1
|
Schellenberg JJ, Adam HJ, Baxter MR, Karlowsky JA, Golden AR, Martin I, Zhanel GG. Comparing serotype coverage of pneumococcal vaccines with PCV21 (V116), a new 21-valent conjugate pneumococcal vaccine, and the epidemiology of its eight unique Streptococcus pneumoniae serotypes (15A, 15C, 16F, 23A, 23B, 24F, 31 and 35B) causing invasive pneumococcal disease in adult patients in Canada: SAVE study, 2018-21. J Antimicrob Chemother 2025; 80:1377-1385. [PMID: 40131289 PMCID: PMC12046396 DOI: 10.1093/jac/dkaf085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/01/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND V116 is a novel 21-valent pneumococcal conjugate vaccine (PCV) intended for use in adults. OBJECTIVES To estimate current V116 serotype coverage in adult patients in Canada compared with PCV15, PCV20 and PPSV23 vaccines, and to describe isolate demographics for the eight unique serotypes (15A, 15C, 16F, 23A, 23B, 24F, 31 and 35B) covered by V116. METHODS From 2018 to 2021 inclusive, the SAVE study collected 5854 invasive pneumococcal disease (IPD) isolates as part of a collaboration between the Canadian Antimicrobial Resistance Alliance and the Public Health Agency of Canada-National Microbiology Laboratory. Serotypes were determined by Quellung reaction and antimicrobial susceptibility testing performed using the CLSI broth microdilution method. RESULTS For adult patients (≥18 years), adults 50-64 years and adults ≥65 years, respectively, IPD isolate coverage was PCV15 (42.7%; 41.0%, 39.8%), PCV20 (59.0%; 60.2%, 52.2%), PPSV23 (70.4%; 75.1%, 60.0%), V116 (78.9%; 76.3%, 81.5%) and V116 plus PCV20 (92.2%; 91.0%, 89.3%). The eight unique V116 serotypes accounted for 19.7% and 26.8% of IPD isolates from adults and adults ≥65 years, respectively. Among the eight unique V116 serotypes, 15A and 23A demonstrated the highest rates of MDR (17.0% and 10.2%, respectively); 6.7% of 15A isolates were XDR. CONCLUSIONS V116 provided significantly (P < 0.05) greater coverage than PCV15, PCV20 and PPSV23 for adults, including older adults, across all Canadian geographic regions, and against IPD isolates with common antimicrobial resistance phenotypes, including MDR. The eight unique V116 serotypes accounted for a higher proportion of IPD isolate serotypes in patients aged ≥65 years than younger adults.
Collapse
Affiliation(s)
- John J Schellenberg
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada
| | - Melanie R Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada
| | - Alyssa R Golden
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
2
|
Schellenberg JJ, Adam HJ, Baxter MR, Karlowsky JA, Golden AR, Martin I, Demczuk W, Mulvey MR, Zhanel GG. Comparison of PCV10, PCV13, PCV15, PCV20 and PPSV23 vaccine coverage of invasive Streptococcus pneumoniae isolate serotypes in Canada: the SAVE study, 2011-20. J Antimicrob Chemother 2023; 78:i37-i47. [PMID: 37130588 DOI: 10.1093/jac/dkad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND As pneumococci evolve under vaccine, antimicrobial and other selective pressures, it is important to track isolates covered by established (PCV10, PCV13 and PPSV23) and new (PCV15 and PCV20) vaccine formulations. OBJECTIVES To compare invasive pneumococcal disease (IPD) isolates from serotypes covered by PCV10, PCV13, PCV15, PCV20 and PPSV23, collected in Canada from 2011 to 2020, by demographic category and antimicrobial resistance phenotype. METHODS IPD isolates from the SAVE study were initially collected by members of the Canadian Public Health Laboratory Network (CPHLN) as part of a collaboration between the Canadian Antimicrobial Resistance Alliance (CARA) and the Public Health Agency of Canada (PHAC). Serotypes were determined by quellung reaction, and antimicrobial susceptibility testing was performed using the CLSI broth microdilution method. RESULTS A total of 14 138 invasive isolates were collected from 2011 to 2020, with 30.7% of isolates covered by the PCV13 vaccine, 43.6% of isolates covered by the PCV15 vaccine (including 12.9% non-PCV13 serotypes 22F and 33F), and 62.6% of isolates covered by the PCV20 vaccine (including 19.0% non-PCV15 serotypes 8, 10A, 11A, 12F and 15B/C). Non-PCV20 serotypes 2, 9N, 17F and 20, but not 6A (present in PPSV23) represented 8.8% of all IPD isolates. Higher-valency vaccine formulations covered significantly more isolates by age, sex, region and resistance phenotype including MDR isolates. Coverage of XDR isolates did not significantly differ between vaccine formulations. CONCLUSIONS When compared with PCV13 and PCV15, PCV20 covered significantly more IPD isolates stratified by patient age, region, sex, individual antimicrobial resistance phenotypes and MDR phenotype.
Collapse
Affiliation(s)
- John J Schellenberg
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada
| | - Melanie R Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada
| | - Alyssa R Golden
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Walter Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - Michael R Mulvey
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba R3E 3R2, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
3
|
Golden AR, Adam HJ, Karlowsky JA, Baxter M, Schellenberg J, Martin I, Demczuk W, Minion J, Van Caeseele P, Kus JV, McGeer A, Lefebvre B, Smadi H, Haldane D, Yu Y, Mead K, Mulvey MR, Zhanel GG. Genomic investigation of the most common Streptococcus pneumoniae serotypes causing invasive infections in Canada: the SAVE study, 2011-2020. J Antimicrob Chemother 2023; 78:i26-i36. [PMID: 37130587 DOI: 10.1093/jac/dkad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
OBJECTIVES To investigate the lineages and genomic antimicrobial resistance (AMR) determinants of the 10 most common pneumococcal serotypes identified in Canada during the five most recent years of the SAVE study, in the context of the 10-year post-PCV13 period in Canada. METHODS The 10 most common invasive Streptococcus pneumoniae serotypes collected by the SAVE study from 2016 to 2020 were 3, 22F, 9N, 8, 4, 12F, 19A, 33F, 23A and 15A. A random sample comprising ∼5% of each of these serotypes collected during each year of the full SAVE study (2011-2020) were selected for whole-genome sequencing (WGS) using the Illumina NextSeq platform. Phylogenomic analysis was performed using the SNVPhyl pipeline. WGS data were used to identify virulence genes of interest, sequence types, global pneumococcal sequence clusters (GPSC) and AMR determinants. RESULTS Of the 10 serotypes analysed in this study, six increased significantly in prevalence from 2011 to 2020: 3, 4, 8, 9N, 23A and 33F (P ≤ 0.0201). Serotypes 12F and 15A remained stable in prevalence over time, while serotype 19A decreased in prevalence (P < 0.0001). The investigated serotypes represented four of the most prevalent international lineages causing non-vaccine serotype pneumococcal disease in the PCV13 era: GPSC3 (serotypes 8/33F), GPSC19 (22F), GPSC5 (23A) and GPSC26 (12F). Of these lineages, GPSC5 isolates were found to consistently possess the most AMR determinants. Commonly collected vaccine serotypes 3 and 4 were associated with GPSC12 and GPSC27, respectively. However, a more recently collected lineage of serotype 4 (GPSC192) was highly clonal and possessed AMR determinants. CONCLUSIONS Continued genomic surveillance of S. pneumoniae in Canada is essential to monitor for the appearance of new and evolving lineages, including antimicrobial-resistant GPSC5 and GPSC162.
Collapse
Affiliation(s)
- Alyssa R Golden
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Heather J Adam
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - James A Karlowsky
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba, R3A 1R9, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - John Schellenberg
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Walter Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Jessica Minion
- Roy Romanow Provincial Laboratory, Saskatchewan Health Authority, 5 Research Drive, Regina, Saskatchewan, S4S 0A4, Canada
| | - Paul Van Caeseele
- Cadham Provincial Laboratory, Shared Health, 750 William Avenue, Winnipeg, Manitoba, R3E 3J7, Canada
| | - Julianne V Kus
- Public Health Ontario Laboratory, 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle-6th Floor, Toronto, Ontario, M5S 1A8, Canada
| | - Allison McGeer
- Toronto Invasive Bacterial Diseases Network (TIBDN), Department of Microbiology, Mount Sinai Hospital. 600 University Avenue-Suite 171, Toronto, Ontario, M5G 1X5, Canada
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, 20045 Ch Ste-Marie, Ste-Anne-de-Bellevue, Québec, H9X 3R5, Canada
| | - Hanan Smadi
- Epidemiology and Surveillance Branch, New Brunswick Department of Health, 520 King Street, Fredericton, New Brunswick, E3B 5G8, Canada
| | - David Haldane
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Science Centre, 1276 South Park Street, Halifax, Nova Scotia, B3H 2Y9, Canada
| | - Yang Yu
- Newfoundland and Labrador Public Health Laboratory, Dr. Leonard A. Miller Centre-Suite 1, 100 Forest Road, St. John's, Newfoundland and Labrador, A1A 1E3, Canada
| | - Kristen Mead
- Provincial Laboratory Services, Queen Elizabeth Hospital, 60 Riverside Drive, Charlottetown, Prince Edward Island, C1A 8T5, Canada
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
4
|
Zhanel GG, Lynch JP, Adam HJ. Streptococcus pneumoniae serotyping and antimicrobial susceptibility: assessment for vaccine efficacy in Canada after the introduction of PCV13. J Antimicrob Chemother 2023; 78:i2-i7. [PMID: 37130585 DOI: 10.1093/jac/dkad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae continues to be an important bacterial pathogen associated with invasive (e.g. bacteraemia, meningitis) and non-invasive (e.g. community-acquired respiratory tract) infections worldwide. Surveillance studies conducted nationally and globally assist in determining trends over geographical areas and allow comparisons between countries. OBJECTIVES To characterize invasive isolates of S. pneumoniae in terms of their serotype, antimicrobial resistance, genotype and virulence and to use the serotype data to determine the level of coverage by different generations of pneumococcal vaccines. METHODS SAVE (Streptococcus pneumoniae Serotyping and Antimicrobial Susceptibility: Assessment for Vaccine Efficacy in Canada) is an ongoing, annual, national collaborative study between the Canadian Antimicrobial Resistance Alliance (CARE) and the National Microbiology Laboratory, focused on characterizing invasive isolates of S. pneumoniae obtained across Canada. Clinical isolates from normally sterile sites were forwarded by participating hospital public health laboratories to the Public Health Agency of Canada-National Microbiology Laboratory and CARE for centralized phenotypic and genotypic investigation. RESULTS The four articles in this Supplement provide a comprehensive examination of the changing patterns of antimicrobial resistance and MDR, serotype distribution, genotypic relatedness and virulence of invasive S. pneumoniae obtained across Canada over a 10 year period (2011-2020). CONCLUSIONS The data highlight the evolution of S. pneumoniae under pressure by vaccination and antimicrobial usage, as well as vaccine coverage, allowing both clinicians and researchers nationally and globally to view the current status of invasive pneumococcal infections in Canada.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745, Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 37-131 CHS, Los Angeles, CA 90095, USA
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745, Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada
| |
Collapse
|
5
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
6
|
Ryman J, Weaver J, Yee KL, Sachs JR. Predicting effectiveness of the V114 vaccine against invasive pneumococcal disease in children. Expert Rev Vaccines 2022; 21:1515-1521. [PMID: 35997125 DOI: 10.1080/14760584.2022.2112179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND The potential impact of new pneumococcal conjugate vaccines (PCVs) is assessed by using immune responses to predict their effectiveness against invasive pneumococcal disease (IPD). This analysis predicted the serotype-specific effectiveness against IPD of a new 15-valent PCV (V114) for the serotypes shared with a 13-valent PCV (PCV13), in a US pediatric population given a 3 + 1 dosing regimen. METHODS Beginning with the known serotype-specific antibody concentrations after vaccination with placebo, 7-valent PCV (PCV7) and PCV13, reverse cumulative distribution curves were used, along with published serotype-specific vaccine effectiveness of PCV7 and PCV13, to derive a protective antibody concentration (Cp) for each PCV13 serotype in V114. Serotype-specific effectiveness was predicted using the Cp estimates and the respective serotype-specific antibody concentrations of placebo and V114 recipients in recent pediatric clinical trials. RESULTS Predicted serotype-specific V114 effectiveness values ranged from 86% to 99% for PCV7 serotypes and from 59% to 97% for (non-PCV7) PCV13 serotypes. CONCLUSIONS V114 serotype-specific effectiveness against IPD in a US pediatric population was predicted to be largely comparable to that of PCV7 and PCV13 for shared serotypes, with models suggesting likelihood of high overall benefit gained from increased serotype 3 effectiveness, and additional protection against serotypes 22 F and 33 F.
Collapse
Affiliation(s)
- Josiah Ryman
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, NJ, USA
| | - Jessica Weaver
- Center for Observational and Real-World Evidence, Merck & Co., Inc, Rahway, NJ, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, NJ, USA
| | - Jeffrey R Sachs
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc, Rahway, NJ, USA
| |
Collapse
|
7
|
Whole genome characterization of Streptococcus pneumoniae from respiratory and blood cultures collected from Canadian hospitals before and after PCV-13 implementation in Canada: Focus on serotypes 22F and 33F from CANWARD 2007-2018. Vaccine 2021; 39:5474-5483. [PMID: 34454785 DOI: 10.1016/j.vaccine.2021.08.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022]
Abstract
The population of pneumococci circulating in Canada is constantly shifting under the pressures of antimicrobial and conjugate vaccine use. A new 15-valent pneumococcal conjugate vaccine (PCV), containing PCV-13 serotypes plus additional serotypes 22F and 33F, is currently undergoing clinical trials. The purpose of this study was to utilize whole genome sequencing to characterize invasive and respiratory Streptococcus pneumoniae isolates collected from Canadian hospitals pre- (2007-2011) and post-PCV-13 implementation (2012-2018) in Canada, particularly serotypes 22F and 33F. Isolates were obtained from the CANWARD 2007 to 2018 study. Overall, 597 S. pneumoniae isolates were sequenced using the Illumina MiSeq platform: 180 (101 respiratory, 79 blood) isolates of serotype 22F, 74 (41 respiratory, 33 blood) isolates of serotype 33F and 343 isolates randomly selected to broadly encompass pneumococci in Canada. Genomes were clustered using PopPUNK v2.0.2 and assigned to a Global Pneumococcal Sequencing Cluster (GPSC) and MLST sequence type (ST), and visualized using Cytoscape v3.8.0. Acquired resistance genes were identified using ResFinder 2.1, and genes with chromosomal mutations conferring resistance were extracted and compared to standard reference genome R6. PopPUNK clustering suggests that a clone of S. pneumoniae serotype 22F/ST433/GPSC19 demonstrating mefA-mediated macrolide resistance is emerging in Canada post-PCV-13 introduction, collected from both invasive and respiratory sources. Similarly, there is evidence to support a post-PCV-13 shift towards macrolide- and trimethoprim/sulfamethoxazole-resistant serotype 33F/ST100/GPSC3, including a cluster associated with invasive isolates. While some lineages containing vaccine serotypes were predominantly identified pre-PCV-13 implementation (serotype 5/GPSC8, serotype 7F/GPSC15), others (serotype 19A/GPSC1 and 4, serotype 3/GPSC12) continue to maintain a significant presence over time despite inclusion in PCV-13. Further genomic surveillance is necessary to determine additional trends over time in these upcoming vaccine serotypes, as well as the overall pneumococcal population in Canada.
Collapse
|