1
|
Kikuchi M, Monzen S, Horikoshi M, Tsuda S, Tatara Y, Wojcik A, Mariya Y. Characteristics of sphingomyelin metabolism in the MCF7 and BT474 radiotherapy‑resistant HER2‑positive breast cancer cell lines. Oncol Lett 2024; 28:471. [PMID: 39139746 PMCID: PMC11319826 DOI: 10.3892/ol.2024.14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 08/15/2024] Open
Abstract
Breast cancer is the most common cancer globally in terms of incidence. This cancer is classified into subtypes based on histological or immunological characteristics. HER2-positive cases account for 15-25% of breast cancer cases, and one of the first events in breast carcinogenesis is HER2 upregulation. Furthermore, HER2 expression increases the detection rate of metastatic or recurrent breast cancers by 50-80%. The epidermal growth factor receptor family includes HER2, which is a transmembrane receptor protein. In our previous case report, patients who were resistant to anti-HER2 monoclonal antibody therapy, chemotherapy and radiotherapy had higher concentrations of phospholipid metabolites such as phosphatidylcholine and sphingomyelin (SM), which was associated with cancer recurrence progression. To better understand the relationship between radiotherapy resistance and SM expression, breast cancer cell lines with and without HER2 expression (MCF7 and BT474) after exposure to ionizing radiation (IR) were examined. In the cell culture supernatant, similar levels of SM in MCF7 cells were identified after 1-4 Gy exposure. However, SM levels in BT474 cells were upregulated compared with those of in the control group. Intracellular SM levels were upregulated in BT474 cells exposed to 1 and 4 Gy compared with the non-irradiated control group. Furthermore, significantly increased mRNA expression levels of sphingomyelin synthase 2 (SGMS2) in BT474 cells exposed to IR were observed compared with those in nonirradiated cells; however, the SGMS2 levels in MCF7 cells did not differ significantly among the 0, 2 and 4 Gy groups. These findings suggested that a higher dose of IR induced the secretion of SM and its associated gene expression in HER2-positive breast cancer cells.
Collapse
Affiliation(s)
- Megumi Kikuchi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Satoru Monzen
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mai Horikoshi
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Shuri Tsuda
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Stockholm SE-10691, Sweden
| | - Yasushi Mariya
- Department of Radiology, Aomori Rosai Hospital, Hachinohe, Aomori 031-0822, Japan
| |
Collapse
|
2
|
Kozar N, Kruusmaa K, Dovnik A, Bitenc M, Argamasilla R, Adsuar A, Goswami N, Takač I, Arko D. Identification of novel diagnostic biomarkers in endometrial cancer using targeted metabolomic profiling. Adv Med Sci 2021; 66:46-51. [PMID: 33360772 DOI: 10.1016/j.advms.2020.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Endometrial cancer (EC) is the most common gynecological malignancy with high disease burden especially in advanced stages of the disease. Our study investigated the metabolomic profile of EC patient's serum with the aim of identifying novel diagnostic biomarkers that could be used especially in early disease detection. MATERIAL AND METHODS Using targeted metabolomic serum profiling based on HPLC-TQ/MS, women with EC (n = 15) and controls (n = 21) were examined for 232 endogenous metabolites. RESULTS Top performing biomarkers included ceramides, acylcarnitines and 1-methyl adenosine. Top 4 biomarkers combined achieved 94% sensitivity with 75% specificity with AUC 92.5% (CI 90.5-94.5%). Individual markers also provided significant predictive values: C16-ceramide achieved sensitivity 73%, specificity 81%, AUC 0.83, C22-ceramide sensitivity 67%, specificity 81%, AUC 0.77, hydroxyhexadecenoylcarnitine sensitivity 60%, specificity 96%, AUC 0.76 and 1-methyladenosine sensitivity 67%, specificity 81%, AUC 0.75. The individual markers, however, did not reach the high sensitivity and specificity of the 4-biomarker combination. CONCLUSIONS Using mass spectrometry targeted metabolomic profiling, ceramides, acylcarnitines and 1-methyladenosine were identified as potential diagnostic biomarkers for EC. Additionally, these identified metabolites may provide additional insight into cancer cell metabolism.
Collapse
Affiliation(s)
- Nejc Kozar
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Kristi Kruusmaa
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Andraž Dovnik
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Bitenc
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Rosa Argamasilla
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Antonio Adsuar
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Iztok Takač
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Darja Arko
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
3
|
Kozar N, Kruusmaa K, Bitenc M, Argamasilla R, Adsuar A, Takač I, Arko D. Identification of Novel Diagnostic Biomarkers in Breast Cancer Using Targeted Metabolomic Profiling. Clin Breast Cancer 2020; 21:e204-e211. [PMID: 33281038 DOI: 10.1016/j.clbc.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Breast cancer (BC) is the most common cancer in women, with a high disease burden, especially in the advanced disease stages. Our study investigated the metabolomic profile of breast cancer patients' serum with the aim of identifying novel diagnostic biomarkers that could be used, especially for early disease detection. MATERIALS AND METHODS Using targeted metabolomic serum profiling based on high-performance liquid chromatography mass spectrometry, women with BC (n = 39) and a control group (n = 21) were examined for 232 endogenous metabolites. RESULTS The top performing biomarkers included acylcarnitines (ACs) and 9,12-linoleic acid. A combined panel of the top 4 biomarkers achieved 83% sensitivity and 81% specificity, with an area under the curve (AUC) of 0.839 (95% confidence interval, 0.811-0.867). Individual markers also provided significant predictive values: AC 12:0, sensitivity of 72%, specificity of 67%, and AUC of 0.71; AC 14:2, sensitivity of 74%, specificity of 71%, and AUC of 0.73; AC 14:0: sensitivity of 67%, specificity of 81%, and AUC of 0.73; and 9,12-linoleic acid, sensitivity of 69%, specificity of 67%, and AUC of 0.71. The individual markers, however, did not reach the high sensitivity and specificity of the 4-biomarker combination. CONCLUSION Using mass spectrometry-targeted metabolomic profiling, ACs and 9,12-linoleic acid were identified as potential diagnostic biomarkers for breast cancer. Additionally, these identified metabolites could provide additional insight into cancer cell metabolism.
Collapse
Affiliation(s)
- Nejc Kozar
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Kristi Kruusmaa
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia; Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Marko Bitenc
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Rosa Argamasilla
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Antonio Adsuar
- Universal Diagnostics, S.L. Centre of Research Technology and Innovation, University of Seville, Seville, Spain
| | - Iztok Takač
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Darja Arko
- Division of Gynaecology and Perinatology, University Medical Centre Maribor, Maribor, Slovenia; Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Knapp P, Chomicz K, Świderska M, Chabowski A, Jach R. Unique Roles of Sphingolipids in Selected Malignant and Nonmalignant Lesions of Female Reproductive System. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4376583. [PMID: 31187044 PMCID: PMC6521305 DOI: 10.1155/2019/4376583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
Abstract
Cancer develops as a result of the loss of self-control mechanisms by a cell; it gains the ability to induce angiogenesis, becomes immortal and resistant to cell death, stops responding to growth suppressor signals, and becomes capable of invasion and metastasis. Sphingolipids-a family of membrane lipids-are known to play important roles in the regulation of cell proliferation, the response to chemotherapeutic agents, and/or prevention of cancer. Despite the underlying functions of sphingolipids in cancer biology, their metabolism in different malignant tumors is poorly investigated. Some studies showed marked differences in ceramide content between the tumor and the respective healthy tissue. Interestingly, the level of this sphingolipid could be either low or elevated, suggesting that the alterations in ceramide metabolism in cancer tissue may depend on the biology of the tumor. These processes are indeed related to the type of cancer, its stage, and histology status. In this paper we present the unique roles of bioactive sphingolipid derivative in selected gynecologic malignant and nonmalignant lesions.
Collapse
Affiliation(s)
- Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, Poland
| | - Karolina Chomicz
- Ist Medical Faculty with Stomatology, Medical University of Lublin, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Poland
| | - Robert Jach
- Jagiellonian University Medical College Gynecology and Obstetrics, Krakow, Poland
| |
Collapse
|
5
|
Xu HD, Luo W, Lin Y, Zhang J, Zhang L, Zhang W, Huang SM. Discovery of potential therapeutic targets for non-small cell lung cancer using high-throughput metabolomics analysis based on liquid chromatography coupled with tandem mass spectrometry. RSC Adv 2019; 9:10905-10913. [PMID: 35515291 PMCID: PMC9062476 DOI: 10.1039/c9ra00987f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is a severe health problem and threatens a patient's quality of life. The metabolites present in biological systems are expected to be key mediators and the changes in these metabolites play an important role in promoting health. Metabolomics can unravel the global metabolic changes and identify significant biological pathways involved in disease development. However, the role of metabolites in lung cancer is still largely unknown. In the present study, we developed a liquid chromatography coupled with tandem mass spectrometry method for biomarker discovery and identification of non-small cell lung cancer (NSCLC) from metabolomics data sets and aimed to investigate the metabolic profiles of NSCLC samples to identify potential disease biomarkers and to reveal the pathological mechanism. After cell metabolite extraction, the metabolic changes in NSCLC cells were characterized and targeted metabolite analysis was adopted to offer a novel opportunity to probe into the relationship between differentially regulated cell metabolites and NSCLC. Quantitative analysis of key enzymes in the disturbed pathways by proteomics was employed to verify metabolomic pathway changes. A total of 13 specific biomarkers were identified in NSCLC cells related with metabolic disturbance of NSCLC morbidity, which were involved in 4 vital pathways, namely glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, tyrosine metabolism and sphingolipid metabolism. The proteomics analysis illustrated the obvious fluctuation of the expression of the key enzymes in these pathways, including the downregulation of 3-phosphoglycerate dehydrogenase, phosphoserine phosphatase, tyrosinase and argininosuccinic acid catenase. NSCLC occurrence is mainly related to amino acid and fatty acid metabolic alteration. These findings highlight that the metabolome can provide information on the molecular profiles of cells, which can aid in investigating the metabolite changes to reveal the pathological mechanism.
Collapse
Affiliation(s)
- Hong-Dan Xu
- College of Jiamusi, Heilongjiang University of Chinese Medicine Jiamusi 154007 China
| | - Wen Luo
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Yuanlong Lin
- Infectious Diseases Department, Fourth Affiliated Hospital, Harbin Medical University Harbin China
| | - Jiawen Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Lijuan Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital, Harbin Medical University Harbin 150081 China +86-451-85555787 +86-451-85555787
| | - Shu-Ming Huang
- Institute of Chinese Medicine, Heilongjiang University of Medicine Chinese Heping Road 24, Xiangfang District Harbin 150040 China +86-451-87266816
| |
Collapse
|
6
|
Kurz J, Parnham MJ, Geisslinger G, Schiffmann S. Ceramides as Novel Disease Biomarkers. Trends Mol Med 2019; 25:20-32. [DOI: 10.1016/j.molmed.2018.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
|
7
|
Metabolomic profiling suggests long chain ceramides and sphingomyelins as a possible diagnostic biomarker of epithelial ovarian cancer. Clin Chim Acta 2018; 481:108-114. [DOI: 10.1016/j.cca.2018.02.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/30/2022]
|