1
|
Nag S, Damodar KSH, Mukherjee S, Rao DR, Debnath I, Haryini S, Mohanto S, Ahmed MG, Subramaniyan V. Unveiling the trending paradigms of synthesis and theranostic biomedical potentials of nano-diamonds (NDs) - a state-of-the-art update. INORG CHEM COMMUN 2025; 177:114313. [DOI: 10.1016/j.inoche.2025.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
|
2
|
Wanek T, Raabe M, Alam MNA, Filip T, Stanek J, Loebsch M, Laube C, Mairinger S, Weil T, Kuntner C. Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities. Pharmaceuticals (Basel) 2024; 17:514. [PMID: 38675474 PMCID: PMC11054832 DOI: 10.3390/ph17040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting capabilities of NDs.
Collapse
Affiliation(s)
- Thomas Wanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
| | - Marco Raabe
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Md Noor A Alam
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
| | - Mathilde Loebsch
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Core Facility Laboratory Animal Breeding and Husbandry (CFL), Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Laube
- Leibniz-Institute of Surface Engineering (IOM), 04318 Leipzig, Germany;
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|