1
|
Wang Y, Sholeh M, Yang L, Shakourzadeh MZ, Beig M, Azizian K. Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis. Antimicrob Resist Infect Control 2025; 14:10. [PMID: 39934901 PMCID: PMC11818042 DOI: 10.1186/s13756-025-01518-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in Gram-negative bacteria (GNB) is a major global concern. Ceftazidime-avibactam (CAZ-AVI) has been identified as a potential treatment option for complicated infections. OBJECTIVES This meta-analysis aimed to evaluate the global resistance proportions of GNB to CAZ-AVI comprehensively. METHODS Studies were searched in Scopus, PubMed, and EMBASE (until September 2024), and statistical analyses were conducted using STATA software (version 20.0). RESULTS CAZ-AVI resistance proportions were determined in 136 studies, with 25.8% (95% CI 22.2-29.7) for non-fermentative gram-negative bacilli and 6.1% (95% CI 4.9-7.4) for Enterobacterales. The CAZ-AVI resistance proportion significantly increased from 5.6% (95% CI 4.1-7.6) of 221,278 GNB isolates in 2015-2020 to 13.2% (95% CI 11.4-15.2) of 285,978 GNB isolates in 2021-2024. Regionally, CAZ-AVI resistance was highest in Asia 19.3% (95% CI 15.7-24.23.4), followed by Africa 13.6% (95% CI 5.6-29.2), Europe 11% (95% CI 7.8-15.2), South America 6.1% (95% CI 3.2-11.5) and North America 5.3% (95% CI 4.2-6.7). Among GNB resistance profiles, colistin-resistant isolates and XDR isolates exhibited the highest resistance proportions (37.1%, 95% CI 14-68 and 32.1%, 95% CI 18.5-49.6), respectively), followed by carbapenem-resistant isolates and MDR isolates [(25.8%, 95% CI 22.6-29.3) and (13%, 95% CI 9.6, 17.3)]. CONCLUSION A high proportion of GNB isolates from urinary tract infections remained susceptible to CAZ-AVI, indicating its potential as a suitable treatment option. However, the increasing resistance trends among GNB are concerning and warrant continuous monitoring to maintain CAZ-AVI's effectiveness against GNB infections.
Collapse
Affiliation(s)
- Yang Wang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - LunDi Yang
- Nanchuan District Center for Disease Control and Prevention, Chongqing, 408400, China.
| | - Matin Zafar Shakourzadeh
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgān, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Zoonosis Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
2
|
Bakthavatchalam YD, Behera B, Shah A, Mathur P, Ray R, Fomda BA, Walia K, Veeraraghavan B. Tackling the unyielding: testing two novel approaches against NDM-producing Enterobacterales and Pseudomonas aeruginosa isolates collected in India. Microbiol Spectr 2025; 13:e0049724. [PMID: 39560385 PMCID: PMC11705784 DOI: 10.1128/spectrum.00497-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/20/2024] [Indexed: 11/20/2024] Open
Abstract
The in vitro activity of two novel antibiotics with different modes of action, (i) siderophore cefiderocol and (ii) β-lactam-enhancer mechanism-based cefepime/zidebactam, was tested against New Delhi Metallo-β-lactamase (NDM)-producing Enterobacterales and Pseudomonas aeruginosa collected in India. Minimum inhibitory concentrations of antibiotics against multicentric NDM-producing Escherichia coli (n = 117), Klebsiella pneumoniae (n = 103), and P. aeruginosa (n = 72) were determined by the reference broth microdilution method. Among E. coli, 111 isolates were NDM-alone, and six were NDM + OXA-48-like producers. Among K. pneumoniae, 47 and 56 isolates were NDM-alone and NDM + OXA-48-like producers, respectively. All E. coli isolates harbored four amino acid inserts in their penicillin-binding protein 3. Using the highest susceptible breakpoint among CLSI, FDA, and EUCAST interpretive criteria, cefiderocol susceptibility was 39.3%, ≤80%, and 57%, for NDM ± OXA-48-like-producing E. coli, NDM ± OXA-48-like-producing K. pneumoniae, and NDM-producing P. aeruginosa, respectively. At a cefepime break point of ≤8 mg/L, 100% of Enterobacterales and ≥90% of P. aeruginosa isolates were cefepime/zidebactam-susceptible. NDM being a dominant carbapenemase among Enterobacterales and P. aeruginosa in India, the variable activity of cefiderocol against NDM producers is a concern. Post approval, cefepime/zidebactam could offer a promising treatment option against NDM producers. IMPORTANCE Metallo-β-lactamases are therapeutically challenging due to the limited treatment options. Against such isolates, currently approved newer β-lactam/β-lactamase inhibitor combinations are ineffective. In this study, we tested siderophore cephalosporin, cefiderocol, which utilizes an unconventional iron uptake pathway for efficient cellular penetration, and cefepime/zidebactam that utilizes novel β-lactam enhancer mechanisms for overcoming diverse carbapenemases. Cefiderocol showed limited activity against Escherichia coli isolates co-harboring New Delhi metallo-β-lactamase (NDM) with PBP3 insert, dual carbapenemase (NDM with OXA-48 like)-producing Klebsiella pneumoniae, and NDM-producing Pseudomonas aeruginosa isolates, while cefepime/zidebactam potently inhibited NDM-producing Enterobacterales and P. aeruginosa isolates. NDM being a dominant carbapenemase among Enterobacterales and P. aeruginosa in India, the variable activity of cefiderocol against NDM producers is a concern. Post approval, cefepime/zidebactam could offer a promising treatment option against NDM producers.
Collapse
Affiliation(s)
| | - Bijayini Behera
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Anand Shah
- Department of Microbiology, Zydus Hospitals, Ahmedabad, Gujarat, India
| | - Purva Mathur
- Department of Clinical Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Raja Ray
- Department of Microbiology, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Bashir Ahmed Fomda
- Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Kamini Walia
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Saxena S, Aggarwal P, Mitra S, Singh S, Kaim M, Sharma A. In vitro assessment of newer colistin-sparing antimicrobial agents for clinical isolates of carbapenem-resistant organisms. J Infect Chemother 2024; 30:1252-1258. [PMID: 38839032 DOI: 10.1016/j.jiac.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES Carbapenem-resistant organisms (CROs) are a significant public health threat globally, particularly in countries like India with high antibiotic resistance rates. The current study investigates the prevalence of CROs, detects resistance mechanisms using phenotypic methods and assesses the efficacy of newer antibiotics against CROs. METHODS A prospective study conducted at a tertiary care hospital in India during 2021-23. Clinical specimens were processed and bacterial identification was performed using MALDI-TOF mass spectrometry followed by antimicrobial susceptibility testing using CLSI guidelines against a plethora of newer antibiotics for CROs. Carbapenemase production was detected using phenotypic methods, and the presence of the mcr-1 gene was assessed by real-time PCR. RESULTS During the study period, predominantly (70 %) Gram-negative bacteria were isolated; amongst which 5692 strains were carbapenem-resistant, wherein resistance to different carbapenems ranged from 34.1% to 79 %. Majority of the carbapenemase producers were metallo-β-lactamases (MBL) producers (75 %). Colistin resistance was noted in 5.4 % of selected carbapenem-resistant isolates. Among newer antibiotics, cefiderocol demonstrated the lowest resistance rates (0-14 %), while resistance to newer β-lactam/β-lactamase inhibitor combinations was very high in carbapenem-resistant isolates. Fosfomycin, minocycline and tigecycline, each showing variable efficacy depending on the site of infection. Moreover, newer β-lactam/β-lactamase inhibitor combinations offer restricted benefits due to widespread prevalence of MBL in the region. CONCLUSION The escalating prevalence of CROs in India underscores the urgency for alternative treatment options beyond colistin. Hence, highlighting the critical importance of developing effective strategies to combat carbapenem resistance.
Collapse
Affiliation(s)
- Sonal Saxena
- Department of Microbiology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| | - Prabhav Aggarwal
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Srestha Mitra
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India.
| | - Shweta Singh
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Manisha Kaim
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| | - Anju Sharma
- Department of Microbiology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
4
|
Arumugam K, Karande GS, Patil SR. Prevalence of Carbapenemase Production Among Klebsiella and Escherichia coli Isolated From Urinary Tract Infections. Cureus 2024; 16:e70918. [PMID: 39502962 PMCID: PMC11537481 DOI: 10.7759/cureus.70918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
Background and aim Urinary tract infections represent a substantial portion of healthcare-associated infections due to E. coli and Klebsiella. Carbapenems are broad-spectrum antibiotics considered highly effective in treating infections caused by multidrug-resistant bacteria. Carbapenem-resistant Enterobacteriaceae (CRE), including carbapenem-producing E. coli and Klebsiella isolates, have become a major concern as they limit treatment options. The study aims to determine the prevalence of carbapenemase-producing E. coli and Klebsiella while also comparing the effectiveness of two detection methods, namely the modified carbapenem inactivation method (mCIM) and modified Hodge test (MHT). Materials and methods A cross-sectional study was conducted from July 2022 to June 2023 in a tertiary care hospital, in Karad, Satara, India. Three hundred urinary isolates of E. coli (150) and Klebsiella (150) were studied. These isolates were tested for antimicrobial susceptibility testing. Two phenotypic methods, the modified carbapenem inactivation method (mCIM) and the modified Hodge test (MHT), were used to study carbapenemase production. Results Out of three hundred isolates, carbapenemase production was detected in 72 isolates (24%) by the modified Hodge test (MHT) and in 111 isolates (37%) by the modified carbapenem inactivation method (mCIM). Among the MHT-positive isolates, 46 (63.8%) were identified as Klebsiella and 26 (36.1%) as E. coli. In contrast, of the mCIM-positive isolates, 68 (61.2%) were Klebsiella, and 43 (38.7%) were E. coli. A total of 41 Klebsiella (27.33%) and 25 E. coli (16.66%) isolates tested positive by both methods, highlighting variability in detection rates between the two methods. Conclusion This study observed MHT and mCIM to be accurate for the detection of carbapenemase among carbapenem-resistant isolates. However, the mCIM demonstrated greater sensitivity compared to the MHT.
Collapse
Affiliation(s)
- Kumuda Arumugam
- Department of Microbiology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| | - Geeta S Karande
- Department of Microbiology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| | - Satish R Patil
- Department of Microbiology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| |
Collapse
|
5
|
Shafiq M, Ahmed I, Saeed M, Malik A, Fatima S, Akhtar S, Khurshid M, Hyder MZ. Predominance of blaNDM- and blaIMP-Harboring Escherichia coli Belonging to Clonal Complexes 131 and 23 in a Major University Hospital. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1528. [PMID: 39336569 PMCID: PMC11434522 DOI: 10.3390/medicina60091528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: Carbapenem resistance is a growing global challenge for healthcare, and, therefore, monitoring its prevalence and patterns is crucial for implementing targeted interventions to mitigate its impact on patient outcomes and public health. This study aimed to determine the prevalence of carbapenem resistance among Escherichia coli (E. coli) strains in the largest tertiary care hospital of the capital territory of Pakistan and to characterize the isolates for the presence of antimicrobial resistance genes. Additionally, the most prevalent sequence types were analyzed. Materials and Methods: A total of 15,467 clinical samples were collected from November 2020 to May 2022, underwent antimicrobial susceptibility testing, and were analyzed for antimicrobial resistance genes through conventional PCR and sequence typing using MLST. Results: In carbapenem-resistant E. coli (CR-EC), 74.19% of isolates harbored the blaNDM gene, with blaNDM-1 (66.96%), blaNDM-5 (12.17%), and blaNDM-7 (20.87%) variants detected. Additionally, blaIMP was found in 25.81% and blaOXA-48 in 35.48% of isolates. The presence of blaCTX-M15 and blaTEM was identified in 83.87% and 73.55% of CR-EC isolates, respectively, while armA and rmtB were detected in 40% and 65.16% of isolates, respectively. Colistin and tigecycline were the most effective drugs against CR-EC isolates, with both showing an MIC50 of 0.5 µg/mL. The MIC90 for colistin was 1 µg/mL, while for tigecycline, it was 2 µg/mL. MLST analysis revealed that the CR-EC isolates belonged to ST131 (24.52%), ST2279 (23.87%), ST3499 (16.13%), ST8051 (15.48%), ST8900 (9.68%), ST3329 (7.10%), ST88 (1.94%), and ST6293 (1.29%). The ST131 complex (70.97%) was the most prevalent, harboring 95.65% of the blaNDM gene, while the ST23 complex (18.06%) harbored 62.50% of the blaIMP gene. Conclusions: Implementing large-scale surveillance studies to monitor the spread of specific pathogens, along with active infection control policies, is crucial for the effective containment and prevention of future epidemics.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan; (M.S.); (M.S.)
| | - Iftikhar Ahmed
- National Culture Collection of Pakistan (NCCP), Land Resources Research Institute (LRRI), National Agriculture Research Centre, Park Road, Islamabad 45500, Pakistan;
| | - Muhammad Saeed
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan; (M.S.); (M.S.)
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Sabiha Fatima
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12371, Saudi Arabia;
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA;
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan; (M.S.); (M.S.)
| |
Collapse
|
6
|
Haeili M, Ghaderi Bavil‐Olyaei P. Assessment of in vitro activity of ceftazidime/avibactam on carbapenemase-producing Enterobacterales from Iran: An experimental study. Health Sci Rep 2024; 7:e2299. [PMID: 39193316 PMCID: PMC11348202 DOI: 10.1002/hsr2.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Background and Aims The prevalence of carbapenemase-producing Enterobacterales (CPE) continues to increase worldwide. Combination of β-lactam and novel β-lactamase inhibitors introduce a revolutionary treatment option for CPE. Ceftazidime/avibactam (CAZ/AVB) has been recently developed for treatment of severe infections caused by multidrug-resistant bacteria. We aimed to evaluate in vitro activity of CAZ/AVB on a collection of 85 ESBL-producing-carbapenemase negative and CPE from Iran. Methods ESBL and carbapenemase production was phenotypically confirmed by combined disk test and modified carbapenem inactivation method respectively. The presence of clinically important carbapenemase encoding genes was examined using PCR. Susceptibility of all isolates to CAZ/AVB was determined using discs containing 30 μg ceftazidime +20 μg avibactam (AVB). Minimum inhibitory concentrations (MICs) of CAZ/AVB in 28 CPE (4 Escherichia coli and 24 Klebsiella pneumoniae) was determined by gradient diffusion method using MIC test strips (0.016-256 mg/L ceftazidime +4 mg/L AVB). Results All phenotypically identified ESBL positive-carbapenemase negative isolates were found to be susceptible to CAZ/AVB. Among the carbapenem resistant isolates, CAZ/AVB showed potent inhibitory activity against all OXA-48-like (MIC ranges 0.125/4-0.75/4 mg/L) and KPC positive isolates (MIC ranges <0.016/4-0.19/4 mg/L). However, AVB could not restore the activity of ceftazdime against isolates producing metallo-β-lactamases (MLBs) including VIM, NDM (MIC > 256/4 mg/L) and IMP (MIC > 8/4 mg/L). Conclusion Our data highlighted the excellent in vitro performance of CAZ/AVB against ESBL-producing and CPE suggesting that this combination can efficiently be used as therapeutic option for management of CPE infections particularly in regions with high prevalence of KPC and/or OXA-48-like positive but MBL-negative Enterobacterales.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Animal BiologyFaculty of Natural Sciences, University of TabrizTabrizIran
| | | |
Collapse
|
7
|
Raveendran S, R D, Shimoga Ravi Kumar S, Karthik K. Addressing the Global Threat of Multidrug-Resistant Infections: The Role of Ceftazidime-Avibactam Revisited. Cureus 2024; 16:e60235. [PMID: 38872698 PMCID: PMC11169094 DOI: 10.7759/cureus.60235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/15/2024] Open
Abstract
Background and objective Bloodstream infections (BSIs) due to multidrug-resistant Gram-negative bacteria (MDR-GNB) pose a significant global health threat amid rising antimicrobial resistance (AMR). This study aimed to investigate the efficacy of ceftazidime-avibactam (CZA) as a therapeutic option for these infections, addressing the urgent need for novel treatments. Materials and methods This study was conducted over one year in the Department of Microbiology, JSS Medical College and Hospital, Mysuru, India, and employed a laboratory-based prospective design. From a total of 376 positive blood cultures, 147 multidrug-resistant (MDR) organisms were identified, and 100 were randomly selected for final analysis. Susceptibility testing via disk diffusion and minimum inhibitory concentration (MIC) determination was performed to evaluate CZA efficacy. Results Klebsiella pneumoniae (K. pneumoniae) was the predominant (78%) organism among the subsets, with varying susceptibility patterns observed across species. The overall CZA susceptibility was 45%, with significant discrepancies between disk diffusion and gold standard testing. Notably, there was limited efficacy against Pseudomonas aeruginosa (P. aeruginosa) Conclusions This study underscores the pressing need for reliable testing methods and novel treatment strategies in combating MDR infections. Further research with larger sample sizes is imperative to validate our findings and guide clinicians effectively in addressing this critical health challenge.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysore, IND
| | - Deepashree R
- Clinical Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysore, IND
| | - Sujatha Shimoga Ravi Kumar
- Medical Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysore, IND
| | - Krishna Karthik
- Microbiology, JSS Medical College and Hospital, JSS Academy of Higher Education and Research, Mysore, IND
| |
Collapse
|
8
|
Nasrollahian S, Graham JP, Halaji M. A review of the mechanisms that confer antibiotic resistance in pathotypes of E. coli. Front Cell Infect Microbiol 2024; 14:1387497. [PMID: 38638826 PMCID: PMC11024256 DOI: 10.3389/fcimb.2024.1387497] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
The dissemination of antibiotic resistance in Escherichia coli poses a significant threat to public health worldwide. This review provides a comprehensive update on the diverse mechanisms employed by E. coli in developing resistance to antibiotics. We primarily focus on pathotypes of E. coli (e.g., uropathogenic E. coli) and investigate the genetic determinants and molecular pathways that confer resistance, shedding light on both well-characterized and recently discovered mechanisms. The most prevalent mechanism continues to be the acquisition of resistance genes through horizontal gene transfer, facilitated by mobile genetic elements such as plasmids and transposons. We discuss the role of extended-spectrum β-lactamases (ESBLs) and carbapenemases in conferring resistance to β-lactam antibiotics, which remain vital in clinical practice. The review covers the key resistant mechanisms, including: 1) Efflux pumps and porin mutations that mediate resistance to a broad spectrum of antibiotics, including fluoroquinolones and aminoglycosides; 2) adaptive strategies employed by E. coli, including biofilm formation, persister cell formation, and the activation of stress response systems, to withstand antibiotic pressure; and 3) the role of regulatory systems in coordinating resistance mechanisms, providing insights into potential targets for therapeutic interventions. Understanding the intricate network of antibiotic resistance mechanisms in E. coli is crucial for the development of effective strategies to combat this growing public health crisis. By clarifying these mechanisms, we aim to pave the way for the design of innovative therapeutic approaches and the implementation of prudent antibiotic stewardship practices to preserve the efficacy of current antibiotics and ensure a sustainable future for healthcare.
Collapse
Affiliation(s)
- Sina Nasrollahian
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jay P. Graham
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, CA, United States
| | - Mehrdad Halaji
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
9
|
Wang JL, Lai CC, Tsai YW, Ko WC, Hsueh PR. High ceftazidime-avibactam resistance among carbapenem-resistant Enterobacter species: Data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme, 2014-2021. Int J Antimicrob Agents 2024; 63:107105. [PMID: 38325719 DOI: 10.1016/j.ijantimicag.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVES Trends in the susceptibility to ceftazidime-avibactam (CZA) and tigecycline (TGC) among Enterobacter species from different geographic areas are unknown.This study aimed to analyse the trends in CZA and TGC susceptibility changes across different continents from 2014 to 2021 utilizing Antimicrobial Testing Leadership and Surveillance (ATLAS) data. METHODS A total of 23 669 isolates of Enterobacter species were collected over an 8-y period. RESULTS The overall non-susceptibility rate of Enterobacter isolates to both CZA and TGC was 3.2%. India (16.5%), Guatemala (15.4%), and the Philippines (13.1%) exhibited the highest resistance to CZA. The increase in CZA resistance rates was particularly evident in Asia, with an increase from 4.0% to 8.3%, and in Latin America, from 1.5% to 5%. The non-susceptibility rate for TGC mildly increased in Africa/Middle East but decreased in other continents during the study period. The overall rate of carbapenem resistance increased from 2.9% in 2014-2017 to 4.3% in 2018-2021. Among carbapenem-resistant Enterobacter isolates, the CZA resistance rate was highest in Asia (87.4%), followed by Europe (69.2%) and Africa/Middle East (60.8%). Among the 380 Enterobacter isolates resistant to CZA and carbapenem, the most common genotype of carbapenemase genes was blaNDM (59.2%), followed by blaVIM (24.2%), blaOXA (4.2%), blaIMP (1.1%), and blaKPC (1.1%). The susceptibility of carbapenem-resistant Enterobacter to TGC remained high, with an overall susceptibility rate of 90%. CONCLUSIONS The heterogeneous distribution of CZA resistance rates among different geographical regions highlights the divergent therapeutic options for drug-resistant Enterobacter species.
Collapse
Affiliation(s)
- Jiun-Ling Wang
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chih-Cheng Lai
- Division of Hospital Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ya-Wen Tsai
- Center of Integrative Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Po-Ren Hsueh
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan; PhD Program for Ageing, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Gupta N, Saseedharan S, Paliwal Y. Effectiveness of Ceftazidime-Avibactam in Gram-Negative Nosocomial Pneumonia: A Real-World Study in India. Cureus 2024; 16:e54443. [PMID: 38510907 PMCID: PMC10951683 DOI: 10.7759/cureus.54443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The incidences of nosocomial pneumonia in intensive care units (ICUs) in India have been reported to range from 9% to 58% and are associated with a mortality rate of 30-70%. Ceftazidime-avibactam has activity against OXA-48-like carbapenem-resistant Enterobacterales (CRE) and has a safer adverse effect profile as compared to the nephrotoxic colistin. The current study aimed to assess the effectiveness and usage pattern of ceftazidime-avibactam in gram-negative hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) in real-world settings in India. METHODS Electronic medical records of hospitalized patients in three prominent medical centers in India (Fortis Memorial Research Centre, Gurugram, S L Raheja Hospital, Mumbai, and Fortis Hospital, Anandapur, Kolkata) with nosocomial pneumonia and documented gram-negative Klebsiella pneumoniae (KP)-confirmed infection were collected. This study assessed the effectiveness, usage pattern of ceftazidime-avibactam, and clinical and microbiological cure rates. RESULTS Among the 116 patients included, 78.45% (91/116) showed clinical cure. Microbiological cure was observed in nine out of 13 (69.23%) patients. In the subset analysis, a clinical cure rate of 84.85% (28/33) and microbiological recovery rate of 62.50% (5/8) were observed when ceftazidime-avibactam was initiated within 72 hours of diagnosis. Ceftazidime-avibactam was administered for a mean (±SD) duration of 7.79 ± 4.43 days, with improvement in signs and symptoms reported among 91.38% (106/116). Ceftazidime-avibactam showed a susceptibility of 56% (28/56) in the study. CONCLUSION The current study showed a better clinical and microbiological cure rate with a safer tolerability profile of ceftazidime-avibactam in carbapenem-resistant KP nosocomial pneumonia and VAP. This study has further demonstrated that ceftazidime-avibactam may be used as one of the viable treatment choices in carbapenem-resistant KP with favorable clinical outcomes.
Collapse
Affiliation(s)
- Neha Gupta
- Internal Medicine and Infectious Diseases, Fortis Memorial Research Institute, Gurugram, IND
| | | | | |
Collapse
|
11
|
Liu G, Qiu J, Liu Y, Liu Z. Effectiveness and safety of cefotaxime combined with avibactam for treating multidrug-resistant E coli infections: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e36938. [PMID: 38241533 PMCID: PMC10798705 DOI: 10.1097/md.0000000000036938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Multidrug-resistant Escherichia coli infections are a global health challenge, notably in North America, Europe, Asia, and Africa. This systematic review and meta-analysis evaluates the effectiveness and safety of cefotaxime combined with avibactam, aiming to mitigate these infections' impact and lessen their burden on healthcare systems worldwide. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and PICO frameworks, we conducted a comprehensive literature search across 4 primary databases on May 6, 2023. Studies evaluating the efficacy and safety of cefotaxime and avibactam were included. Key outcomes included treatment success, adverse effects, and microbiological eradication. Quality assessment utilized the Cochrane Collaboration Risk of Bias instrument. Heterogeneity was analyzed using chi-square statistics and the I2 index. Both fixed- and random-effects models were applied as appropriate. Publication bias was rigorously evaluated using Egger linear regression test and funnel plot analysis, ensuring the study's integrity and reliability. RESULTS The clinical cure rate derived from 8 studies showed no significant difference between the treatment groups (odds ratio [OR] = 1.97, 95% CI: 0.69 to 1.36, P = .86). Analysis of the bacterial clearance rate from the 5 studies also indicated no significant difference (OR = 0.97, 95% CI: 0.42 to 2.25, P = .36). Notably, a reduced mortality rate favoring the experimental group was observed in 6 studies (OR = 0.64, 95% CI: 0.44 to 0.92, P = .012). Comprehensive sensitivity analyses and the assessment of publication bias strengthened the reliability of the results. CONCLUSIONS Ceftazidime combined with avibactam significantly reduced mortality among patients with multidrug-resistant Escherichia coli infections, indicating its potential as a therapeutic option, especially for carbapenem-resistant Enterobacteriaceae. However, extensive large-scale clinical trials are required to validate these findings.
Collapse
Affiliation(s)
- Geming Liu
- Department of Pharmacy, Affiliated Hospital of Jilin Medical University, Jilin, Jilin Province, China
| | - Jia Qiu
- Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin, Jilin Province, China
| | - Yang Liu
- Department of Pharmacy, Jilin Chemical Hospital, Jilin, Jilin Province, China
| | - Zhisen Liu
- Clinical Pharmacy, Affiliated Hospital of Jilin Medical University, Jilin, Jilin Province, China
| |
Collapse
|
12
|
Gupta S, Rajni E, Galav H, Gajjar D. Molecular characterization of Carbapenem resistant Enterobacterales causing blood stream infections in critically ill patients. Indian J Med Microbiol 2024; 47:100484. [PMID: 37871383 DOI: 10.1016/j.ijmmb.2023.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023]
Affiliation(s)
- Shilpi Gupta
- Department of Microbiology, Mahatma Gandhi University of Medical Sciences and Technology, Riico Institutional Area, Tonk Rd, Sitapura, 302020, Jaipur, Rajasthan, India.
| | - Ekadashi Rajni
- Department of Microbiology, Mahatma Gandhi University of Medical Sciences and Technology, Riico Institutional Area, Tonk Rd, Sitapura, 302020, Jaipur, Rajasthan, India.
| | - Himanshi Galav
- Department of Microbiology, Mahatma Gandhi University of Medical Sciences and Technology, Riico Institutional Area, Tonk Rd, Sitapura, 302020, Jaipur, Rajasthan, India.
| | - Devarshi Gajjar
- Faculty of Science, Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, 390002 Sayajiganj, Vadodara, India.
| |
Collapse
|
13
|
Mackow NA, van Duin D. Reviewing novel treatment options for carbapenem-resistant Enterobacterales. Expert Rev Anti Infect Ther 2024; 22:71-85. [PMID: 38183224 PMCID: PMC11500727 DOI: 10.1080/14787210.2024.2303028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Carbapenem resistant Enterobacterales (CRE) are a major threat to global health and hospital-onset CRE infections have risen during the COVID-19 pandemic. Novel antimicrobials are now available for the treatment of CRE infections. There remains an urgent need for new antimicrobials for CRE, especially for those producing metallo-β-lactamases. AREAS COVERED This article discusses previously published research supporting currently available novel antimicrobials for the treatment of CRE infections. Newer compounds currently being evaluated in clinical trials are covered. A literature search was conducted in PubMed over all available dates for relevant published papers and conference abstracts with the search terms, 'CRE,' 'carbapenem-resistant Enterobacterales,' 'β-lactam-β-lactamase inhibitor,' 'KPC,' 'NDM,' 'metallo-β-lactamase,' 'ceftazidime-avibactam,' 'meropenem-vaborbactam,' 'imipenem-cilastatin-relebactam,' 'cefiderocol,' 'eravacycline,' 'plazomicin,' 'taniborbactam,' 'zidebactam,' and 'nacubactam.' EXPERT OPINION Novel antimicrobials for CRE infections have been developed, most notably the β-lactam-β-lactamase inhibitor combinations, though treatment options for infections with metallo-β-lactamase producing Enterobacterales remain few and have limitations. Development of antibiotics with activity against metallo-β-lactamase producing Enterobacterales is eagerly awaited, and there are promising new compounds in clinical trials. Finally, more clinical research is needed to optimize and individualize treatment approaches, which will help guide antimicrobial stewardship initiatives aimed at reducing the spread of CRE and development of further resistance.
Collapse
Affiliation(s)
- Natalie A Mackow
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Kalaivani R, Kali A, Surendran R, Sujaritha T, Ganesh Babu CP. Rapid characterization of carbapenem-resistant Enterobacterales by multiplex lateral flow assay and detection of ceftazidime-avibactam-aztreonam synergy. Indian J Med Microbiol 2024; 47:100530. [PMID: 38246242 DOI: 10.1016/j.ijmmb.2024.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/14/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE The choice of antibiotics for treatment of Carbapenem-Resistant Enterobacterales (CRE) is increasing becoming limited due to co-expression of Metallo-beta-lactamases (MBL) along with other carbapenemases in these isolates. The study aimed to investigate the occurrence of CRE and to determine the in-vitro synergy and clinical outcomes of Ceftazidime-Avibactam and Aztreonam combination in CRE infections in adult Intensive Care Units (ICUs). METHODS 79 CRE isolates recovered from adult ICUs during January to March 2023 were tested by O.K.N.V.I. RESIST-5, a lateral flow multiplex assay for rapid detection of OXA-48-like, NDM, IMP, VIM, and KPC carbapenemases. Ceftazidime-Avibactam MIC was determined by microbroth dilution method and in vitro synergy between Ceftazidime-Avibactam and Aztreonam was assessed by Modified E-test/disc diffusion method for these isolates. RESULTS The study revealed 7.5 % occurrence of CRE in our hospital, with high occurrence of NDM (n = 42, 53.1 %) and OXA-48-like (n = 63, 79.7 %) carbapenemase. Production of more than one type of carbapenemases was found in 44 isolates. A total of 57 isolates (72 %) had Ceftazidime-Avibactam resistance and 44 of them displayed Ceftazidime-Avibactam and Aztreonam in-vitro synergy. Successful clinical outcome was observed in two patients who received Ceftazidime-Avibactam and Aztreonam combination therapy for 7 days or more. CONCLUSIONS Despite the preponderance of Ceftazidime-Avibactam resistant CRE expressing NDM and OXA-48-like carbapenemase in our hospital, 77.2 % of them displayed in-vitro synergy of Ceftazidime-Avibactam with Aztreonam. It emphasizes the potential therapeutic utility of this combination in CRE strains showing coproduction of MBL and serine carbapenemases. Greater therapeutic potential of Ceftazidime-Avibactam and Aztreonam combination was observed with extended duration of therapy. However, further clinical evidence is needed to establish the efficacy of this combination and consider other factors that influence treatment outcomes.
Collapse
Affiliation(s)
- R Kalaivani
- Department of Microbiology, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - Arunava Kali
- Department of Microbiology, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - R Surendran
- Department of Infectious Disease, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - T Sujaritha
- Department of Critical Care Medicine, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| | - C P Ganesh Babu
- Department of General Surgery, MGMCRI, Sri Balaji Vidhyapeeth deemed to be University, Pondicherry, India.
| |
Collapse
|
15
|
Mohanty S, Saha S, Firdaus S, Sirka CS. Profile of Cutaneous Bacterial Flora in Pemphigus Patients. J Lab Physicians 2023; 15:616-620. [PMID: 37780880 PMCID: PMC10539056 DOI: 10.1055/s-0043-1768635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/29/2023] [Indexed: 10/03/2023] Open
Abstract
Objectives Pemphigus, a group of autoimmune bullous diseases, can be fatal, resulting from overwhelming opportunistic infection of lesions secondary to cutaneous bacterial infections. This study aimed to look into the cutaneous bacterial infection profile of pemphigus patients as timely identification and appropriate treatment can play a major role in reducing mortality. Materials and Methods Pus samples/swabs received from patients with pemphigus over a 2-year period from July 2018 to June 2020 were subjected to standard microbiological culture techniques and susceptibility testing. The frequency of isolation and susceptibility profile of the different bacterial pathogens toward various antimicrobial agents were interpreted and analyzed as per the Clinical and Laboratory Standards Institute's guidelines. Results Samples from 315 patients were received during the study period comprising of 203 (64.4%) males and 112 (35.5%) females. Of 211 samples which were culture-positive, a total of 245 bacterial isolates were obtained, comprising of 158 Gram-positive cocci and 87 Gram-negative bacilli. Staphylococcus aureus (138, 56.3%) was the most common isolate followed by Pseudomonas aeruginosa (41, 16.7%) and Escherichia coli (16, 6.5%). Methicillin resistance was observed in 24.6% Staphylococcus aureus isolates and carbapenem resistance in 9.5 to 14.6% Gram-negative bacilli. Conclusions Study findings emphasize the need for continuous monitoring of cutaneous pemphigus lesions for appropriate choice of antimicrobial therapy.
Collapse
Affiliation(s)
- Srujana Mohanty
- Department of Microbiology, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, Odisha, India
| | - Swarnatrisha Saha
- Department of Microbiology, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, Odisha, India
| | - Shehnaz Firdaus
- Department of Microbiology, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, Odisha, India
| | - Chandra Sekhar Sirka
- Department of Dermatology, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, Odisha, India
| |
Collapse
|
16
|
Razaq L, Uddin F, Ali S, Abbasi SM, Sohail M, Yousif NE, Abo-Dief HM, El-Bahy ZM. In Vitro Activity of New β-Lactamase Inhibitor Combinations against blaNDM, blaKPC, and ESBL-Producing Enterobacteriales Uropathogens. Antibiotics (Basel) 2023; 12:1481. [PMID: 37887182 PMCID: PMC10604030 DOI: 10.3390/antibiotics12101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Antibiotic resistance in uropathogens has increased substantially and severely affected treatment of urinary tract infections (UTIs). Lately, some new formulations, including meropenem/vaborbactam (MEV), ceftazidime/avibactam (CZA), and ceftolozane/tazobactam (C/T) have been introduced to treat infections caused by drug-resistant pathogens. This study was designed to screen Enterobacteriales isolates from UTI patients and to assess their antimicrobial resistance pattern, particularly against the mentioned (new) antibiotics. Phenotypic screening of extended-spectrum β-lactamase (ESBL) and carbapenem resistance was followed by inhibitor-based assays to detect K. pneumoniae carbapenemase (KPC), metallo-β-lactamase (MBL), and class D oxacillinases (OXA). Among 289 Enterobacteriales, E. coli (66.4%) was the most predominant pathogen, followed by K. pneumoniae (13.8%) and P. mirabilis (8.3%). The isolates showed higher resistance to penicillins and cephalosporins (70-87%) than to non-β-lactam antimicrobials (33.2-41.5%). NDM production was a common feature among carbapenem-resistant (CR) isolates, followed by KPC and OXA. ESBL producers were susceptible to the tested new antibiotics, but NDM-positive isolates appeared resistant to these combinations. KPC-producers showed resistance to only C/T. ESBLs and carbapenemase encoding genes were located on plasmids and most of the genes were successfully transferred to recipient cells. This study revealed that MEV and CZA had significant activity against ESBL and KPC producers.
Collapse
Affiliation(s)
- Lubna Razaq
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Fakhur Uddin
- Department of Microbiology, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan
| | - Shahzad Ali
- Department of Urology, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan;
| | - Shah Muhammad Abbasi
- Department of Main Clinical Laboratory, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan;
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Nabila E. Yousif
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.Y.); (H.M.A.-D.)
| | - Hala M. Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.Y.); (H.M.A.-D.)
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| |
Collapse
|
17
|
Lim TP, Ho JY, Teo JQM, Sim JHC, Tan SH, Tan TT, Kwa ALH. In Vitro Susceptibility to Ceftazidime-Avibactam and Comparator Antimicrobial Agents of Carbapenem-Resistant Enterobacterales Isolates. Microorganisms 2023; 11:2158. [PMID: 37764002 PMCID: PMC10534512 DOI: 10.3390/microorganisms11092158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of carbapenem-resistant Enterobacterales (CRE) has been recognized as a significant concern globally. Ceftazidime/avibactam (CZA) is a novel β-lactam/β-lactamase inhibitor that has demonstrated activity against isolates producing class A, C, and D β-lactamases. Here-in, we evaluated the in vitro activity of CZA and comparator antimicrobial agents against 858 CRE isolates, arising from the Southeast Asian region, collected from a large tertiary hospital in Singapore. These CRE isolates mainly comprised Klebsiella pneumoniae (50.5%), Escherichia coli (29.4%), and Enterobacter cloacae complex (17.1%). Susceptibility rates to levofloxacin, imipenem, meropenem, doripenem, aztreonam, piperacillin/tazobactam, cefepime, tigecycline, and polymyxin B were low. CZA was the most active β-lactam agent against 68.9% of the studied isolates, while amikacin was the most active agent among all comparator antibiotics (80% susceptibility). More than half of the studied isolates (51.4%) identified were Klebsiella pneumoniae carbapenemase (KPC)-2 producers, 25.9% were New Delhi metallo-β-lactamase (NDM) producers, and Oxacillinase (OXA)-48-like producers made up 10.7%. CZA was the most active β-lactam agent against KPC-2, OXA-48-like, and Imipenemase (IMI) producers (99.3% susceptible; MIC50/90: ≤1/2 mg/L). CZA had excellent activity against the non-carbapenemase-producing CRE (91.4% susceptible; MIC50/90: ≤1/8 mg/L). Expectedly, CZA had no activity against the metallo-β-lactamases (MBL)-producing CRE (NDM- and Imipenemase MBL (IMP) producers; 27.2% isolates), and the carbapenemase co-producing CRE (NDM + KPC, NDM + OXA-48-like, NDM + IMP; 3.0% isolates). CZA is a promising addition to our limited armamentarium against CRE infections, given the reasonably high susceptibility rates against these CRE isolates. Careful stewardship and rational dosing regimens are required to preserve CZA's utility against CRE infections.
Collapse
Affiliation(s)
- Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 20 College Road, Singapore 169856, Singapore;
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - Jun-Yuan Ho
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - Jocelyn Qi-Min Teo
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - James Heng-Chiak Sim
- SingHealth Duke-NUS Pathology Academic Clinical Programme, 20 College Road, Singapore 169856, Singapore;
- Department of Microbiology, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Si-Hui Tan
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
| | - Thuan-Tong Tan
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 10 Hospital Boulevard, Singapore 168582, Singapore
- Department of Infectious Diseases, Singapore General Hospital, 20 College Road, Singapore 169856, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, 10 Hospital Boulevard, Singapore 168582, Singapore
- SingHealth Duke-NUS Medicine Academic Clinical Programme, 10 Hospital Boulevard, Singapore 168582, Singapore
- Emerging Infectious Diseases Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
18
|
Routray A, Mane A. Knowledge, Attitude, and Practice (KAP) Survey on the Management of Multidrug-Resistant Gram-Negative Infections With Innovative Antibiotics: Focus on Ceftazidime-Avibactam. Cureus 2023; 15:e39245. [PMID: 37378116 PMCID: PMC10292104 DOI: 10.7759/cureus.39245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health dilemma and a chief health concern globally. The rising incidence of resistance against carbapenems, which are considered most effective against gram-negative bacteria, has added to the concern and has limited the number of available treatment options. Newer antibiotic options may be required to tackle the mounting concern of antibiotic resistance. However, only a few antimicrobials are in the pipeline for managing infections instigated by multidrug-resistant (MDR) gram-negative bacteria. This justifies the prudent application of already available antibiotics. Among newer antibiotics available to healthcare professionals (HCPs), ceftazidime-avibactam (CAZ-AVI) has shown good efficacy in the management of MDR gram-negative infections. METHOD A cross-sectional survey on the knowledge, attitude, and practices (KAP) among HCPs was carried out using a questionnaire comprising 21 parameters related to AMR patterns on the need for innovative antibiotics to manage MDR gram-negative infections and the usage of CAZ-AVI by HCPs while managing such infections. The KAP scores were calculated to rank respondents' KAP levels. RESULT Out of the 204 study respondents, the majority (~80%) (n=160) believed that renewed efforts should be made to seek antimicrobial agents that will add to the armamentarium of treatment options for MDR gram-negative infections. CAZ-AVI is an important treatment alternative for managing MDR gram-negative infections (n=90, 45%). Further, it can be the first choice of definitive therapy for oxacillinases (OXA)-48-producing carbapenem-resistant Enterobacterales (n=84, 42%). HCPs also believed that the use of CAZ-AVI in clinical practice will require high levels of antimicrobial stewardship (n=100, 49%). CONCLUSION Novel and innovative antibiotics are the need of the hour in the management of MDR gram-negative infections. CAZ-AVI has established its effectiveness in treating these infections; however, the molecule must be utilized prudently while keeping stewardship principles in mind.
Collapse
|
19
|
Radha S, Warrier AR, Wilson A, Prakash S. Use of Ceftazidime-Avibactam in the Treatment of Clinical Syndromes With Limited Treatment Options: A Retrospective Study. Cureus 2023; 15:e33623. [PMID: 36788880 PMCID: PMC9918332 DOI: 10.7759/cureus.33623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Background With rising trends of multi-drug organism infections and the limited availability of new antimicrobials, management of such cases has become a hassle for the clinician. Ceftazidime-Avibactam (CEF-AVI) is evolving as an effective alternative to polymyxins in the management of Carbapenem-Resistant Organisms (CRO) infections. The Food and Drug Administration (FDA) has approved CEF-AVI in a restricted group of clinical syndromes where the drug could have potential use. Objective The goal of this study was to evaluate the clinical outcome in terms of 14-day all-cause mortality and clinical cure at seven days in patients on CEF-AVI. Methodology A retrospective study was conducted on patients who received CEF-AVI in a period of one year in our hospital. Patients were included in the study if they have received CEF-AVI for more than one day of therapy (DOT) and samples from relevant sites have been sent for culture and sensitivity. Variables and outcomes were collected from the hospital information system and medical records. Results A total of 78 patients were included, 52 (66.7%) were started empirically on CEF-AVI while 26 (33.3%) were on targeted therapy. Out of the 78 patients, 43 patients had positive cultures among which 32 patients had Carbapenem-Resistant Enterobacteriaceae (CRE)/Carbapenem-Resistant Pseudomonas aeruginosa (CRPA) infection. The most common clinical syndrome in which the drug was used was occult sepsis (27/78; 34.6%) followed by primary bacteremia (20/78; 25.6%) and neutropenic sepsis (11/78; 14.1%). The clinical efficacy which was primarily assessed in terms of clinical cure was met for 55 (70.5%) patients. The 14-day mortality for the studies group was found to be 18 (23%). Conclusion The analysis of results shows encouraging clinical cure rates and 14-day mortality rates in a subset of severe infections which has limited treatment options.
Collapse
Affiliation(s)
- Sneha Radha
- Infectious Diseases, Aster Medcity, Kochi, IND
| | | | - Arun Wilson
- Infectious Diseases, Aster Medcity, Kochi, IND
| | | |
Collapse
|
20
|
Li X, Chen Z, Jiao J, Wang S, Wang Y, Wu W, Yang H, Lou H. In vitro and in vivo activity of meropenem+avibactam against MBL-producing carbapenem-resistant Klebsiella pneumoniae. Expert Rev Anti Infect Ther 2023; 21:91-98. [PMID: 36433637 DOI: 10.1080/14787210.2022.2153117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Antibiotic resistance has become a public health problem to be solved worldwide and metallo-β-lactamase (MBL)-producing bacteria make this problem even more challenging. METHODS The interactions of meropenem (MEM) in combination with avibactam (AVI) in growth inhibition on MBL-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) strains were tested. In vitro interactions of MEM+AVI were tested using the microdilution checkerboard assay and time-kill curves. In vivo interactions of MEM+AVI were tested using the Galleria mellonella model. RESULTS All strains were multi-drug resistant strains and six of them were proved to produce MBLs. We show that the combination of MEM+AVI generates profound synergistic effects on growth inhibition of all strains, which was better than that of MEM+vaborbactam or imipenem+relebactam. The time-kill curves further confirmed the potent synergistic antibacterial effects of MEM+AVI against MBL-producing CRKP strains. Galleria mellonella studies were consistent with in vitro analysis. Combining MEM with AVI improved survival rates and mean survival days were obviously prolonged compared to the drug alone and the untreated controls. CONCLUSIONS To our knowledge, this study is the first report of MEM+AVI collaborating against MBL-producing CRKP strains. Our findings showed that the combination of MEM+AVI has the potential for antibiotic drug development to combat MBL-producing pathogens.
Collapse
Affiliation(s)
- Xiuyun Li
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Maternal and Child Health Development Research Center, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Zhaowen Chen
- Medical Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Jin Jiao
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Shifu Wang
- Microbiology Laboratory, Children's Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yuehua Wang
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Weiwei Wu
- Department of Clinical Laboratory, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Huijun Yang
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
21
|
El-Kady RAEH, Elbaiomy MA, Elnagar RM. Molecular Mechanisms Mediating Ceftazidime/Avibactam Resistance Amongst Carbapenem-Resistant Klebsiella pneumoniae Isolates from Cancer Patients. Infect Drug Resist 2022; 15:5929-5940. [PMID: 36247738 PMCID: PMC9558567 DOI: 10.2147/idr.s384972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022] Open
Abstract
Background A growing body of evidence suggests that ceftazidime/avibactam (CZA) is a potential therapeutic option for carbapenem-resistant Klebsiella pneumoniae (CRKP) infections; however, resistant strains are increasingly emerged worldwide. Herein, we deemed to investigate the susceptibility profile of CRKP isolates from cancer patients to CZA and to identify the underlying resistance mechanisms. Methods Clinical samples were obtained from adult patients admitted to the Oncology Center of Mansoura University, Mansoura, Egypt. The antibiotic susceptibility pattern of K. pneumoniae isolates to different antibiotics was tested by the modified Kirby Bauer's disc diffusion method. Minimum inhibitory concentrations of CZA were assessed using broth microdilution method. Screening for carbapenemase-producing strains was achieved by the modified Hodge test. Multiplex polymerase chain reactions (PCRs) were conducted for uncovering of carbapenemase-encoding genes (blaKPC, blaVIM, blaIMP, blaNDM-1 , and blaOXA-48 ), and outer membrane porin genes (ompK35 and ompK36). Results A total of 12 CZA-resistant isolates were identified out of 47 CRKP isolates (25.5%). The MIC50 and MIC90 of CZA against CRKP were 1 and 64 µg/mL, respectively. Risk factors for CZA resistance included chronic kidney disease, mechanical ventilation, longer length of hospital stay, and ICU admission. The multivariate logistic regression demonstrated that longer length of hospital stay (P=0.03) was the only independent predictor for acquisition of CZA-resistant isolates. The leading mechanism for CZA resistance was sustained by blaKPC (50%), meanwhile 16.7% and 8.3% of the CZA-resistant isolates harbored blaOXA-48 and blaOXA-48 /blaNDM-1 , respectively. The MBL-encoding genes blaNDM-1 and blaIMP were detected in 16.7% and 8.3% of the isolates, respectively. Absence of both ompK35 and ompK36 was observed in 58.3% of the CZA-resistant isolates. Conclusion CZA has displayed superior in vitro activity against CRKP isolates in comparison to other antibiotics; however, thorough molecular characterization of resistant strains is highly recommended in future studies to detect and monitor the emergence of further tackling strains.
Collapse
Affiliation(s)
- Rania Abd El-Hamid El-Kady
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt,Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia,Correspondence: Rania Abd El-Hamid El-Kady, Department of Pathological Sciences, Fakeeh College for Medical Sciences, P.O. Box 2537, Jeddah, 21461, Kingdom of Saudi Arabia, Tel +966 569849897, Email
| | | | - Rasha Mokhtar Elnagar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Swaminathan S, Routray A, Mane A. Early and Appropriate Use of Ceftazidime-Avibactam in the Management of Multidrug-Resistant Gram-Negative Bacterial Infections in the Indian Scenario. Cureus 2022; 14:e28283. [PMID: 36072213 PMCID: PMC9440350 DOI: 10.7759/cureus.28283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant pathogens exerts a substantial burden on the healthcare infrastructure worldwide. The World Health Organization (WHO) has declared that multidrug-resistant (MDR) Gram-negative pathogens, especially, carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii, and Pseudomonas aeruginosa as the topmost priority while developing newer antimicrobials. The increasing prevalence of infectious diseases caused by MDR Gram-negative bacteria also poses a challenge when choosing the empiric antimicrobial therapy for seriously ill hospitalized patients. The infections caused by MDR Gram-negative organisms ultimately result in increased mortality, morbidity, prolonged hospital stay, and increased cost of management. To tackle these challenges, newer antimicrobials like ceftazidime-avibactam were explored. The article also discusses the in vitro activity and therapeutic efficacy of ceftazidime-avibactam along with its pharmacokinetic properties and the role it will play in the management of MDR Gram-negative organisms in the Indian setting. Several studies have highlighted the role of early and appropriate antibiotic use in the reduction of mortality in patients with Gram-negative infections. Timely initiation of appropriate antibiotic therapy for serious infections leads to favorable clinical outcomes. Early and appropriate use of ceftazidime-avibactam while treating MDR Gram-negative infections has been associated with improved clinical outcomes. The aim of this review is to highlight the efficacy of ceftazidime-avibactam in the treatment of MDR Gram-negative infections. We have also summarized the information on outcomes achieved by early and appropriate use of ceftazidime-avibactam.
Collapse
|