1
|
Wang B, Lu J, Zheng J, Yu Z. iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green. J Microbiol 2021; 59:142-150. [PMID: 33527315 DOI: 10.1007/s12275-021-0441-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
The wide use of malachite green (MG) as a dye has caused substantial concern owing to its toxicity. Bacillus cereus can against the toxic effect of MG and efficiently decolourise it. However, detailed information regarding its underlying adaptation and degradation mechanisms based on proteomic data is scarce. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ)-facilitated quantitative method was applied to analyse the molecular mechanisms by which B. cereus degrades MG. Based on this analysis, 209 upregulated proteins and 198 downregulated proteins were identified with a false discovery rate of 1% or less during MG biodegradation. Gene ontology and KEGG analysis determined that the differentially expressed proteins were enriched in metabolic processes, catalytic activity, antioxidant activity, and responses to stimuli. Furthermore, real-time qPCR was utilised to further confirm the regulated proteins involved in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase), BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651 (Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA dehydrogenase) involved in the benzoate degradation pathway may play an important role in the biodegradation of MG by B. cereus. The results of this study not only provide a comprehensive view of proteomic changes in B. cereus upon MG loading but also shed light on the mechanism underlying MG biodegradation by B. cereus.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junfang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
2
|
He H, Peng S, Yuan S, Tang J, Liu Z, Rang J, Xia Z, Hu J, Chen J, Ding X, Hu S, Sun Y, Xia L. Effects of lytS-L on the primary metabolism and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Gene 2020; 766:145130. [PMID: 32911030 DOI: 10.1016/j.gene.2020.145130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022]
Abstract
The LytTR family two-component system widely exists in bacterial cells and plays an important role in metabolic regulation. The lytS-L gene that encodes for a LytTR family sensor kinase was knocked out to study its influence on the growth, phenotype, and the biosynthesis of the insecticidal polyketide butenyl-spinosyn in Saccharopolyspora pogona NRRL 30141 (S. pogona). High performance liquid chromatography (HPLC) results showed that the butenyl-spinosyn yield of the lytS-L knockout mutant decreased by 58.9% compared with that of the parental strain. This is manifested by a weak toxicity of the mutant against the insect Helicoverpa assulta (H. armigera). Comparative proteomic analysis revealed the expression characteristics of the proteins in S. pogona and S. pogona-ΔlytS-L: a total of 14 proteins involved in energy metabolism were down-regulated, 9 proteins related to carbon metabolism such as glycolysis, and tricarboxylic acid cycle (TCA) were up-regulated, while 13 proteins involved in the biosynthesis of butenyl-spinosyn were down-regulated (fold change >1.2 or< 0.83). The qRT-PCR (Quantitative Real-time PCR) analysis illustrated that the changes in the expression levels of transcription and translation of the identified genes were consistent. This study explores the function of the two-component system of the LytTR family in S. pogona and shows that the lytS-L gene has an important influence on regulating primary metabolism and butenyl-spinosyn biosynthesis of S. pogona.
Collapse
Affiliation(s)
- Haocheng He
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengnan Peng
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shuangqin Yuan
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianli Tang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhudong Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinjuan Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jianming Chen
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
3
|
Yang S, Zhao Z, Zhang A, Jia F, Song M, Huang Z, Fu J, Li G, Lin S. Proteomics analysis of chicken peripheral blood lymphocyte in Taishan Pinus massoniana pollen polysaccharide regulation. PLoS One 2018; 13:e0208314. [PMID: 30496273 PMCID: PMC6264863 DOI: 10.1371/journal.pone.0208314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
The natural polysaccharides extracted from the pollen of Pinus massoniana (TPPPS) have been shown to be a promising immune adjuvant against several viral chicken diseases. However, the exact mechanism through which TPPPS enhances the host immune response in chicken remains poorly understood. In the current study, chicken peripheral blood lymphocytes were treated with varying concentrations of TPPPS and pro-inflammatory cytokines such as IFN-γ, iIL-2 and IL-6 were measured to determine the optimal dose of the polysaccharide. A comparative analysis was subsequently performed between the proteome of lymphocytes subjected to the best treatment conditions and that of untreated cells. Protein identification and quantitation revealed a panel of three up-regulated and seven down-regulated candidates in TPPPS-treated chicken peripheral blood lymphocytes. Further annotation and functional analysis suggested that a number of those protein candidates were involved in the regulation of host innate immune response, inflammation and other immune-related pathways. We believe that our results could serve as a stepping stone for further research on the immune-enhancing properties of TPPPS and other polysaccharide-based immune adjuvants.
Collapse
Affiliation(s)
- Shifa Yang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
| | - Zengcheng Zhao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Anyuan Zhang
- Institute of Veterinary Drug Qualily Inspection of Shandong Province, Jinan, Shandong, China
| | - Fengjuan Jia
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Minxun Song
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Zhongli Huang
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Jian Fu
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Jinan, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| |
Collapse
|
4
|
Yang X, Zhang Z, Gu T, Dong M, Peng Q, Bai L, Li Y. Quantitative proteomics reveals ecological fitness cost of multi-herbicide resistant barnyardgrass ( Echinochloa crus-galli L.). J Proteomics 2017; 150:160-169. [DOI: 10.1016/j.jprot.2016.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023]
|