1
|
Rigney S, York JR, LaBonne C. Krüppel-like factors play essential roles in regulating pluripotency and the formation of neural crest stem cells. Development 2025; 152:dev204634. [PMID: 40292574 PMCID: PMC12070069 DOI: 10.1242/dev.204634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025]
Abstract
The evolution of complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer potential after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here, we examine the roles that two Krüppel-like Family (Klf) transcription factors, Klf2 and Klf17, play in these cell populations. We found that inhibition of either klf2 or klf17 expanded expression of pluripotency, neural plate border and neural crest factors in neurula stage Xenopus embryos, suggesting that Klf factors regulate the exit from pluripotency and proper establishment of the boundary of the neural crest domain. To gain further insights into the role of Klf factors in the evolution of the neural crest, we examined their expression in sea lamprey, a jawless vertebrate, and show that ectopic expression of lamprey klf17 in Xenopus embryos phenocopies Xenopus klf17. These data suggest that klf17 may have been the ancestral Klf factor that functioned in these gene regulatory networks in stem vertebrates.
Collapse
Affiliation(s)
- Sara Rigney
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Joshua R. York
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons National Institute for Theory and Mathematics in Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
2
|
Rigney S, York JR, LaBonne C. Krüppel-like Factors Play Essential Roles in Regulating Pluripotency and the Formation of Neural Crest Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632647. [PMID: 39868152 PMCID: PMC11761489 DOI: 10.1101/2025.01.13.632647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations. Although Klf4 has established roles in regulating pluripotency in mammalian stem cells cultures, we find that in Xenopus it is klf2 that is highly expressed in pluripotent blastula stem cells. klf2 expression is down-regulated as cells transition to a neural crest state while a related klf factor, klf17, is significantly up regulated in response to neural crest induction. We used gain and loss of function studies to compare the activities of these closely related factors and found that they have both shared and distinct activities. Inhibition of either klf2 or klf17 activity led to significantly expanded expression of pluripotency, neural plate border and neural crest factors in neurula stage embryos, leading us to hypothesize that klf factors regulate the exit from pluripotency and proper establishment of the boundary of the neural crest domain. To gain further insights into the role of klf factors in the evolution of the neural crest, we examined their expression in the jawless vertebrate, Petromyzon marinus ( sea lamprey). We find that lamprey have a klf2/4 and a klf17 gene, but that only klf17 is expressed in blastula and neural crest stem cells. Moreover, ectopic expression of lamprey klf17 in Xenopus embryos phenocopies Xenopus klf17 activity. These data suggest that klf17, rather than klf4, may have been the ancestral klf factor that functioned in these GRNs in stem vertebrates.
Collapse
|
3
|
Wu Q. Natriuretic Peptide Signaling in Uterine Biology and Preeclampsia. Int J Mol Sci 2023; 24:12309. [PMID: 37569683 PMCID: PMC10418983 DOI: 10.3390/ijms241512309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial decidualization is a uterine process essential for spiral artery remodeling, embryo implantation, and trophoblast invasion. Defects in endometrial decidualization and spiral artery remodeling are important contributing factors in preeclampsia, a major disorder in pregnancy. Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood volume and pressure. ANP is also generated in non-cardiac tissues, such as the uterus and placenta. In recent human genome-wide association studies, multiple loci with genes involved in natriuretic peptide signaling are associated with gestational hypertension and preeclampsia. In cellular experiments and mouse models, uterine ANP has been shown to stimulate endometrial decidualization, increase TNF-related apoptosis-inducing ligand expression and secretion, and enhance apoptosis in arterial smooth muscle cells and endothelial cells. In placental trophoblasts, ANP stimulates adenosine 5'-monophosphate-activated protein kinase and the mammalian target of rapamycin complex 1 signaling, leading to autophagy inhibition and protein kinase N3 upregulation, thereby increasing trophoblast invasiveness. ANP deficiency impairs endometrial decidualization and spiral artery remodeling, causing a preeclampsia-like phenotype in mice. These findings indicate the importance of natriuretic peptide signaling in pregnancy. This review discusses the role of ANP in uterine biology and potential implications of impaired ANP signaling in preeclampsia.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Wang SH, Hao J, Zhang C, Duan FF, Chiu YT, Shi M, Huang X, Yang J, Cao H, Wang Y. KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1985-1997. [PMID: 35391627 DOI: 10.1007/s11427-021-2076-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The pluripotent state of embryonic stem cells (ESCs) is regulated by a sophisticated network of transcription factors. High expression of KLF17 has recently been identified as a hallmark of naive state of human ESCs (hESCs). However, the functional role of KLF17 in naive state is not clear. Here, by employing various gain and loss-of-function approaches, we demonstrate that KLF17 is essential for the maintenance of naive state and promotes the primed to naive state transition in hESCs. Mechanistically, we identify MAPK3 and ZIC2 as two direct targets repressed by KLF17. Overexpression of MAPK3 or ZIC2 partially blocks KLF17 from promoting the naive pluripotency. Furthermore, we find that human and mouse homologs of KLF17 retain conserved functions in promoting naive pluripotency of both species. Finally, we show that Klf17 may be essential for early embryo development in mouse. These findings demonstrate the important and conserved function of KLF17 in promoting naive pluripotency and reveal two essential transcriptional targets of KLF17 that underlie its function.
Collapse
Affiliation(s)
- Shao-Hua Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jing Hao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Chao Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Fei-Fei Duan
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ya-Tzu Chiu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Ming Shi
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Tarashansky AJ, Musser JM, Khariton M, Li P, Arendt D, Quake SR, Wang B. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 2021; 10:e66747. [PMID: 33944782 PMCID: PMC8139856 DOI: 10.7554/elife.66747] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Comparing single-cell transcriptomic atlases from diverse organisms can elucidate the origins of cellular diversity and assist the annotation of new cell atlases. Yet, comparison between distant relatives is hindered by complex gene histories and diversifications in expression programs. Previously, we introduced the self-assembling manifold (SAM) algorithm to robustly reconstruct manifolds from single-cell data (Tarashansky et al., 2019). Here, we build on SAM to map cell atlas manifolds across species. This new method, SAMap, identifies homologous cell types with shared expression programs across distant species within phyla, even in complex examples where homologous tissues emerge from distinct germ layers. SAMap also finds many genes with more similar expression to their paralogs than their orthologs, suggesting paralog substitution may be more common in evolution than previously appreciated. Lastly, comparing species across animal phyla, spanning sponge to mouse, reveals ancient contractile and stem cell families, which may have arisen early in animal evolution.
Collapse
Affiliation(s)
| | - Jacob M Musser
- European Molecular Biology Laboratory, Developmental Biology UnitHeidelbergGermany
| | | | - Pengyang Li
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Detlev Arendt
- European Molecular Biology Laboratory, Developmental Biology UnitHeidelbergGermany
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bo Wang
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
6
|
The Kunitz-type serine protease inhibitor Spint2 is required for cellular cohesion, coordinated cell migration and cell survival during zebrafish hatching gland development. Dev Biol 2021; 476:148-170. [PMID: 33826923 DOI: 10.1016/j.ydbio.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022]
Abstract
We have previously shown that the Kunitz-type serine protease inhibitor Spint1a, also named Hai1a, is required in the zebrafish embryonic epidermis to restrict the activity of the type II transmembrane serine protease (TTSP) Matriptase1a/St14a, thereby ensuring epidermal homeostasis. A closely related Kunitz-type inhibitor is Spint2/Hai2, which in mammals plays multiple developmental roles that are either redundant or non-redundant with those of Spint1. However, the molecular bases for these non-redundancies are not fully understood. Here, we study spint2 during zebrafish development. It is co-expressed with spint1a in multiple embryonic epithelia, including the outer/peridermal layer of the epidermis. However, unlike spint1a, spint2 expression is absent from the basal epidermal layer but present in hatching gland cells. Hatching gland cells derive from the mesendodermal prechordal plate, from where they undergo a thus far undescribed transit into, and coordinated sheet migration within, the interspace between the outer and basal layer of the epidermis to reach their final destination on the yolk sac. Hatching gland cells usually survive their degranulation that drives embryo hatching but die several days later. In spint2 mutants, cohesion among hatching gland cells and their collective intra-epidermal migration are disturbed, leading to a discontinuous organization of the gland. In addition, cells undergo precocious cell death before degranulation, so that embryos fail to hatch. Chimera analyses show that Spint2 is required in hatching gland cells, but not in the overlying periderm, their potential migration and adhesion substrate. Spint2 acts independently of all tested Matriptases, Prostasins and other described Spint1 and Spint2 mediators. However, it displays a tight genetic interaction with and acts at least partly via the cell-cell adhesion protein E-cadherin, promoting both hatching gland cell cohesiveness and survival, in line with formerly reported effects of E-cadherin during morphogenesis and cell death suppression. In contrast, no such genetic interaction was observed between Spint2 and the cell-cell adhesion molecule EpCAM, which instead interacts with Spint1a. Our data shed new light onto the mechanisms of hatching gland morphogenesis and hatching gland cell survival. In addition, they reveal developmental roles of Spint2 that are strikingly different from those of Spint1, most likely due to differences in the expression patterns and relevant target proteins.
Collapse
|
7
|
Krüppel-like factor 17 upregulates uterine corin expression and promotes spiral artery remodeling in pregnancy. Proc Natl Acad Sci U S A 2020; 117:19425-19434. [PMID: 32719113 DOI: 10.1073/pnas.2003913117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spiral artery remodeling is an important physiological process in the pregnant uterus which increases blood flow to the fetus. Impaired spiral artery remodeling contributes to preeclampsia, a major disease in pregnancy. Corin, a transmembrane serine protease, is up-regulated in the pregnant uterus to promote spiral artery remodeling. To date, the mechanism underlying uterine corin up-regulation remains unknown. Here we show that Krüppel-like factor (KLF) 17 is a key transcription factor for uterine corin expression in pregnancy. In cultured human uterine endometrial cells, KLF17 binds to the CORIN promoter and enhances the promoter activity. Disruption of the KLF17 gene in the endometrial cells abolishes CORIN expression. In mice, Klf17 is up-regulated in the pregnant uterus. Klf17 deficiency prevents uterine Corin expression in pregnancy. Moreover, Klf17-deficient mice have poorly remodeled uterine spiral arteries and develop gestational hypertension and proteinuria. Together, our results reveal an important function of KLF17 in regulating Corin expression and uterine physiology in pregnancy.
Collapse
|
8
|
Characterization of biklf/klf17-deficient zebrafish in posterior lateral line neuromast and hatching gland development. Sci Rep 2019; 9:13680. [PMID: 31558744 PMCID: PMC6763433 DOI: 10.1038/s41598-019-50149-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/29/2019] [Indexed: 11/08/2022] Open
Abstract
Krüpple-like factors (Klfs) are highly conserved zinc-finger transcription factors that regulate various developmental processes, such as haematopoiesis and cardiovascular development. In zebrafish, transient knockdown analysis of biklf/klf17 using antisense morpholino suggests the involvement of biklf/klf17 in primitive erythropoiesis and hatching gland development; however, the continuous physiological importance of klf17 remains uncharacterized under the genetic ablation of the klf17 gene among vertebrates. We established the klf17-disrupted zebrafish lines using the CRISPR/Cas9 technology and performed phenotypic analysis throughout early embryogenesis. We found that the klf17-deficient embryos exhibited abnormal lateral line neuromast deposition, whereas the production of primitive erythrocytes and haemoglobin production were observed in the klf17-deficient embryos. The expression of lateral line neuromast genes, klf17 and s100t, in the klf17-deficient embryos was detected in posterior lateral line neuromasts abnormally positioned at short intervals. Furthermore, the klf17-deficient embryos failed to hatch and died without hatching around 15 days post-fertilization (dpf), whereas the dechorionated klf17-deficient embryos and wild-type embryos were alive at 15 dpf. The klf17-deficient embryos abolished hatching gland cells and Ctsl1b protein expression, and eliminated the expression of polster and hatching gland marker genes, he1.1, ctsl1b and cd63. Thus, the klf17 gene plays important roles in posterior lateral line neuromast and hatching gland development.
Collapse
|
9
|
Nagasawa T, Kawaguchi M, Yano T, Sano K, Okabe M, Yasumasu S. Evolutionary Changes in the Developmental Origin of Hatching Gland Cells in Basal Ray-Finned Fishes. Zoolog Sci 2016; 33:272-81. [PMID: 27268981 DOI: 10.2108/zs150183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hatching gland cells (HGCs) originate from different germ layers between frogs and teleosts, although the hatching enzyme genes are orthologous. Teleostei HGCs differentiate in the mesoendodermal cells at the anterior end of the involved hypoblast layer (known as the polster) in late gastrula embryos. Conversely, frog HGCs differentiate in the epidermal cells at the neural plate border in early neurula embryos. To infer the transition in the developmental origin of HGCs, we studied two basal ray-finned fishes, bichir (Polypterus) and sturgeon. We observed expression patterns of their hatching enzyme (HE) and that of three transcription factors that are critical for HGC differentiation: KLF17 is common to both teleosts and frogs; whereas FoxA3 and Pax3 are specific to teleosts and frogs, respectively. We then inferred the transition in the developmental origin of HGCs. In sturgeon, the KLF17, FoxA3, and HE genes were expressed during the tailbud stage in the cell mass at the anterior region of the body axis, a region corresponding to the polster in teleost embryos. In contrast, the bichir was suggested to possess both teleost- and amphibian-type HGCs, i.e. the KLF17 and FoxA3 genes were expressed in the anterior cell mass corresponding to the polster, and the KLF17, Pax3 and HE genes were expressed in dorsal epidermal layer of the head. The change in developmental origin is thought to have occurred during the evolution of basal ray-finned fish, because bichir has two HGCs, while sturgeon only has the teleost-type.
Collapse
Affiliation(s)
- Tatsuki Nagasawa
- 1 Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Mari Kawaguchi
- 1 Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Tohru Yano
- 2 Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishinbasi, Minato-ku, Tokyo 105-8461, Japan
| | - Kaori Sano
- 3 Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Masataka Okabe
- 2 Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishinbasi, Minato-ku, Tokyo 105-8461, Japan
| | - Shigeki Yasumasu
- 1 Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
10
|
A Pou5f1/Oct4 dependent Klf2a, Klf2b, and Klf17 regulatory sub-network contributes to EVL and ectoderm development during zebrafish embryogenesis. Dev Biol 2014; 385:433-47. [DOI: 10.1016/j.ydbio.2013.10.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 08/08/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
|
11
|
Maéno M, Komiyama K, Matsuzaki Y, Hosoya J, Kurihara S, Sakata H, Izutsu Y. Distinct mechanisms control the timing of differentiation of two myeloid populations in Xenopus ventral blood islands. Dev Growth Differ 2012; 54:187-201. [PMID: 22470938 DOI: 10.1111/j.1440-169x.2011.01321.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous study has suggested that distinct populations of myeloid cells exist in the anterior ventral blood islands (aVBI) and posterior ventral blood islands (pVBI) in Xenopus neurula embryo. However, details for differentiation programs of these two populations have not been elucidated. In the present study, we examined the role of Wnt, vascular endothelial growth factor (VEGF) and fibroblast growth factor signals in the regulation of myeloid cell differentiation in the dorsal marginal zone and ventral marginal zone explants that are the sources of myeloid cells in the aVBI and pVBI. We found that regulation of Wnt activity is essential for the differentiation of myeloid cells in the aVBI but is not required for the differentiation of myeloid cells in the pVBI. Endogenous activity of the VEGF signal is necessary for differentiation of myeloid cells in the pVBI but is not involved in the differentiation of myeloid cells in the aVBI. Overall results reveal that distinct mechanisms are involved in the myeloid, erythroid and endothelial cell differentiation in the aVBI and pVBI.
Collapse
Affiliation(s)
- Mitsugu Maéno
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan.
| | | | | | | | | | | | | |
Collapse
|