1
|
MYCN induces cell-specific tumorigenic growth in RB1-proficient human retinal organoid and chicken retina models of retinoblastoma. Oncogenesis 2022; 11:34. [PMID: 35729105 PMCID: PMC9213451 DOI: 10.1038/s41389-022-00409-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We used the chicken retina, a well-established model for studying retinal neurogenesis, and established human embryonic stem cell-derived retinal organoids as model systems. We over-expressed MYCN by electroporation of piggyBac genome-integrating expression vectors. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human organoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7–9 weeks in chicken. Cells expressing MYCN could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for cone progenitors. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype. ![]()
Collapse
|
2
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
3
|
Zhang H, Zhuang P, Welchko RM, Dai M, Meng F, Turner DL. Regulation of retinal amacrine cell generation by miR-216b and Foxn3. Development 2022; 149:273765. [PMID: 34919141 PMCID: PMC8917416 DOI: 10.1242/dev.199484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/07/2021] [Indexed: 01/19/2023]
Abstract
The mammalian retina contains a complex mixture of different types of neurons. We find that microRNA miR-216b is preferentially expressed in postmitotic retinal amacrine cells in the mouse retina, and expression of miR-216a/b and miR-217 in retina depend in part on Ptf1a, a transcription factor required for amacrine cell differentiation. Surprisingly, ectopic expression of miR-216b directed the formation of additional amacrine cells and reduced bipolar neurons in the developing retina. We identify the Foxn3 mRNA as a retinal target of miR-216b by Argonaute PAR-CLIP and reporter analysis. Inhibition of Foxn3, a transcription factor, in the postnatal developing retina by RNAi increased the formation of amacrine cells and reduced bipolar cell formation. Foxn3 disruption by CRISPR in embryonic retinal explants also increased amacrine cell formation, whereas Foxn3 overexpression inhibited amacrine cell formation prior to Ptf1a expression. Co-expression of Foxn3 partially reversed the effects of ectopic miR-216b on retinal cell formation. Our results identify Foxn3 as a novel regulator of interneuron formation in the developing retina and suggest that miR-216b likely regulates Foxn3 and other genes in amacrine cells.
Collapse
Affiliation(s)
- Huanqing Zhang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Pei Zhuang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Ryan M. Welchko
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Manhong Dai
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Fan Meng
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - David L. Turner
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-2200, USA,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
4
|
Foxn4 is a temporal identity factor conferring mid/late-early retinal competence and involved in retinal synaptogenesis. Proc Natl Acad Sci U S A 2020; 117:5016-5027. [PMID: 32071204 DOI: 10.1073/pnas.1918628117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, neural progenitors change their competence states over time to sequentially generate different types of neurons and glia. Several cascades of temporal transcription factors (tTFs) have been discovered in Drosophila to control the temporal identity of neuroblasts, but the temporal regulation mechanism is poorly understood in vertebrates. Mammalian retinal progenitor cells (RPCs) give rise to several types of neuronal and glial cells following a sequential yet overlapping temporal order. Here, by temporal cluster analysis, RNA-sequencing analysis, and loss-of-function and gain-of-function studies, we show that the Fox domain TF Foxn4 functions as a tTF during retinogenesis to confer RPCs with the competence to generate the mid/late-early cell types: amacrine, horizontal, cone, and rod cells, while suppressing the competence of generating the immediate-early cell type: retinal ganglion cells (RGCs). In early embryonic retinas, Foxn4 inactivation causes down-regulation of photoreceptor marker genes and decreased photoreceptor generation but increased RGC production, whereas its overexpression has the opposite effect. Just as in Drosophila, Foxn4 appears to positively regulate its downstream tTF Casz1 while negatively regulating its upstream tTF Ikzf1. Moreover, retina-specific ablation of Foxn4 reveals that it may be indirectly involved in the synaptogenesis, establishment of laminar structure, visual signal transmission, and long-term maintenance of the retina. Together, our data provide evidence that Foxn4 acts as a tTF to bias RPCs toward the mid/late-early cell fates and identify a missing member of the tTF cascade that controls RPC temporal identities to ensure the generation of proper neuronal diversity in the retina.
Collapse
|
5
|
Ye H, Duan M. FOXN4 Inhibits Breast Cancer Progression By Direct Activation Of P53. Onco Targets Ther 2020; 13:71-81. [PMID: 32021256 PMCID: PMC6954834 DOI: 10.2147/ott.s206775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/21/2019] [Indexed: 11/24/2022] Open
Abstract
Background Fork head domain-containing gene family (Fox) transcription factors, consisting of over 20 members, are involved in the progression of certain types of tumor. However, whether FOXN4 is involved in carcinogenesis and tumor progression is still unclear. Purpose In this study, we investigated the clinicopathological significance and the underlying mechanism of FOXN4 in breast cancer. Methods and results We examined the lower expression of FOXN4 in breast cancer tissues and cancer cell lines. The expression of FOXN4 is negatively correlated with tumor size and lymph node metastasis. Using CCK-8 assay, colony formation assay, wound healing assay, and Transwell assay, we revealed that FOXN4 notably decreased breast cancer cell proliferation, epithelial-mesenchymal transition and invasion in vitro. In addition, quantitative chromatin immunoprecipitation and luciferase assays determined that FOXN4 was able to directly bind with the promoter of P53. RT-qPCR and Western blotting analysis showed that FOXN4 could directly activate P53 expression. Functionally, P53 knockdown rescued the tumor inhibition effects of FOXN4 in breast cancer cells. Conclusion The present study provides new insights into the role of FOXN4 in breast cancer progression and suggests FOXN4 might represent a potential therapeutic target in breast cancer by modulating P53.
Collapse
Affiliation(s)
- Hui Ye
- Department of Galactophore, Linyi Central Hospital of Shandong, Linyi, People's Republic of China
| | - Meiling Duan
- Department of Respiratory One, Linyi Central Hospital of Shandong, Linyi, People's Republic of China
| |
Collapse
|
6
|
Wang X, Su D, Qin Z, Chen Z. Identification of FOXN4 as a tumor suppressor of breast carcinogenesis via the activation of TP53 and deactivation of Notch signaling. Gene 2019; 722:144057. [PMID: 31430519 DOI: 10.1016/j.gene.2019.144057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Fork head domain-containing transcription factor family (FOX), is comprised of >20 members. Members of FOX family have been implicated in a wide range of physiological and/or diseased conditions. Many of FOX members have been shown to be involved in tumorigenesis and progression. The potential roles in carcinogenesis of FOXN4, a member as one of the vast FOX family, remains relatively unknown. METHOD Here, we explored the potential involvement of FOXN4 in breast cancer. RESULTS First, observed that a higher FOXN4 was identified in the normal adjacent breast tissue as compared to that in the breast cancer samples; an increased FOXN4 level was associated with a better prognosis in patients with breast cancer. In addition, ectopically expression of FOXN4 led to the decreased cell proliferation, reduced colony formation and metastatic abilities (EMT, migration and invasion) in breast cancer cell lines. Furthermore, we showed the direct interaction between FOXN4 and TP53 and FOXN4 binding led to the increased activity of TP53. Silencing FOXN4 led to reduced TP53 and increased expression of Dll4, Notch and survivin, providing a link between FOXN4 and Notch signaling. Finally, we used patient-derived xenograft mouse model to demonstrate the tumor inhibitory effects of Notch-inhibitor, PF-3084014. We found that PF-3084014 treatment led to a significantly smaller tumor burden and higher survival ratio in patient-derived xenograft mice as compared to the vehicle. This tumor suppressive effect was accompanied by the increased expression of TP53, FOXN4 and decreased Dll4 and Notch. CONCLUSION Collectively, our data strongly suggested the tumor suppressive roles of FOXN4 in breast tumorigenesis via the activation of TP53 while suppressing Notch signaling. Future studies are warranted to explore the clinical application of PF-3084104 (Notch inhibitor) for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Dan Su
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Zhiquan Qin
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China
| | - Zheling Chen
- Department of Medical Oncology, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, PR China.
| |
Collapse
|
7
|
Sghari S, Gunhaga L. Temporal Requirement of Mab21l2 During Eye Development in Chick Reveals Stage-Dependent Functions for Retinogenesis. Invest Ophthalmol Vis Sci 2019; 59:3869-3878. [PMID: 30073347 DOI: 10.1167/iovs.18-24236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Different missense mutations in the single exon gene Mab21l2 have been identified in unrelated families with various bilateral eye malformations, including microphthalmia, anophthalmia, and coloboma, but the molecular function of Mab21l2 during eye development still remains largely unknown. Methods We have established an in vivo Mab21l2-deficient eye development model in chick, by using a Mab21l2 RNA interference construct that we electroporated in ovo in prospective retinal cells. In addition, we designed a Mab21l2 gain-of-function electroporation vector. Mab21l2-modulated retinas were analyzed on consecutive sections in terms of morphology, and molecular markers for apoptosis, cell proliferation, and retinogenesis. Results Our Mab21l2-deficient chick model mimics human ocular phenotypes. When Mab21l2 is downregulated prior to optic vesicle formation, the embryos develop anophthalmia, and Mab21l2 inhibition by optic cup stages results in a microphthalmic colobomatous phenotype. Our results show that inhibition of Mab21l2 affects cell proliferation, cell cycle exit, and the expression of Atoh7/Ath5, NeuroD4/Ath3, Isl1, Pax6, AP-2α, and Prox1. In addition, Mab21l2 overexpression hampers cell cycle exit and differentiation of retinal progenitor cells (RPCs). Conclusions Our results highlight the importance of a regulated temporal expression of Mab21l2 during eye development: At early stages, Mab21l2 is required to maintain RPC proliferation and expansion of cell number; before retinogenesis, a decrease in Mab21l2 expression in proliferating RPCs is required for cell cycle exit and differentiation; during retinogenesis, Mab21l2 is chronologically upregulated in RGCs, followed by differentiated horizontal and amacrine cells and cone photoreceptor cells.
Collapse
Affiliation(s)
- Soufien Sghari
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
9
|
Aparicio JG, Hopp H, Choi A, Mandayam Comar J, Liao VC, Harutyunyan N, Lee TC. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell derived retina. Exp Eye Res 2017; 154:177-189. [PMID: 27867005 PMCID: PMC5359064 DOI: 10.1016/j.exer.2016.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/29/2022]
Abstract
Human retinal ganglion cells (RGCs) derived from pluripotent stem cells (PSCs) have anticipated value for human disease study, drug screening, and therapeutic applications; however, their full potential remains underdeveloped. To characterize RGCs in human embryonic stem cell (hESC) derived retinal organoids we examined RGC markers and surface antigen expression and made comparisons to human fetal retina. RGCs in both tissues exhibited CD184 and CD171 expression and distinct expression patterns of the RGC markers BRN3 and RBPMS. The retinal progenitor cells (RPCs) of retinal organoids expressed CD184, consistent with its expression in the neuroblastic layer in fetal retina. In retinal organoids CD184 expression was enhanced in RGC competent RPCs and high CD184 expression was retained on post-mitotic RGC precursors; CD171 was detected on maturing RGCs. The differential expression timing of CD184 and CD171 permits identification and enrichment of RGCs from retinal organoids at differing maturation states from committed progenitors to differentiating neurons. These observations will facilitate molecular characterization of PSC-derived RGCs during differentiation, critical knowledge for establishing the veracity of these in vitro produced cells. Furthermore, observations made in the retinal organoid model closely parallel those in human fetal retina further validating use of retinal organoid to model early retinal development.
Collapse
Affiliation(s)
- J G Aparicio
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| | - H Hopp
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - A Choi
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | | | - V C Liao
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - N Harutyunyan
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - T C Lee
- The Vision Center, Division of Ophthalmology, and Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Ophthalmology and USC Eye Institute, University of Southern California, USA
| |
Collapse
|
10
|
Galindo-Romero C, Harun-Or-Rashid M, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M, Hallböök F. Neuroprotection by α2-Adrenergic Receptor Stimulation after Excitotoxic Retinal Injury: A Study of the Total Population of Retinal Ganglion Cells and Their Distribution in the Chicken Retina. PLoS One 2016; 11:e0161862. [PMID: 27611432 PMCID: PMC5017579 DOI: 10.1371/journal.pone.0161862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022] Open
Abstract
We have studied the effect of α2-adrenergic receptor stimulation on the total excitotoxically injured chicken retinal ganglion cell population. N-methyl-D-aspartate (NMDA) was intraocularly injected at embryonic day 18 and Brn3a positive retinal ganglion cells (Brn3a+ RGCs) were counted in flat-mounted retinas using automated routines. The number and distribution of the Brn3a+ RGCs were analyzed in series of normal retinas from embryonic day 8 to post-hatch day 11 retinas and in retinas 7 or 14 days post NMDA lesion. The total number of Brn3a+ RGCs in the post-hatch retina was approximately 1.9x106 with a density of approximately 9.2x103 cells/mm2. The isodensity maps of normal retina showed that the density decreased with age as the retinal size increased. In contrast to previous studies, we did not find any specific region with increased RGC density, rather the Brn3a+ RGCs were homogeneously distributed over the central retina with decreasing density in the periphery and in the region of the pecten oculli. Injection of 5–10 μg NMDA caused 30–50% loss of Brn3a+ cells and the loss was more severe in the dorsal than in the ventral retina. Pretreatment with brimonidine reduced the loss of Brn3a+ cells both 7 and 14 days post lesion and the protective effect was higher in the dorsal than in the ventral retina. We conclude that α2-adrenergic receptor stimulation reduced the impact of the excitotoxic injury in chicken similarly to what has been shown in mammals. Furthermore, the data show that the RGCs are evenly distributed over in the retina, which challenges previous results that indicate the presence of specific high RGC-density regions of the chicken retina.
Collapse
Affiliation(s)
- Caridad Galindo-Romero
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | | | - Manuel Jiménez-López
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Marta Agudo-Barriuso
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca) and Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden
- * E-mail:
| |
Collapse
|
11
|
Boije H, Shirazi Fard S, Edqvist PH, Hallböök F. Horizontal Cells, the Odd Ones Out in the Retina, Give Insights into Development and Disease. Front Neuroanat 2016; 10:77. [PMID: 27486389 PMCID: PMC4949263 DOI: 10.3389/fnana.2016.00077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023] Open
Abstract
Thorough investigation of a neuronal population can help reveal key aspects regarding the nervous system and its development. The retinal horizontal cells have several extraordinary features making them particularly interesting for addressing questions regarding fate assignment and subtype specification. In this review we discuss and summarize data concerning the formation and diversity of horizontal cells, how morphology is correlated to molecular markers, and how fate assignment separates the horizontal lineage from the lineages of other retinal cell types. We discuss the novel and unique features of the final cell cycle of horizontal cell progenitors and how they may relate to retinoblastoma carcinogenesis.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| | | | - Per-Henrik Edqvist
- Department of Immunology, Genetics and Pathology, Uppsala University Uppsala, Sweden
| | - Finn Hallböök
- Department of Neuroscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
12
|
Boije H, Rulands S, Dudczig S, Simons BD, Harris WA. The Independent Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the Zebrafish Retina. Dev Cell 2015; 34:532-43. [PMID: 26343455 PMCID: PMC4572358 DOI: 10.1016/j.devcel.2015.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 06/29/2015] [Accepted: 08/13/2015] [Indexed: 01/31/2023]
Abstract
Early retinal progenitor cells (RPCs) in vertebrates produce lineages that vary greatly both in terms of cell number and fate composition, yet how this variability is achieved remains unknown. One possibility is that these RPCs are individually distinct and that each gives rise to a unique lineage. Another is that stochastic mechanisms play upon the determinative machinery of equipotent early RPCs to drive clonal variability. Here we show that a simple model, based on the independent firing of key fate-influencing transcription factors, can quantitatively account for the intrinsic clonal variance in the zebrafish retina and predict the distributions of neuronal cell types in clones where one or more of these fates are made unavailable. A simple quantitative model can explain clonal variability in the retina This model is based on the firing probabilities of key transcription factors These probabilities are shown to be largely independent of each other The environment has only a minor effect on these probabilities
Collapse
Affiliation(s)
- Henrik Boije
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK; Department of Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Steffen Rulands
- Department of Physics, Cambridge University, Cambridge CB3 0HE, UK
| | - Stefanie Dudczig
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK
| | | | - William A Harris
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge CB2 3DY, UK.
| |
Collapse
|
13
|
Aldea D, Leon A, Bertrand S, Escriva H. Expression of Fox genes in the cephalochordate Branchiostoma lanceolatum. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Jin K, Jiang H, Xiao D, Zou M, Zhu J, Xiang M. Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Mol Brain 2015; 8:28. [PMID: 25966682 PMCID: PMC4429372 DOI: 10.1186/s13041-015-0118-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
Retinogenesis is a precisely controlled developmental process during which different types of neurons and glial cells are generated under the influence of intrinsic and extrinsic factors. Three transcription factors, Foxn4, RORβ1 and their downstream effector Ptf1a, have been shown to be indispensable intrinsic regulators for the differentiation of amacrine and horizontal cells. At present, however, it is unclear how Ptf1a specifies these two cell fates from competent retinal precursors. Here, through combined bioinformatic, molecular and genetic approaches in mouse retinas, we identify the Tfap2a and Tfap2b transcription factors as two major downstream effectors of Ptf1a. RNA-seq and immunolabeling analyses show that the expression of Tfap2a and 2b transcripts and proteins is dramatically downregulated in the Ptf1a null mutant retina. Their overexpression is capable of promoting the differentiation of glycinergic and GABAergic amacrine cells at the expense of photoreceptors much as misexpressed Ptf1a is, whereas their simultaneous knockdown has the opposite effect. Given the demonstrated requirement for Tfap2a and 2b in horizontal cell differentiation, our study thus defines a Foxn4/RORβ1-Ptf1a-Tfap2a/2b transcriptional regulatory cascade that underlies the competence, specification and differentiation of amacrine and horizontal cells during retinal development.
Collapse
Affiliation(s)
- Kangxin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China.
| | - Haisong Jiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA. .,Present address: Institute for Cell Engineering, Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21206, USA.
| | - Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China.
| | - Min Zou
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
15
|
Islam MM, Li Y, Luo H, Xiang M, Cai L. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation. Biol Open 2013; 2:1125-36. [PMID: 24244849 PMCID: PMC3828759 DOI: 10.1242/bio.20132279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
The transcription factor forkhead box N4 (Foxn4) is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2), located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Biomedical Engineering, Rutgers University , 599 Taylor Road, Piscataway, NJ 08854 , USA ; Present address: Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
16
|
Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. SCIENCE CHINA-LIFE SCIENCES 2013; 56:985-93. [PMID: 24008385 DOI: 10.1007/s11427-013-4543-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Vertebrate development culminates in the generation of proper proportions of a large variety of different cell types and subtypes essential for tissue, organ and system functions in the right place at the right time. Foxn4, a member of the forkhead box/winged-helix transcription factor superfamily, is expressed in mitotic progenitors and/or postmitotic precursors in both neural (e.g., retina and spinal cord) and non-neural tissues (e.g., atrioventricular canal and proximal airway). During development of the central nervous system, Foxn4 is required to specify the amacrine and horizontal cell fates from multipotent retinal progenitors while suppressing the alternative photoreceptor cell fates through activating Dll4-Notch signaling. Moreover, it activates Dll4-Notch signaling to drive commitment of p2 progenitors to the V2b and V2c interneuron fates during spinal cord neurogenesis. In development of non-neural tissues, Foxn4 plays an essential role in the specification of the atrioventricular canal and is indirectly required for patterning the distal airway during lung development. In this review, we highlight current understanding of the structure, expression and developmental functions of Foxn4 with an emphasis on its cell-autonomous and non-cell-autonomous roles in different tissues and animal model systems.
Collapse
|
17
|
Alternative splicing of the chromodomain protein Morf4l1 pre-mRNA has implications on cell differentiation in the developing chicken retina. J Mol Neurosci 2013; 51:615-28. [PMID: 23733253 DOI: 10.1007/s12031-013-0034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
The proliferation, cell cycle exit and differentiation of progenitor cells are controlled by several different factors. The chromodomain protein mortality factor 4-like 1 (Morf4l1) has been ascribed a role in both proliferation and differentiation. Little attention has been given to the existence of alternative splice variants of the Morf4l1 mRNA, which encode two Morf41l isoforms: a short isoform (S-Morf4l1) with an intact chromodomain and a long isoform (L-Morf4l1) with an insertion in or in the vicinity of the chromodomain. The aim of this study was to investigate if this alternative splicing has a function during development. We analysed the temporal and spatial distribution of the two mRNAs and over-expressed both isoforms in the developing retina. The results showed that the S-Morf4l1 mRNA is developmentally regulated. Over-expression of S-Morf4l1 using a retrovirus vector produced a clear phenotype with an increase of early-born neurons: retinal ganglion cells, horizontal cells and cone photoreceptor cells. Over-expression of L-Morf4l1 did not produce any distinguishable phenotype. The over-expression of S-Morf4l1 but not L-Morf4l1 also increased apoptosis in the infected regions. Our results suggest that the two Morf4l1 isoforms have different functions during retinogenesis and that Morf4l1 functions are fine-tuned by developmentally regulated alternative splicing. The data also suggest that Morf4l1 contributes to the regulation of cell genesis in the retina.
Collapse
|