1
|
Na W, Lee SH, Lee S, Kim JS, Han SY, Kim YM, Kwon M, Song YS. Refining of cancer-specific genes in microsatellite-unstable colon and endometrial cancers using modified partial least square discriminant analysis. Medicine (Baltimore) 2024; 103:e41134. [PMID: 39969322 PMCID: PMC11688066 DOI: 10.1097/md.0000000000041134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 02/20/2025] Open
Abstract
Despite similarities in microsatellite instability (MSI) between colon and endometrial cancer, there are many clinically important organ-specific features. The molecular differences between these 2 MSI cancers are underexplored because the usual differentially expressed gene analysis yields too many noncancer-specific normally expressed genes. We aimed to identify cancer-specific genes in MSI colorectal adenocarcinoma (CRC) and MSI endometrial carcinoma (ECs) using a modified partial least squares discriminant analysis. We obtained a list of cancer-specific genes in MSI CRC and EC by taking the intersection of the genes obtained from tumor samples and normal samples. Specifically, we obtained publically available 1319 RNA sequencing data consisting of MSI CRCs, MSI ECs, normal colon including the rectum, and normal endometrium from The Cancer Genome Atlas and genome-tissue expression sites. To reduce gene-centric dimensions, we retained only 3924 genes from the original data by performing the usual differentially expressed gene screening for tumor samples using DESeq2. The usual partial least squares discriminant analysis was performed for tumor samples, producing 625 genes, whereas for normal samples, projection vectors with zero covariance were sampled, their weights were square-summed, and genes with sufficiently high values were selected. Gene ontology (GO) term enrichment, protein-protein interaction, and survival analyses were performed for functional and clinical validation. We identified 30 cancer-specific normal-invariant genes, including Zic family members (ZIC1, ZIC4, and ZIC5), DPPA2, PRSS56, ELF5, and FGF18, most of which were cancer-associated genes. Although no statistically significant GO terms were identified in the GO term enrichment analysis, cell differentiation was observed as potentially significant. In the protein-protein interaction analysis, 17 of the 30 genes had at least one connection, and when first-degree neighbors were added to the network, many cancer-related pathways, including MAPK, Ras, and PI3K-Akt, were enriched. In the survival analysis, 16 genes showed statistically significant differences between the lower and higher expression groups (3 in CRCs and 15 ECs). We developed a novel approach for selecting cancer-specific normal-invariant genes from relevant gene expression data. Although we believe that tissue-specific reactivation of embryonic genes might explain the cancer-specific differences of MSI CRC and EC, further studies are needed for validation.
Collapse
Affiliation(s)
- Woong Na
- Department of Pathology, H Plus Yangji Hospital, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seunghee Lee
- KYMERA (Konyang Medical Data Research Group), Konyang University Hospital, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Center (Institute), College of Medicine, Konyang University, Daejeon, South Korea
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon, South Korea
| | - Yong Min Kim
- Department of Pathology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Mihye Kwon
- Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, South Korea
| | - Young Soo Song
- Myunggok Medical Research Center (Institute), College of Medicine, Konyang University, Daejeon, South Korea
- Department of Pathology, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
2
|
Wang X, Li X, Wang Y, Ren Z, Du X, Gao J, Ji G, Liu Z. Nkx1.2 deletion decreases fat production in zebrafish. Obesity (Silver Spring) 2024; 32:1315-1328. [PMID: 38798028 DOI: 10.1002/oby.24043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of Nkx1-2, a transcription factor with the NK homeobox domain, in the regulation of fat production. METHODS Gene expression was analyzed using quantitative real-time polymerase chain reaction or transcriptome sequencing. CRISPR/Cas9 technology was employed to generate nkx1.2 knockout zebrafish and nkx1.2-deleted 3T3-L1 cells. Lipid droplet production in zebrafish larvae was visually quantified using Nile red staining, whereas lipid droplets in 3T3-L1 cells were stained with Oil red O. The binding of Nkx1-2 to the promoter was verified through an electrophoretic mobility shift assay experiment. RESULTS Nkx1-2 plays crucial roles in the regulation of fat production in zebrafish. Knockout of nkx1.2 in zebrafish leads to weight loss, accompanied by significantly reduced lipid droplet production and decreased visceral and liver fat content. Furthermore, genes related to lipid biosynthesis are significantly downregulated. In 3T3-L1 preadipocytes, Nkx1-2 induces differentiation into mature adipocytes by binding to the cebpa promoter, thereby activating its transcription. Additionally, the expression of nkx1.2 is regulated by the p38 MAPK, JNK, or Smad2/3 signaling pathways in 3T3-L1 cells. CONCLUSIONS Our findings suggest that Nkx1-2 functions as a positive regulator of fat production, playing a critical role in adipocyte differentiation and lipid biosynthesis.
Collapse
Affiliation(s)
- Xinyuan Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinyi Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yunsheng Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhongmei Ren
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xueqing Du
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jing Gao
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Guangdong Ji
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| | - Zhenhui Liu
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laoshan Laboratory, Qingdao, China
| |
Collapse
|
3
|
Nakagawa S, Carnevali D, Tan X, Alvarez MJ, Parfitt DE, Di Vicino U, Arumugam K, Shin W, Aranda S, Normanno D, Sebastian-Perez R, Cannatá C, Cortes P, Neguembor MV, Shen MM, Califano A, Cosma MP. The Wnt-dependent master regulator NKX1-2 controls mouse pre-implantation development. Stem Cell Reports 2024; 19:689-709. [PMID: 38701778 PMCID: PMC11103935 DOI: 10.1016/j.stemcr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.
Collapse
Affiliation(s)
- Shoma Nakagawa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth Inc, New York, NY, USA
| | - David-Emlyn Parfitt
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Normanno
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Human Genetics, CNRS, Montpellier, France
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Chiara Cannatá
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Paola Cortes
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael M Shen
- Department of Systems Biology, Columbia University, New York, NY, USA; Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Chan Zuckerberg Biohub New York, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg.Lluis Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
4
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
5
|
Wang X, Wang T, Liang H, Wang L, Akhtar F, Shi X, Ren W, Huang B, Kou X, Chen Y, Zhan Y, Wang C. A novel SNP in NKX1-2 gene is associated with carcass traits in Dezhou donkey. BMC Genom Data 2023; 24:41. [PMID: 37550632 PMCID: PMC10408065 DOI: 10.1186/s12863-023-01145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND At present, donkey meat in the market shows an imbalance between supply and demand, and there is an urgent need to cultivate a meat-type Dezhou donkey breed. On the one hand, it can improve the imbalance in the market, and on the other hand, it can promote the rapid development of the donkey industry. This study aimed to reveal significant genetic variation in the NK1 homeobox 2 gene (NKX1-2) of Dezhou donkeys and investigate the association between genotype and body size in Dezhou donkeys. RESULTS In this study, a SNP (g.54704925 A > G) was identified at the exon4 by high-depth resequencing of the Dezhou donkey NKX1-2 gene. The AA genotype is the dominant genotype. The g.54704925 A > G site was significantly associated with body length, thoracic girth, and hide weight (P < 0.05), while it was highly significantly associated with body height and carcass weight (P < 0.01) in Dezhou donkeys. CONCLUSION Overall, the results of this study showed that the NKX1-2 gene could be a candidate gene for breeding meat-type Dezhou donkeys, and the g.54704925 A > G locus could be used as a marker locus for selection and breeding.
Collapse
Affiliation(s)
- Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tianqi Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Liyuan Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Faheem Akhtar
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoyuan Shi
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Wei Ren
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Yandong Zhan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
6
|
Joshi P, Skromne I. A theoretical model of neural maturation in the developing chick spinal cord. PLoS One 2020; 15:e0244219. [PMID: 33338079 PMCID: PMC7748286 DOI: 10.1371/journal.pone.0244219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/04/2020] [Indexed: 11/21/2022] Open
Abstract
Cellular differentiation is a tightly regulated process under the control of intricate signaling and transcription factors interaction network working in coordination. These interactions make the systems dynamic, robust and stable but also difficult to dissect. In the spinal cord, recent work has shown that a network of FGF, WNT and Retinoic Acid (RA) signaling factors regulate neural maturation by directing the activity of a transcription factor network that contains CDX at its core. Here we have used partial and ordinary (Hill) differential equation based models to understand the spatiotemporal dynamics of the FGF/WNT/RA and the CDX/transcription factor networks, alone and in combination. We show that in both networks, the strength of interaction among network partners impacts the dynamics, behavior and output of the system. In the signaling network, interaction strength determine the position and size of discrete regions of cell differentiation and small changes in the strength of the interactions among networking partners can result in a signal overriding, balancing or oscillating with another signal. We also show that the spatiotemporal information generated by the signaling network can be conveyed to the CDX/transcription network to produces a transition zone that separates regions of high cell potency from regions of cell differentiation, in agreement with most in vivo observations. Importantly, one emerging property of the networks is their robustness to extrinsic disturbances, which allows the system to retain or canalize NP cells in developmental trajectories. This analysis provides a model for the interaction conditions underlying spinal cord cell maturation during embryonic axial elongation.
Collapse
Affiliation(s)
- Piyush Joshi
- Division of Pediatric Neuro-oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isaac Skromne
- Department of Biology, University of Richmond, Richmond, Virginia, United States of America
| |
Collapse
|
7
|
Reddy PC, Gungi A, Ubhe S, Galande S. Epigenomic landscape of enhancer elements during Hydra head organizer formation. Epigenetics Chromatin 2020; 13:43. [PMID: 33046126 PMCID: PMC7552563 DOI: 10.1186/s13072-020-00364-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Axis patterning during development is accompanied by large-scale gene expression changes. These are brought about by changes in the histone modifications leading to dynamic alterations in chromatin architecture. The cis regulatory DNA elements also play an important role towards modulating gene expression in a context-dependent manner. Hydra belongs to the phylum Cnidaria where the first asymmetry in the body plan was observed and the oral-aboral axis originated. Wnt signaling has been shown to determine the head organizer function in the basal metazoan Hydra. RESULTS To gain insights into the evolution of cis regulatory elements and associated chromatin signatures, we ectopically activated the Wnt signaling pathway in Hydra and monitored the genome-wide alterations in key histone modifications. Motif analysis of putative intergenic enhancer elements from Hydra revealed the conservation of bilaterian cis regulatory elements that play critical roles in development. Differentially regulated enhancer elements were identified upon ectopic activation of Wnt signaling and found to regulate many head organizer specific genes. Enhancer activity of many of the identified cis regulatory elements was confirmed by luciferase reporter assay. Quantitative chromatin immunoprecipitation analysis upon activation of Wnt signaling further confirmed the enrichment of H3K27ac on the enhancer elements of Hv_Wnt5a, Hv_Wnt11 and head organizer genes Hv_Bra1, CnGsc and Hv_Pitx1. Additionally, perturbation of the putative H3K27me3 eraser activity using a specific inhibitor affected the ectopic activation of Wnt signaling indicating the importance of the dynamic changes in the H3K27 modifications towards regulation of the genes involved in the head organizer activity. CONCLUSIONS The activation-associated histone marks H3K4me3, H3K27ac and H3K9ac mark chromatin in a similar manner as seen in bilaterians. We identified intergenic cis regulatory elements which harbor sites for key transcription factors involved in developmental processes. Differentially regulated enhancers exhibited motifs for many zinc-finger, T-box and ETS related TFs whose homologs have a head specific expression in Hydra and could be a part of the pioneer TF network in the patterning of the head. The ability to differentially modify the H3K27 residue is critical for the patterning of Hydra axis revealing a dynamic acetylation/methylation switch to regulate gene expression and chromatin architecture.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Akhila Gungi
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Suyog Ubhe
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, India.
| |
Collapse
|
8
|
Xu R, Li S, Guo S, Zhao Q, Abramson MJ, Li S, Guo Y. Environmental temperature and human epigenetic modifications: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113840. [PMID: 31884209 DOI: 10.1016/j.envpol.2019.113840] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 05/28/2023]
Abstract
The knowledge about the effects of environmental temperature on human epigenome is a potential key to understand the health impacts of temperature and to guide acclimation under climate change. We performed a systematic review on the epidemiological studies that have evaluated the association between environmental temperature and human epigenetic modifications. We identified seven original articles on this topic published between 2009 and 2019, including six cohort studies and one cross-sectional study. They focused on DNA methylation in elderly people (blood sample) or infants (placenta sample), with sample size ranging from 306 to 1798. These studies were conducted in relatively low temperature setting (median/mean temperature: 0.8-13 °C), and linear models were used to evaluate temperature-DNA methylation association over short period (≤28 days). It has been reported that short-term ambient temperature could affect global human DNA methylation. A total of 15 candidate genes (ICAM-1, CRAT, F3, TLR-2, iNOS, ZKSCAN4, ZNF227, ZNF595, ZNF597, ZNF668, CACNA1H, AIRE, MYEOV2, NKX1-2 and CCDC15) with methylation status associated with ambient temperature have been identified. DNA methylation on ZKSCAN4, ICAM-1 partly mediated the effect of short-term cold temperature on high blood pressure and ICAM-1 protein (related to cardiovascular events), respectively. In summary, epidemiological evidence about the impacts of environment temperature on human epigenetics remains scarce and limited to short-term linear effect of cold temperature on DNA methylation in elderly people and infants. More studies are needed to broaden our understanding of temperature related epigenetic changes, especially under a changing climate.
Collapse
Affiliation(s)
- Rongbin Xu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Shuaijun Guo
- Centre for Community Child Health, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Qi Zhao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Michael J Abramson
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
9
|
Chen N, Schill RL, O'Donnell M, Xu K, Bagchi DP, MacDougald OA, Koenig RJ, Xu B. The transcription factor NKX1-2 promotes adipogenesis and may contribute to a balance between adipocyte and osteoblast differentiation. J Biol Chem 2019; 294:18408-18420. [PMID: 31615896 DOI: 10.1074/jbc.ra119.007967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/04/2019] [Indexed: 11/06/2022] Open
Abstract
Although adipogenesis is mainly controlled by a small number of master transcription factors, including CCAAT/enhancer-binding protein family members and peroxisome proliferator-activated receptor γ (PPARγ), other transcription factors also are involved in this process. Thyroid cancer cells expressing a paired box 8 (PAX8)-PPARγ fusion oncogene trans-differentiate into adipocyte-like cells in the presence of the PPARγ ligand pioglitazone, but this trans-differentiation is inhibited by the transcription factor NK2 homeobox 1 (NKX2-1). Here, we tested whether NKX family members may play a role also in normal adipogenesis. Using quantitative RT-PCR (RT-qPCR), we examined the expression of all 14 NKX family members during 3T3-L1 adipocyte differentiation. We found that most NKX members, including NKX2-1, are expressed at very low levels throughout differentiation. However, mRNA and protein expression of a related family member, NKX1-2, was induced during adipocyte differentiation. NKX1-2 also was up-regulated in cultured murine ear mesenchymal stem cells (EMSCs) during adipogenesis. Importantly, shRNA-mediated NKX1-2 knockdown in 3T3-L1 preadipocytes or EMSCs almost completely blocked adipocyte differentiation. Furthermore, NKX1-2 overexpression promoted differentiation of the ST2 bone marrow-derived mesenchymal precursor cell line into adipocytes. Additional findings suggested that NKX1-2 promotes adipogenesis by inhibiting expression of the antiadipogenic protein COUP transcription factor II. Bone marrow mesenchymal precursor cells can differentiate into adipocytes or osteoblasts, and we found that NKX1-2 both promotes ST2 cell adipogenesis and inhibits their osteoblastogenic differentiation. These results support a role for NKX1-2 in promoting adipogenesis and possibly in regulating the balance between adipocyte and osteoblast differentiation of bone marrow mesenchymal precursor cells.
Collapse
Affiliation(s)
- Noah Chen
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Michael O'Donnell
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Kevin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ormond A MacDougald
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ronald J Koenig
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bin Xu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109.
| |
Collapse
|
10
|
Yu J, Lu W, Ge T, Huang R, Chen B, Ye M, Bai Y, Shi G, Songyang Z, Ma W, Huang J. Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation. Stem Cells 2019; 37:743-753. [PMID: 30801858 DOI: 10.1002/stem.2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
The scaffold protein Symplekin (Sympk) is involved in cytoplasmic RNA polyadenylation, transcriptional modulation, and the regulation of epithelial differentiation and proliferation via tight junctions. It is highly expressed in embryonic stem cells (ESCs), in which its role remains unknown. In this study, we found Sympk overexpression in mouse ESCs significantly increased colony formation, and Sympk deletion via CRISPR/Cas9 decreased colony formation. Sympk promoted ESC growth and its overexpression sustained ESC pluripotency, as assessed by teratoma and chimeric mouse formation. Genomic stability was preserved in these cells after long-term passage. The domain of unknown function 3453 (DUF3453) in Sympk was required for its interaction with the key pluripotent factor Oct4, and its depletion led to impaired colony formation. Sympk activated proliferation-related genes and suppressed differentiation-related genes. Our results indicate that Sympk interacts with Oct4 to promote self-renewal and pluripotency in ESCs and preserves genome integrity; accordingly, it has potential value for stem cell therapies. Stem Cells 2019;37:743-753.
Collapse
Affiliation(s)
- Jianping Yu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tianyu Ge
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Rui Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Bohong Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Miaoman Ye
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Yaofu Bai
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, SunYat-sen University, Guangzhou, People's Republic of China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Key Laboratory of Reproductive Medicine of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Joshi P, Darr AJ, Skromne I. CDX4 regulates the progression of neural maturation in the spinal cord. Dev Biol 2019; 449:132-142. [PMID: 30825428 DOI: 10.1016/j.ydbio.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The progression of cells down different lineage pathways is a collaborative effort between networks of extracellular signals and intracellular transcription factors. In the vertebrate spinal cord, FGF, Wnt and Retinoic Acid signaling pathways regulate the progressive caudal-to-rostral maturation of neural progenitors by regulating a poorly understood gene regulatory network of transcription factors. We have mapped out this gene regulatory network in the chicken pre-neural tube, identifying CDX4 as a dual-function core component that simultaneously regulates gradual loss of cell potency and acquisition of differentiation states: in a caudal-to-rostral direction, CDX4 represses the early neural differentiation marker Nkx1.2 and promotes the late neural differentiation marker Pax6. Significantly, CDX4 prevents premature PAX6-dependent neural differentiation by blocking Ngn2 activation. This regulation of CDX4 over Pax6 is restricted to the rostral pre-neural tube by Retinoic Acid signaling. Together, our results show that in the spinal cord, CDX4 is part of the gene regulatory network controlling the sequential and progressive transition of states from high to low potency during neural progenitor maturation. Given CDX well-known involvement in Hox gene regulation, we propose that CDX factors coordinate the maturation and axial specification of neural progenitor cells during spinal cord development.
Collapse
Affiliation(s)
- Piyush Joshi
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, 600 5th St S, St. Petersburg, FL 33701, United States
| | - Andrew J Darr
- Department of Health Sciences Education, University of Illinois College of Medicine, 1 Illini Drive, Peoria, IL 61605, United States
| | - Isaac Skromne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, Florida, 33146, United States; Department of Biology, University of Richmond, 138 UR Drive B322, Richmond, VA, 23173, United States.
| |
Collapse
|
12
|
Wang Y, Zhu P, Wang J, Zhu X, Luo J, Meng S, Wu J, Ye B, He L, Du Y, He L, Chen R, Tian Y, Fan Z. Long noncoding RNA lncHand2 promotes liver repopulation via c-Met signaling. J Hepatol 2018; 69:861-872. [PMID: 29653123 DOI: 10.1016/j.jhep.2018.03.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/14/2018] [Accepted: 03/24/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Long noncoding RNAs (lncRNAs) play important roles in various biological processes, regulating gene expression by diverse mechanisms. However, how lncRNAs regulate liver repopulation is unknown. Herein, we aimed to identify lncRNAs that regulate liver repopulation and elucidate the signaling pathways involved. METHODS Herein, we performed 70% partial hepatectomy in wild-type and gene knockout mice. We then performed transcriptomic analyses to identify a divergent lncRNA termed lncHand2 that is highly expressed during liver regeneration. RESULTS LncHand2 is constitutively expressed in the nuclei of pericentral hepatocytes in mouse and human livers. LncHand2 knockout abrogates liver regeneration and repopulation capacity. Mechanistically, lncHand2 recruits the Ino80 remodeling complex to initiate expression of Nkx1-2 in trans, which triggers c-Met (Met) expression in hepatocytes. Finally, knockout of both Nkx1-2 and c-Met causes more severe liver injury and poorer repopulation ability. Thus, lncHand2 promotes liver repopulation via initiating Nkx1-2-induced c-Met signaling. CONCLUSIONS Our findings reveal that lncHand2 acts as a critical mediator regulating liver repopulation. It does this by inducing Nkx1-2 expression, which in turn triggers c-Met signaling. LAY SUMMARY Long noncoding RNAs play important roles in various biological processes. While long noncoding RNAs do not directly code proteins, they can regulate gene expression by diverse mechanisms. We identified the long noncoding RNA, termed lncHand2 because of its proximity to the gene Hand2, to be an important determinant of liver regeneration through c-Met signaling.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Zhu
- CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu Meng
- CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayi Wu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyun He
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Runsheng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of RNA Biology; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Yu J, Mu J, Guo Q, Yang L, Zhang J, Liu Z, Yu B, Zhang T, Xie J. Transcriptomic profile analysis of mouse neural tube development by RNA-Seq. IUBMB Life 2017; 69:706-719. [PMID: 28691208 DOI: 10.1002/iub.1653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
The neural tube is the primordium of the central nervous system (CNS) in which its development is not entirely clear. Understanding the cellular and molecular basis of neural tube development could, therefore, provide vital clues to the mechanism of neural tube defects (NTDs). Here, we investigated the gene expression profiles of three different time points (embryonic day (E) 8.5, 9.5 and 10.5) of mouse neural tube by using RNA-seq approach. About 391 differentially expressed genes (DEGs) were screened during mouse neural tube development, including 45 DEGs involved in CNS development, among which Bmp2, Ascl1, Olig2, Lhx1, Wnt7b and Eomes might play the important roles. Of 45 DEGs, Foxp2, Eomes, Hoxb3, Gpr56, Hap1, Nkx2-1, Sez6l2, Wnt7b, Tbx20, Nfib, Cntn1 and Dcx had different isoforms, and the opposite expression pattern of different isoforms was observed for Gpr56, Nkx2-1 and Sez6l2. In addition, alternative splicing, such as mutually exclusive exon, retained intron, skipped exon and alternative 3' splice site was identified in 10 neural related differentially splicing genes, including Ngrn, Ddr1, Dctn1, Dnmt3b, Ect2, Map2, Mbnl1, Meis2, Vcan and App. Moreover, seven neural splicing factors, such as Nova1/2, nSR100/Srrm4, Elavl3/4, Celf3 and Rbfox1 were differentially expressed during mouse neural tube development. Interestingly, nine DEGs identified above were dysregulated in retinoic acid-induced NTDs model, indicating the possible important role of these genes in NTDs. Taken together, our study provides more comprehensive information on mouse neural tube development, which might provide new insights on NTDs occurrence. © 2017 IUBMB Life, 69(9):706-719, 2017.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Qian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Lihong Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
14
|
Cunningham TJ, Colas A, Duester G. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open 2016; 5:1821-1833. [PMID: 27793834 PMCID: PMC5200905 DOI: 10.1242/bio.020891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2-/- embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre Colas
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Wang S, Zhang H, Scharadin TM, Zimmermann M, Hu B, Pan AW, Vinall R, Lin TY, Cimino G, Chain P, Vuyisich M, Gleasner C, Mcmurry K, Malfatti M, Turteltaub K, de Vere White R, Pan CX, Henderson PT. Molecular Dissection of Induced Platinum Resistance through Functional and Gene Expression Analysis in a Cell Culture Model of Bladder Cancer. PLoS One 2016; 11:e0146256. [PMID: 26799320 PMCID: PMC4723083 DOI: 10.1371/journal.pone.0146256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/15/2015] [Indexed: 01/24/2023] Open
Abstract
We report herein the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formation and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with bladder cancer chemoresistance. This model system and the associated phenotypic and genotypic data has the potential to identify some novel details of resistance mechanisms of clinical importance to bladder cancer.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
| | - Tiffany M. Scharadin
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
| | - Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
- Accelerated Medical Diagnostics Incorporated, Dublin, California, United States of America
| | - Bin Hu
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Amy Wang Pan
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
| | - Ruth Vinall
- Department of Urology, University of California Davis, Sacramento, California, United States of America
| | - Tzu-yin Lin
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
| | - George Cimino
- Accelerated Medical Diagnostics Incorporated, Dublin, California, United States of America
| | - Patrick Chain
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Momchilo Vuyisich
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cheryl Gleasner
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kim Mcmurry
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Michael Malfatti
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Kenneth Turteltaub
- Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Ralph de Vere White
- Department of Urology, University of California Davis, Sacramento, California, United States of America
| | - Chong-xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
- Department of Urology, University of California Davis, Sacramento, California, United States of America
- VA Northern California Health Care System, Mather, California, United States of America
- * E-mail: (PTH); (CXP)
| | - Paul T. Henderson
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis, Sacramento, California, United States of America
- Accelerated Medical Diagnostics Incorporated, Dublin, California, United States of America
- * E-mail: (PTH); (CXP)
| |
Collapse
|
16
|
Henrique D, Abranches E, Verrier L, Storey KG. Neuromesodermal progenitors and the making of the spinal cord. Development 2015; 142:2864-75. [PMID: 26329597 PMCID: PMC4958456 DOI: 10.1242/dev.119768] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem cells in vitro are established, the emerging data suggest that this view needs to be revised. Here, we review the characteristics, regulation, in vitro derivation and in vivo induction of NMps. We propose that these cells arise within primitive streak-associated epiblast via a mechanism that is separable from that which establishes neural fate in the anterior epiblast. We thus argue for the existence of two distinct routes for making central nervous system progenitors.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Elsa Abranches
- Instituto de Medicina Molecular and Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Avenida Prof. Egas Moniz, Lisboa 1649-028, Portugal
| | - Laure Verrier
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kate G Storey
- Division of Cell & Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
17
|
Costain G, Lionel AC, Ogura L, Marshall CR, Scherer SW, Silversides CK, Bassett AS. Genome-wide rare copy number variations contribute to genetic risk for transposition of the great arteries. Int J Cardiol 2015; 204:115-21. [PMID: 26655555 DOI: 10.1016/j.ijcard.2015.11.127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Transposition of the great arteries (TGA) is an uncommon but severe congenital heart malformation of unknown etiology. Rare copy number variations (CNVs) have been implicated in other, more common conotruncal heart defects like tetralogy of Fallot (TOF), but there are as yet no CNV studies dedicated to TGA. METHODS Using high-resolution genome-wide microarrays and rigorous methods, we investigated CNVs in a group of prospectively recruited adults with TGA (n=101) from a single center. We compared rare CNV burden to well-matched cohorts of controls and TOF cases, adjudicating rarity using 10,113 independent population-based controls and excluding all subjects with 22q11.2 deletions. We identified candidate genes for TGA based on rare CNVs that overlapped the same gene in unrelated individuals, and pre-existing evidence suggesting a role in cardiac development. RESULTS The TGA group was significantly enriched for large rare CNVs (2.3-fold increase, p=0.04) relative to controls, to a degree comparable with the TOF group. Extra-cardiac features were not reliable predictors of rare CNV burden. Smaller rare CNVs helped to narrow critical regions for conotruncal defects at chromosomes 10q26 and 13q13. Established and novel candidate susceptibility genes identified included ACKR3, IFT57, ITGB8, KL, NF1, NKX1-2, RERE, SLC8A1, SOX18, and ULK1. CONCLUSIONS These data demonstrate a genome-wide role for rare CNVs in genetic risk for TGA. The findings provide further support for a genetically-related spectrum of congenital heart disease that includes TGA and TOF.
Collapse
Affiliation(s)
- Gregory Costain
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Medical Genetics Residency Training Program, University of Toronto, and Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Anath C Lionel
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucas Ogura
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Christian R Marshall
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Candice K Silversides
- The Toronto Congenital Cardiac Centre for Adults & Division of Cardiology in the Department of Medicine, University Health Network, Toronto, Ontario, Canada.
| | - Anne S Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; The Toronto Congenital Cardiac Centre for Adults & Division of Cardiology in the Department of Medicine, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; The Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Gouti M, Metzis V, Briscoe J. The route to spinal cord cell types: a tale of signals and switches. Trends Genet 2015; 31:282-9. [PMID: 25823696 DOI: 10.1016/j.tig.2015.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/20/2023]
Abstract
Understanding the mechanisms that control induction and elaboration of the vertebrate central nervous system (CNS) requires an analysis of the extrinsic signals and downstream transcriptional networks that assign cell fates in the correct space and time. We focus on the generation and patterning of the spinal cord. We summarize evidence that the origin of the spinal cord is distinct from the anterior regions of the CNS. We discuss how this affects the gene regulatory networks and cell state transitions that specify spinal cord cell subtypes, and we highlight how the timing of extracellular signals and dynamic control of transcriptional networks contribute to the correct spatiotemporal generation of different neural cell types.
Collapse
Affiliation(s)
- Mina Gouti
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Vicki Metzis
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
19
|
Integration of signals along orthogonal axes of the vertebrate neural tube controls progenitor competence and increases cell diversity. PLoS Biol 2014; 12:e1001907. [PMID: 25026549 PMCID: PMC4098999 DOI: 10.1371/journal.pbio.1001907] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/05/2014] [Indexed: 12/21/2022] Open
Abstract
FGF gates competence to generate Floor Plate and Neural Crest in response to Shh and BMP signals by controlling expression of the transcription factor Nkx1.2. A relatively small number of signals are responsible for the variety and pattern of cell types generated in developing embryos. In part this is achieved by exploiting differences in the concentration or duration of signaling to increase cellular diversity. In addition, however, changes in cellular competence—temporal shifts in the response of cells to a signal—contribute to the array of cell types generated. Here we investigate how these two mechanisms are combined in the vertebrate neural tube to increase the range of cell types and deliver spatial control over their location. We provide evidence that FGF signaling emanating from the posterior of the embryo controls a change in competence of neural progenitors to Shh and BMP, the two morphogens that are responsible for patterning the ventral and dorsal regions of the neural tube, respectively. Newly generated neural progenitors are exposed to FGF signaling, and this maintains the expression of the Nk1-class transcription factor Nkx1.2. Ventrally, this acts in combination with the Shh-induced transcription factor FoxA2 to specify floor plate cells and dorsally in combination with BMP signaling to induce neural crest cells. As development progresses, the intersection of FGF with BMP and Shh signals is interrupted by axis elongation, resulting in the loss of Nkx1.2 expression and allowing the induction of ventral and dorsal interneuron progenitors by Shh and BMP signaling to supervene. Hence a similar mechanism increases cell type diversity at both dorsal and ventral poles of the neural tube. Together these data reveal that tissue morphogenesis produces changes in the coincidence of signals acting along orthogonal axes of the neural tube and this is used to define spatial and temporal transitions in the competence of cells to interpret morphogen signaling. During embryonic development different cell types arise at different times and places. This diversity is produced by a relatively small number of signals and depends, at least in part, on changes in the way cells respond to each signal. One example of this so-called change in “competence” is found in the vertebrate spinal cord where a signal, Sonic Hedgehog (Shh), induces a glial cell type known as floor plate (FP) at early developmental times, while the same signal later induces specific types of neurons. Here, we dissected the molecular mechanism underlying the change in competence, and found that another signal, FGF, is involved through its control of the transcription factor Nkx1.2. In embryos, Shh and FGF are produced perpendicular to one another and FP is induced where the two signals intersect. The position of this intersection changes as the embryo elongates and this determines the place and time FP is produced. A similar strategy also appears to apply to another cell type, neural crest. In this case, the intersection of FGF with BMP signal is crucial. Together the data provide new insight into the spatiotemporal control of cell type specification during development of the vertebrate spinal cord.
Collapse
|
20
|
Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, Mochizuki Y, Hamakubo T, Kato Y, Shirahige K, Saitou M. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev Cell 2014; 27:516-29. [PMID: 24331926 DOI: 10.1016/j.devcel.2013.11.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/15/2013] [Accepted: 11/03/2013] [Indexed: 01/08/2023]
Abstract
Germ cells ensure reproduction and heredity. In mice, primordial germ cells (PGCs), the precursors for spermatozoa and oocytes, are induced in pluripotent epiblast by BMP4 and WNT3, yet the underlying mechanism remains unclear. Here, using an in vitro PGC specification system, we show that WNT3 induces many transcription factors associated with mesoderm in epiblast-like cells through β-CATENIN. Among these, T (BRACHYURY), a classical and conserved mesodermal factor, was essential for robust activation of Blimp1 and Prdm14, two of the germline determinants. T, but not SMAD1 or TCF1, binds distinct regulatory elements of both Blimp1 and Prdm14 and directly upregulates these genes, delineating the downstream PGC program. Without BMP4, a program induced by WNT3 prevents T from activating Blimp1 and Prdm14, demonstrating a permissive role of BMP4 in PGC specification. These findings establish the key signaling mechanism for, and a fundamental role of a mesodermal factor in, mammalian PGC specification.
Collapse
Affiliation(s)
- Shinya Aramaki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Yasuhiro Mochizuki
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Yuki Kato
- Laboratory of Genome Structure and Function, Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
21
|
Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 2013; 8:e57428. [PMID: 23469192 PMCID: PMC3587611 DOI: 10.1371/journal.pone.0057428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Dullard/Ctdnep1 is a member of the serine/threonine phosphatase family of the C-terminal domain of eukaryotic RNA polymerase II. Embryos lacking Dullard activity fail to form primordial germ cells (PGCs). In the mouse, the formation of PGCs is influenced by BMP4 and WNT3 activity. Although Dullard is reputed to negatively regulate BMP receptor function, in this study we found mutations in Dullard had no detectable effect on BMP4 and p-Smad activity. Furthermore Dullard mutations did not influence the dosage-dependent inductive effect of Bmp4 in PGC formation. However, Dullard may function as a positive regulator of WNT signalling. Combined loss of one copy each of Dullard and Wnt3 had a synergistic effect on the reduction of PGC numbers in the compound heterozygous embryo. In addition, loss of Dullard function was accompanied by down-regulation of WNT/β-catenin signalling activity and a reduction in the level of Dishevelled 2 (Dvl2). Therefore, Dullard may play a role in the fine-tuning of WNT signalling activity by modulating the expression of ligands/antagonists and the availability of Dvl2 protein during specification of the germ cell lineage.
Collapse
|