1
|
Angori S, Banaei-Esfahani A, Mühlbauer K, Bolck HA, Kahraman A, Karakulak T, Poyet C, Feodoroff M, Potdar S, Kallioniemi O, Pietiäinen V, Schraml P, Moch H. Ex Vivo Drug Testing in Patient-derived Papillary Renal Cancer Cells Reveals EGFR and the BCL2 Family as Therapeutic Targets. Eur Urol Focus 2023; 9:751-759. [PMID: 36933996 DOI: 10.1016/j.euf.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors and antiangiogenic agents are used for first-line treatment of advanced papillary renal cell carcinoma (pRCC) but pRCC response rates to these therapies are low. OBJECTIVE To generate and characterise a functional ex vivo model to identify novel treatment options in advanced pRCC. DESIGN, SETTING, AND PARTICIPANTS We established patient-derived cell cultures (PDCs) from seven pRCC samples from patients and characterised them via genomic analysis and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comprehensive molecular characterisation in terms of copy number analysis and whole-exome sequencing confirmed the concordance of pRCC PDCs with the original tumours. We evaluated their sensitivity to novel drugs by generating drug scores for each PDC. RESULTS AND LIMITATIONS PDCs confirmed pRCC-specific copy number variations such as gains in chromosomes 7, 16, and 17. Whole-exome sequencing revealed that PDCs retained mutations in pRCC-specific driver genes. We performed drug screening with 526 novel and oncological compounds. Whereas exposure to conventional drugs showed low efficacy, the results highlighted EGFR and BCL2 family inhibition as the most effective targets in our pRCC PDCs. CONCLUSIONS High-throughput drug testing on newly established pRCC PDCs revealed that inhibition of EGFR and BCL2 family members could be a therapeutic strategy in pRCC. PATIENT SUMMARY We used a new approach to generate patient-derived cells from a specific type of kidney cancer. We showed that these cells have the same genetic background as the original tumour and can be used as models to study novel treatment options for this type of kidney cancer.
Collapse
Affiliation(s)
- Silvia Angori
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Amir Banaei-Esfahani
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Katharina Mühlbauer
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hella A Bolck
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Abdullah Kahraman
- School for Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Tülay Karakulak
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland; Swiss Informatics Institute, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Michaela Feodoroff
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Laboratory of Immunovirotherapy, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Peter Schraml
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Gerdes P, Lim SM, Ewing AD, Larcombe MR, Chan D, Sanchez-Luque FJ, Walker L, Carleton AL, James C, Knaupp AS, Carreira PE, Nefzger CM, Lister R, Richardson SR, Polo JM, Faulkner GJ. Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nat Commun 2022; 13:7470. [PMID: 36463236 PMCID: PMC9719517 DOI: 10.1038/s41467-022-35180-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can in principle differentiate into any cell of the body, and have revolutionized biomedical research and regenerative medicine. Unlike their human counterparts, mouse iPSCs (miPSCs) are reported to silence transposable elements and prevent transposable element-mediated mutagenesis. Here we apply short-read or Oxford Nanopore Technologies long-read genome sequencing to 38 bulk miPSC lines reprogrammed from 10 parental cell types, and 18 single-cell miPSC clones. While single nucleotide variants and structural variants restricted to miPSCs are rare, we find 83 de novo transposable element insertions, including examples intronic to Brca1 and Dmd. LINE-1 retrotransposons are profoundly hypomethylated in miPSCs, beyond other transposable elements and the genome overall, and harbor alternative protein-coding gene promoters. We show that treatment with the LINE-1 inhibitor lamivudine does not hinder reprogramming and efficiently blocks endogenous retrotransposition, as detected by long-read genome sequencing. These experiments reveal the complete spectrum and potential significance of mutations acquired by miPSCs.
Collapse
Affiliation(s)
- Patricia Gerdes
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sue Mei Lim
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Adam D. Ewing
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michael R. Larcombe
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Dorothy Chan
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Francisco J. Sanchez-Luque
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.418805.00000 0004 0500 8423GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS, Granada, 18016 Spain
| | - Lucinda Walker
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Alexander L. Carleton
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Cini James
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Anja S. Knaupp
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Patricia E. Carreira
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Christian M. Nefzger
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia
| | - Ryan Lister
- grid.1012.20000 0004 1936 7910Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009 Australia ,grid.431595.f0000 0004 0469 0045Harry Perkins Institute of Medical Research, Perth, WA 6009 Australia
| | - Sandra R. Richardson
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jose M. Polo
- grid.1002.30000 0004 1936 7857Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Melbourne, VIC 3800 Australia ,grid.1002.30000 0004 1936 7857Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800 Australia ,grid.1010.00000 0004 1936 7304Adelaide Centre for Epigenetics and The South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Geoffrey J. Faulkner
- grid.1003.20000 0000 9320 7537Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
3
|
Naval-Sanchez M, Deshpande N, Tran M, Zhang J, Alhomrani M, Alsanie W, Nguyen Q, Nefzger CM. Benchmarking of ATAC Sequencing Data From BGI's Low-Cost DNBSEQ-G400 Instrument for Identification of Open and Occupied Chromatin Regions. Front Mol Biosci 2022; 9:900323. [PMID: 35874611 PMCID: PMC9302965 DOI: 10.3389/fmolb.2022.900323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chromatin falls into one of two major subtypes: closed heterochromatin and euchromatin which is accessible, transcriptionally active, and occupied by transcription factors (TFs). The most widely used approach to interrogate differences in the chromatin state landscape is the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). While library generation is relatively inexpensive, sequencing depth requirements can make this assay cost-prohibitive for some laboratories. Findings: Here, we benchmark data from Beijing Genomics Institute's (BGI) DNBSEQ-G400 low-cost sequencer against data from a standard Illumina instrument (HiSeqX10). For comparisons, the same bulk ATAC-seq libraries generated from pluripotent stem cells (PSCs) and fibroblasts were sequenced on both platforms. Both instruments generate sequencing reads with comparable mapping rates and genomic context. However, DNBSEQ-G400 data contained a significantly higher number of small, sub-nucleosomal reads (>30% increase) and a reduced number of bi-nucleosomal reads (>75% decrease), which resulted in narrower peak bases and improved peak calling, enabling the identification of 4% more differentially accessible regions between PSCs and fibroblasts. The ability to identify master TFs that underpin the PSC state relative to fibroblasts (via HOMER, HINT-ATAC, TOBIAS), namely, foot-printing capacity, were highly similar between data generated on both platforms. Integrative analysis with transcriptional data equally enabled direct recovery of three published 3-factor combinations that have been shown to induce pluripotency. Conclusion: Other than a small increase in peak calling sensitivity for DNBSEQ-G400 data (BGI), both platforms enable comparable levels of open chromatin identification for ATAC-seq library sequencing, yielding similar analytical outcomes, albeit at low-data generation costs in the case of the BGI instrument.
Collapse
Affiliation(s)
- Marina Naval-Sanchez
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif, Saudi Arabia
| | - Quan Nguyen
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Christian M. Nefzger
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Sacco AM, Belviso I, Romano V, Carfora A, Schonauer F, Nurzynska D, Montagnani S, Di Meglio F, Castaldo C. Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming. J Cell Mol Med 2019; 23:4256-4268. [PMID: 30980516 PMCID: PMC6533477 DOI: 10.1111/jcmm.14316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/22/2019] [Accepted: 03/24/2019] [Indexed: 01/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell-like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real-time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration-free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Immacolata Belviso
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Veronica Romano
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Antonia Carfora
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Fabrizio Schonauer
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Daria Nurzynska
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Stefania Montagnani
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Franca Di Meglio
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Clotilde Castaldo
- Department of Public Health, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
5
|
Abstract
Mouse embryonic stem cells (mESCs) are pluripotent cells derived from preimplantation embryos that have the capacity to self-renew indefinitely in vitro. mESCs are an indispensable tool for studying cellular differentiation in vitro, generating disease in a dish models, and have been used extensively for the generation of transgenic animals. Therefore, maintaining their pluripotent state, even after extended culture, is crucial for their utility. Herein, we describe in detail a protocol for the culture of mESCs in the presence of fetal calf serum (FCS), leukemia inhibitory factor (LIF), and a layer of irradiated mouse embryonic fibroblasts (iMEFs). This culture system reliably sustains mESC pluripotency and self-renewal capacity, allowing their use in a wide range of experimental settings.
Collapse
Affiliation(s)
- Jacob M Paynter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
6
|
Guo X, Chen Y, Hong T, Chen X, Duan Y, Li C, Ge R. Induced pluripotent stem cell-derived conditional medium promotes Leydig cell anti-apoptosis and proliferation via autophagy and Wnt/β-catenin pathway. J Cell Mol Med 2018; 22:3614-3626. [PMID: 29667777 PMCID: PMC6010900 DOI: 10.1111/jcmm.13641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Leydig cell transplantation is a better alternative in the treatment of androgen-deficient males. The main purpose of this study was to investigate the effects of induced pluripotent stem cell-derived conditioned medium (iPS-CM) on the anti-apoptosis, proliferation and function of immature Leydig cells (ILCs), and illuminate the underlying mechanisms. ILCs were exposed to 200 μmol/L hydrogen peroxide (H2 O2 ) for 24 hours with or without iPS-CM treatments. Cell apoptosis was detected by flow cytometric analysis. Cell proliferation was assessed using cell cycle assays and EdU staining. The steroidogenic enzyme expressions were quantified with Western blotting. The results showed that iPS-CM significantly reduced H2 O2 -induced ILC apoptosis through down-regulation of autophagic and apoptotic proteins LC3-I/II, Beclin-1, P62, P53 and BAX as well as up-regulation of BCL-2, which could be inhibited by LY294002 (25 μmol/L). iPS-CM could also promote ILC proliferation through up-regulation of β-catenin and its target proteins cyclin D1, c-Myc and survivin, but was inhibited by XAV939 (10 μmol/L). The level of bFGF in iPS-CM was higher than that of DMEM-LG. Exogenous bFGF (20 ng/mL) or Wnt signalling agonist lithium chloride (LiCl) (20 mmol/L) added into DMEM-LG could achieve the similar effects of iPS-CM. Meanwhile, iPS-CM could improve the medium testosterone levels and up-regulation of LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and SF-1 in H2 O2 -induced ILCs. In conclusion, iPS-CM could reduce H2 O2 -induced ILC apoptosis through the activation of autophagy, promote proliferation through up-regulation of Wnt/β-catenin pathway and enhance testosterone production through increasing steroidogenic enzyme expressions, which might be used in regenerative medicine for future.
Collapse
Affiliation(s)
- Xiaoling Guo
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yong Chen
- Department of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Tingting Hong
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Xianwu Chen
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Duan
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Chao Li
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Renshan Ge
- Center of Scientific ResearchThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
- Department of AnesthesiologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
7
|
Cao X, Wang J, Deng W, Chen J, Wang Y, Zhou J, Du P, Xu W, Wang Q, Wang Q, Yu Q, Spector M, Yu J, Xu X. Photoluminescent Cationic Carbon Dots as efficient Non-Viral Delivery of Plasmid SOX9 and Chondrogenesis of Fibroblasts. Sci Rep 2018; 8:7057. [PMID: 29728593 PMCID: PMC5935676 DOI: 10.1038/s41598-018-25330-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/19/2018] [Indexed: 11/24/2022] Open
Abstract
With the increasing demand for higher gene carrier performance, a multifunctional vector could immensely simplify gene delivery for disease treatment; nevertheless, the current non- viral vectors lack self-tracking ability. Here, a type of novel, dual-functional cationic carbon dots (CDs), produced through one-step, microwave-assisted pyrolysis of arginine and glucose, have been utilized as both a self-imaging agent and a non-viral gene vector for chondrogenesis from fibroblasts. The cationic CDs could condense the model gene plasmid SOX9 (pSOX9) to form ultra-small (10–30 nm) nanoparticles which possessed several favorable properties, including high solubility, tunable fluorescence, high yield, low cytotoxicity and outstanding biocompatibility. The MTT assay indicated that CDs/pSOX9 nanoparticles had little cytotoxicity against mouse embryonic fibroblasts (MEFs) compared to Lipofectamine2000 and PEI (25 kDa). Importantly, the CDs/pSOX9 nanoparticles with tunable fluorescence not only enabled the intracellular tracking of the nanoparticles, but also could successfully deliver the pSOX9 into MEFs with significantly high efficiency. Furthermore, the CDs/pSOX9 nanoparticles-mediated transfection of MEFs showed obvious chondrogenic differentiation. Altogether, these findings demonstrated that the CDs prepared in this study could serve as a paradigmatic example of the dual-functional reagent for both self-imaging and effective non-viral gene delivery.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Jianping Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Pan Du
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Wenqian Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Qiang Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Myron Spector
- Department of Orthopedic Surgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, P.R. China.
| |
Collapse
|
8
|
Chen J, Nefzger CM, Rossello FJ, Sun YBY, Lim SM, Liu X, de Boer S, Knaupp AS, Li J, Davidson KC, Polo JM, Barberi T. Fine Tuning of Canonical Wnt Stimulation Enhances Differentiation of Pluripotent Stem Cells Independent of β-Catenin-Mediated T-Cell Factor Signaling. Stem Cells 2018; 36:822-833. [PMID: 29396901 DOI: 10.1002/stem.2794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The canonical Wnt/β-catenin pathway is crucial for early embryonic patterning, tissue homeostasis, and regeneration. While canonical Wnt/β-catenin stimulation has been used extensively to modulate pluripotency and differentiation of pluripotent stem cells (PSCs), the mechanism of these two seemingly opposing roles has not been fully characterized and is currently largely attributed to activation of nuclear Wnt target genes. Here, we show that low levels of Wnt stimulation via ectopic expression of Wnt1 or administration of glycogen synthase kinase-3 inhibitor CHIR99021 significantly increases PSC differentiation into neurons, cardiomyocytes and early endodermal intermediates. Our data indicate that enhanced differentiation outcomes are not mediated through activation of traditional Wnt target genes but by β-catenin's secondary role as a binding partner of membrane bound cadherins ultimately leading to the activation of developmental genes. In summary, fine-tuning of Wnt signaling to subthreshold levels for detectable nuclear β-catenin function appears to act as a switch to enhance differentiation of PSCs into multiple lineages. Our observations highlight a mechanism by which Wnt/β-catenin signaling can achieve dosage dependent dual roles in regulating self-renewal and differentiation. Stem Cells 2018;36:822-833.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Suzan de Boer
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kathryn C Davidson
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Tiziano Barberi
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
9
|
Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells. Mol Cell Biochem 2016; 413:69-85. [DOI: 10.1007/s11010-015-2640-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023]
|