1177/08853282211048570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diseases caused by bacterial infections pose ever-increasing threats to human health, making it important to explore alternative antibacterial strategies. Herein, epigallocatechin gallate (EGCG) surface-modified Au nanorods@selenium composites (ASE NPs) were developed for synergistic NIR-II light-responsive antibacterial therapy. In vitro antibacterial experiments demonstrated the improved antibacterial effect of ASE NPs against Staphylococcus aureus (S. aureus) compared with EGCG alone. In addition, in vivo studies demonstrated that ASE NPs cured skin wound infections and sepsis in mice caused by S. aureus. Au nanorods with excellent photothermal conversion realized synergistic photothermal therapy (PTT) in the NIR-II biowindow with an improved penetration depth at a low power density. More importantly, toxicity analysis showed that the composites had no toxic effects on major organs. Thus, the EGCG surface-modified Au nanorods@selenium composites with an NIR-II light-responsive synergistic activity hold great promise for the effective treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Bingbing Wu
- School of life sciences, 12486Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Yuyan Shao
- School of life sciences, 12486Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Wei Zhao
- School of life sciences, 12486Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Yunfang Zheng
- School of life sciences, 12486Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Yunsheng Wang
- School of life sciences, 12486Anhui Agricultural University, Hefei, Anhui, P.R. China
| | - Dongdong Sun
- School of life sciences, 12486Anhui Agricultural University, Hefei, Anhui, P.R. China
| |
Collapse
|
6
|
MacDermott-Opeskin HI, Gupta V, O’Mara ML. Lipid-mediated antimicrobial resistance: a phantom menace or a new hope? Biophys Rev 2022; 14:145-162. [PMID: 35251360 PMCID: PMC8880301 DOI: 10.1007/s12551-021-00912-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
Abstract The proposition of a post-antimicrobial era is all the more realistic with the continued rise of antimicrobial resistance. The development of new antimicrobials is failing to counter the ever-increasing rates of bacterial antimicrobial resistance. This necessitates novel antimicrobials and drug targets. The bacterial cell membrane is an essential and highly conserved cellular component in bacteria and acts as the primary barrier for entry of antimicrobials into the cell. Although previously under-exploited as an antimicrobial target, the bacterial cell membrane is attractive for the development of novel antimicrobials due to its importance in pathogen viability. Bacterial cell membranes are diverse assemblies of macromolecules built around a central lipid bilayer core. This lipid bilayer governs the overall membrane biophysical properties and function of its membrane-embedded proteins. This mini-review will outline the mechanisms by which the bacterial membrane causes and controls resistance, with a focus on alterations in the membrane lipid composition, chemical modification of constituent lipids, and the efflux of antimicrobials by membrane-embedded efflux systems. Thorough insight into the interplay between membrane-active antimicrobials and lipid-mediated resistance is needed to enable the rational development of new antimicrobials. In particular, the union of computational approaches and experimental techniques for the development of innovative and efficacious membrane-active antimicrobials is explored.
Collapse
Affiliation(s)
- Hugo I. MacDermott-Opeskin
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| | - Vrinda Gupta
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| | - Megan L. O’Mara
- Research School of Chemistry, College of Science, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
7
|
Multi-Omic Analysis to Characterize Metabolic Adaptation of the E. coli Lipidome in Response to Environmental Stress. Metabolites 2022; 12:metabo12020171. [PMID: 35208246 PMCID: PMC8880424 DOI: 10.3390/metabo12020171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
As an adaptive survival response to exogenous stress, bacteria undergo dynamic remodelling of their lipid metabolism pathways to alter the composition of their cellular membranes. Here, using Escherichia coli as a well characterised model system, we report the development and application of a ‘multi-omics’ strategy for comprehensive quantitative analysis of the temporal changes in the lipidome and proteome profiles that occur under exponential growth phase versus stationary growth phase conditions i.e., nutrient depletion stress. Lipidome analysis performed using ‘shotgun’ direct infusion-based ultra-high resolution accurate mass spectrometry revealed a quantitative decrease in total lipid content under stationary growth phase conditions, along with a significant increase in the mol% composition of total cardiolipin, and an increase in ‘odd-numbered’ acyl-chain length containing glycerophospholipids. The inclusion of field asymmetry ion mobility spectrometry was shown to enable the enrichment and improved depth of coverage of low-abundance cardiolipins, while ultraviolet photodissociation-tandem mass spectrometry facilitated more complete lipid structural characterisation compared with conventional collision-induced dissociation, including unambiguous assignment of the odd-numbered acyl-chains as containing cyclopropyl modifications. Proteome analysis using data-dependent acquisition nano-liquid chromatography mass spectrometry and tandem mass spectrometry analysis identified 83% of the predicted E. coli lipid metabolism enzymes, which enabled the temporal dependence associated with the expression of key enzymes responsible for the observed adaptive lipid metabolism to be determined, including those involved in phospholipid metabolism (e.g., ClsB and Cfa), fatty acid synthesis (e.g., FabH) and degradation (e.g., FadA/B,D,E,I,J and M), and proteins involved in the oxidative stress response resulting from the generation of reactive oxygen species during β-oxidation or lipid degradation.
Collapse
|
8
|
Miller LN, Blake MJ, Page EF, Castillo HB, Calhoun TR. Phosphate Ions Alter the Binding of Daptomycin to Living Bacterial Cell Surfaces. ACS Infect Dis 2021; 7:3088-3095. [PMID: 34605244 DOI: 10.1021/acsinfecdis.1c00397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advancements in antibiotic drug design are often hindered by missing information on how these small molecules interact with living cells. The antibiotic, daptomycin, has found clinical success and an emerging resistance, but a comprehensive picture of its mechanism of action has remained elusive. Using a surface-specific spectroscopy technique, second harmonic generation, we are able to quantitatively assess the binding of daptomycin to living cell membranes without the addition of exogenous labels. Our results reveal similar binding affinities for both Gram-positive and Gram-negative bacteria studied, including Escherichia coli. More importantly, we show that the presence of phosphate ions influences the binding of daptomycin to the Gram-positive bacterium Enterococcus faecalis. The role of environmental phosphate has not previously been considered in any proposed mechanism, and its implications are expected to be important in vivo.
Collapse
Affiliation(s)
- Lindsey N. Miller
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Marea J. Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Eleanor F. Page
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Hannah B. Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tessa R. Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Bock LJ, Ferguson PM, Clarke M, Pumpitakkul V, Wand ME, Fady PE, Allison L, Fleck RA, Shepherd MJ, Mason AJ, Sutton JM. Pseudomonas aeruginosa adapts to octenidine via a combination of efflux and membrane remodelling. Commun Biol 2021; 4:1058. [PMID: 34504285 PMCID: PMC8429429 DOI: 10.1038/s42003-021-02566-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2021] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of stably adapting to the antiseptic octenidine by an unknown mechanism. Here we characterise this adaptation, both in the laboratory and a simulated clinical setting, and identify a novel antiseptic resistance mechanism. In both settings, 2 to 4-fold increase in octenidine tolerance was associated with stable mutations and a specific 12 base pair deletion in a putative Tet-repressor family gene (smvR), associated with a constitutive increase in expression of the Major Facilitator Superfamily (MFS) efflux pump SmvA. Adaptation to higher octenidine concentrations led to additional stable mutations, most frequently in phosphatidylserine synthase pssA and occasionally in phosphatidylglycerophosphate synthase pgsA genes, resulting in octenidine tolerance 16- to 256-fold higher than parental strains. Metabolic changes were consistent with mitigation of oxidative stress and altered plasma membrane composition and order. Mutations in SmvAR and phospholipid synthases enable higher level, synergistic tolerance of octenidine.
Collapse
Affiliation(s)
- Lucy J Bock
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK.
| | - Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Vichayanee Pumpitakkul
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Matthew E Wand
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK
| | - Paul-Enguerrand Fady
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - Leanne Allison
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, Guy's Campus, King's College London, London, UK
| | - Matthew J Shepherd
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, London, UK
| | - J Mark Sutton
- Technology Development Group, National Infection Service, PHE Porton, Salisbury, UK.
| |
Collapse
|
10
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
11
|
Herndon JL, Peters RE, Hofer RN, Simmons TB, Symes SJ, Giles DK. Exogenous polyunsaturated fatty acids (PUFAs) promote changes in growth, phospholipid composition, membrane permeability and virulence phenotypes in Escherichia coli. BMC Microbiol 2020; 20:305. [PMID: 33046008 PMCID: PMC7552566 DOI: 10.1186/s12866-020-01988-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The utilization of exogenous fatty acids by Gram-negative bacteria has been linked to many cellular processes, including fatty acid oxidation for metabolic gain, assimilation into membrane phospholipids, and control of phenotypes associated with virulence. The expanded fatty acid handling capabilities have been demonstrated in several bacteria of medical importance; however, a survey of the polyunsaturated fatty acid responses in the model organism Escherichia coli has not been performed. The current study examined the impacts of exogenous fatty acids on E. coli. RESULTS All PUFAs elicited higher overall growth, with several fatty acids supporting growth as sole carbon sources. Most PUFAs were incorporated into membrane phospholipids as determined by Ultra performance liquid chromatography-mass spectrometry, whereas membrane permeability was variably affected as measured by two separate dye uptake assays. Biofilm formation, swimming motility and antimicrobial peptide resistance were altered in the presence of PUFAs, with arachidonic and docosahexaenoic acids eliciting strong alteration to these phenotypes. CONCLUSIONS The findings herein add E. coli to the growing list of Gram-negative bacteria with broader capabilities for utilizing and responding to exogenous fatty acids. Understanding bacterial responses to PUFAs may lead to microbial behavioral control regimens for disease prevention.
Collapse
Affiliation(s)
- Joshua L. Herndon
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Rachel E. Peters
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Rachel N. Hofer
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Timothy B. Simmons
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - Steven J. Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| | - David K. Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN USA
| |
Collapse
|
12
|
Choi TR, Song HS, Han YH, Park YL, Park JY, Yang SY, Bhatia SK, Gurav R, Kim HJ, Lee YK, Choi KY, Yang YH. Enhanced tolerance to inhibitors of Escherichia coli by heterologous expression of cyclopropane-fatty acid-acyl-phospholipid synthase (cfa) from Halomonas socia. Bioprocess Biosyst Eng 2020; 43:909-918. [PMID: 31989256 DOI: 10.1007/s00449-020-02287-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/11/2020] [Indexed: 02/05/2023]
Abstract
Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.
Collapse
Affiliation(s)
- Tae-Rim Choi
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hun-Suk Song
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yeong-Hoon Han
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ye-Lim Park
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Jun Young Park
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Su-Yeon Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Shashi Kant Bhatia
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea.,Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, 143-701, South Korea
| | - Ranjit Gurav
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Hyun Joong Kim
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Yoo Kyung Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Kwon Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea. .,Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, 143-701, South Korea.
| |
Collapse
|
13
|
Stahl RS, Bisha B, Mahapatra S, Chandler JC. A model for the prediction of antimicrobial resistance in Escherichia coli based on a comparative evaluation of fatty acid profiles. Diagn Microbiol Infect Dis 2019; 96:114966. [PMID: 31948696 DOI: 10.1016/j.diagmicrobio.2019.114966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/31/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Antimicrobial resistance is a threat to agricultural production and public health. In this proof-of-concept study, we investigated predicting antimicrobial sensitive/resistant (S/R) phenotypes and host sources of Escherichia coli (n = 128) based on differential fatty acid abundance. Myristic (14:0), pentadecanoic acid (15:0), palmitic (16:0), elaidic (18:19) and steric acid (18:0) were significantly different (α = 0.05) using a two-way ANOVA for predicting nalidixic acid, ciprofloxacin, aztreonam, cefatoxime, and ceftazidime S/R phenotypes. Additionally, analyses of palmitoleic (16:1), palmitic acid (16:0), methyl palmitate (i-17:0), and cis-9,10-methyleneoctadecanoic acid (19:0Δ) showed these markers were significantly different (α = 0.05) between isolates obtained from cattle and raccoons. S/R phenotype prediction for the above antibiotics or host source, based on linear regression models of fatty acid abundance, were made using a replicated-randomized subsampling and modeling approach. This model predicted S/R phenotype with 79% and 81% accuracy for nalidixic acid and ciprofloxacin, respectively. The isolate host source was predicted with 63% accuracy.
Collapse
Affiliation(s)
- Randal S Stahl
- USDA/APHIS/WS, National Wildlife Research Center, Fort Collins, CO, USA.
| | - Bledar Bisha
- University of Wyoming, Department of Animal Science, Laramie, WY, USA
| | - Sebabrata Mahapatra
- Colorado State University, Department of Microbiology, Immunology, and Pathology, Fort Collins, CO, USA
| | | |
Collapse
|
14
|
Lee TH, Hofferek V, Separovic F, Reid GE, Aguilar MI. The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol 2019; 52:85-92. [DOI: 10.1016/j.cbpa.2019.05.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022]
|
15
|
Abstract
Many molecular features contribute to the antimicrobial activity of peptides. One aspect that contributes to the antimicrobial activity of a peptide, in many cases, results from the fact that many antimicrobial peptides are polycationic and the lipids on the surface of bacteria are often anionic. In certain cases this can result in the clustering of anionic lipids as a result of the binding of the cationic peptide to the surface of the bacterial membrane. This lipid clustering can be detrimental to the viability of the bacteria to which the peptide binds. Several factors, including the charge, size, and conformational flexibility of the peptide, will determine the efficiency of lipid clustering. In addition, the lipid composition of the bacterial membrane is very variable, and it plays a critical role in this mechanism. As a result, one can test the importance of this factor by determining the species specificity of the antimicrobial activity of the peptide. The molecular mechanism by which lipid clustering affects bacterial viability is uncertain in many cases. This phenomenon can be used to increase the antimicrobial potency of peptides in some case and can also predict the bacterial species specificity of some agents.
Collapse
Affiliation(s)
- Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|