1
|
Cunha GR, Cao M, Derpinghaus A, Baskin LS. Androgenic induction of penile features in postnatal female mouse external genitalia from birth to adulthood: Is the female sexual phenotype ever irreversibly determined? Differentiation 2023; 131:1-26. [PMID: 36924743 DOI: 10.1016/j.diff.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Female mice were treated for 35 days from birth to 60 days postnatal (P0, [birth], P5, P10, P20 and adult [∼P60]) with dihydrotestosterone (DHT). Such treatment elicited profound masculinization the female external genitalia and development of penile features (penile spines, male urogenital mating protuberance (MUMP) cartilage, corpus cavernosum glandis, corporal body, MUMP-corpora cavernosa, a large preputial space, internal preputial space, os penis). Time course studies demonstrated that DHT elicited canalization of the U-shaped clitoral lamina to create a U-shaped preputial space, preputial lining epithelium and penile epithelium adorned with spines. The effect of DHT was likely due to signaling through androgen receptors normally present postnatally in the clitoral lamina and associated mesenchyme. This study highlights a remarkable male/female difference in specification and determination of urogenital organ identity. Urogenital organ identity in male mice is irreversibly specified and determined prenatally (prostate, penis, and seminal vesicle), whereas many aspects of the female urogenital organogenesis are not irreversibly determined at birth and in the case of external genitalia are not irreversibly determined even into adulthood, the exception being positioning of the female urethra, which is determined prenatally.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
2
|
Abstract
Puberty is characterized by major changes in the anatomy and function of reproductive organs. Androgen activity is low before puberty, but during pubertal development, the testes resume the production of androgens. Major physiological changes occur in the testicular cell compartments in response to the increase in intratesticular testosterone concentrations and androgen receptor expression. Androgen activity also impacts on the internal and external genitalia. In target cells, androgens signal through a classical and a nonclassical pathway. This review addresses the most recent advances in the knowledge of the role of androgen signaling in postnatal male sexual development, with a special emphasis on human puberty.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
3
|
Logsdon NT, Gallo CM, Pires RS, Sampaio FJ, Favorito LA. Prostate and testicular growth analysis in human fetuses during the second gestational trimester. Prostate 2021; 81:214-219. [PMID: 33393689 DOI: 10.1002/pros.24098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND The second gestational trimester is a very important period for male genital development. We analyzed the testicular and prostatic volume growth and compared them to the biometric parameters in human fetuses. METHODS We studied 64 testes and 32 prostates from 32 fetuses, aged 10-22 weeks postconception. Fetuses were evaluated regarding total length, crown-rump length, and bodyweight. The same observer performed all the measurements. After testicular and prostatic dissection, the prostate and testicular length, width and thickness were recorded with the aid of computer programs (Image Pro and ImageJ software, version 1.46r). Testicular volume (TV) and prostatic volume (PV) were calculated using the ellipsoid formula. Statistical analysis was performed with the GraphPad Prism program (version 6.01). RESULTS The fetuses presented PV between 6.1 and 297.18 mm2 (mean = 77.98 mm3 ). Linear regression analysis indicated that the PV in these fetuses increased significantly and positively with fetal age (r2 = .3120; p < .0001). We did not observe significant differences between the TV (right testis: 0.39-63.94 mm3 ; mean = 19.84 mm3 ; left testis: 0.52-55.37 mm3 , mean = 17.25 mm3 ). Linear regression analysis also indicated that the right and left TV (right: r2 = .6649; p < .0001 and left: r2 = .6792; p < .001) increased significantly and positively with fetal age. CONCLUSION The prostatic growth was slower during the second gestational trimester, with significant correlations with fetal biometric parameters. The testicular growth was moderate and showed a significant correlation with fetal parameters during the studied period in human fetuses.
Collapse
Affiliation(s)
- Natasha T Logsdon
- Urogenital Research Unit, State University of Rio de Janeiro, Tijuca, Rio de Janeiro, Brazil
| | - Carla M Gallo
- Urogenital Research Unit, State University of Rio de Janeiro, Tijuca, Rio de Janeiro, Brazil
| | - Rodrigo S Pires
- Urogenital Research Unit, State University of Rio de Janeiro, Tijuca, Rio de Janeiro, Brazil
| | - Francisco J Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Tijuca, Rio de Janeiro, Brazil
| | - Luciano A Favorito
- Urogenital Research Unit, State University of Rio de Janeiro, Tijuca, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Baskin L, Cao M, Sinclair A, Li Y, Overland M, Isaacson D, Cunha GR. Androgen and estrogen receptor expression in the developing human penis and clitoris. Differentiation 2020; 111:41-59. [PMID: 31655443 PMCID: PMC6926156 DOI: 10.1016/j.diff.2019.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
To better understand how the human fetal penis and clitoris grows and remodels, we undertook an investigation to define active areas of cellular proliferation and programmed cell death spatially and temporally during development of human fetal external genitalia from the indifferent stage (8 weeks) to 18 weeks of gestation. Fifty normal human fetal penile and clitoral specimens were examined using macroscopic imaging, scanning electron microscopy and immunohistochemical localization for the cellular proliferation and apoptotic markers, Ki67 and Caspase-3. A number of hot spots of cellular proliferation characterized by Ki67 localization are present in the penis and clitoris especially early in development, most notably in the corporal body, glans, remodeling glanular urethra, the urethral plate, the roof of the urethral groove and the fully formed penile urethra. The 12-fold increase in penile length over 10 weeks of growth from 8 to 18 weeks of gestation based on Ki67 labelling appears to be driven by cellular proliferation in the corporal body and glans. Throughout all ages in both the developing penis and clitoris Ki67 labeling was consistently elevated in the ventral epidermis and ventral mesenchyme relative to the dorsal counterparts. This finding is consistent with the intense morphogenetic activity/remodeling in the ventral half of the genital tubercle in both sexes involving formation of the urethral/vestibular plates, canalization of the urethral/vestibular plates and fusion of the urethral folds to form the penile urethra. Areas of reduced or absent Ki67 staining include the urethral fold epithelium that fuses to form the penile tubular urethra. In contrast, the urethral fold mesenchyme is positive for Ki67. Apoptosis was rarely noted in the developing penis and clitoris; the only area of minimal Caspase-3 localization was in the epithelium of the ventral epithelial glanular channel remodeling.
Collapse
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Dylan Isaacson
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
5
|
Cunha GR, Liu G, Sinclair A, Cao M, Glickman S, Cooke PS, Baskin L. Androgen-independent events in penile development in humans and animals. Differentiation 2020; 111:98-114. [DOI: 10.1016/j.diff.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023]
|
6
|
张 晓, 张 维, 霍 飞, 胡 浩, 王 起, 许 克. [Outcome of surgical management and pathogenesis of female primary bladder neck obstruction]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:1052-1055. [PMID: 31848503 PMCID: PMC7433601 DOI: 10.19723/j.issn.1671-167x.2019.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect of transurethral resection of bladder neck on primary female bladder neck obstruction and to analyze the expression of three kinds of sex hormone receptor (SR) in female bladder neck tissues diagnosed as primary bladder neck obstruction by the immunochemistry and statistics. METHODS The clinical data of 40 female patients, admitted into Peking University People's Hospital for difficulty of voiding during Oct.2008 and Dec.2013 and eventually diagnosed as bladder outlet obstruction (BOO) by urodynamics, were retrospectively reviewed. BOO was defined as a maximum flow rate (Qmax) less than 12 mL/s together with a detrusor pressure at maximum flow rate (Pdet Qmax) more than 25 cmH2O in urodynamic study in the absence of neurological disorders. Diagnosis was confirmed by the cystoscopy. Preoperative and postoperative AUASS scores were recorded and analyzed for observation of curative effects and complications. The immunochemical expression of SR of primary female bladder neck obstruction (PBNO) tissues and normal control was examined and applied to statistical analysis. RESULTS There were significant changes postoperatively in voiding scores, storage scores and total scores (P<0.001). Postoperatively, 1 patient newly presented with overactive bladder (OAB), 4 patients newly presented with hematuria, and 1 patient underwent cystostomy. The symptoms of urinary retention with overflow incontinence in 2 patients disappeared after the surgery, and 3 patients complicated with OAB complained without urgency. In addition, pre-hydronephrosis improved postoperatively in six patients. The subjective satisfactory rate to the surgery of TURBN was 77.5% (31/40). Sex hormone receptor, including androgen receptor (AR), estrogen receptor (ER), progesterone receptor (PR), expressed in both bladder neck tissues of normal control and PBNO patients. In PBNO group, the expression of PR was significantly lower than that of control group (P<0.05), while the other 2 SRs expressed with no significantly statistical difference. PBNO patients were divided into 2 groups, according to their symptoms scores, and the expression of SRs showed no significant differences among the mild, moderate and severe groups (P>0.05). CONCLUSION The transurethral bladder neck resection is valid in treating with female PBNO patients, with rarely occurrence of complications. PR expressed less in the female bladder neck tissues, and is possibly correlated with the occurrence of female PBNO.
Collapse
Affiliation(s)
- 晓鹏 张
- 北京大学人民医院,泌尿外科, 北京 100044Department of Urology, Peking University People’s Hospital, Beijing 100044, China
| | - 维宇 张
- 北京大学人民医院,泌尿外科, 北京 100044Department of Urology, Peking University People’s Hospital, Beijing 100044, China
| | - 飞 霍
- 北京大学人民医院,麻醉科, 北京 100044Department of Anesthesiology, Peking University People’s Hospital, Beijing 100044, China
| | - 浩 胡
- 北京大学人民医院,泌尿外科, 北京 100044Department of Urology, Peking University People’s Hospital, Beijing 100044, China
| | - 起 王
- 北京大学人民医院,泌尿外科, 北京 100044Department of Urology, Peking University People’s Hospital, Beijing 100044, China
| | - 克新 许
- 北京大学人民医院,泌尿外科, 北京 100044Department of Urology, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
7
|
Baskin L, Derpinghaus A, Cao M, Sinclair A, Li Y, Overland M, Cunha GR. Hot spots in fetal human penile and clitoral development. Differentiation 2019; 112:27-38. [PMID: 31874420 DOI: 10.1016/j.diff.2019.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022]
Abstract
To better understand how the human fetal penis and clitoris grows and remodels, we undertook an investigation to define active areas of cellular proliferation and programmed cell death spatially and temporally during development of human fetal external genitalia from the indifferent stage (8 weeks) to 18 weeks of gestation. Fifty normal human fetal penile and clitoral specimens were examined using macroscopic imaging, scanning electron microscopy and immunohistochemical localization for the cellular proliferation and apoptotic markers, Ki67 and Caspase-3, respectively. A number of hot spots of cellular proliferation characterized by Ki67 localization are present in the penis and clitoris especially early in development, most notably in the corporal body, glans, remodeling glanular urethra, the urethral plate, the roof of the urethral groove and the fully formed penile urethra. The 12-fold increase in penile length over 10 weeks of growth from 8 to 18 weeks of gestation based on Ki67 labelling appears to be driven by cellular proliferation in the corporal body and glans. Throughout all ages in both the developing penis and clitoris Ki67 labeling was consistently elevated in the ventral epidermis and ventral mesenchyme relative to the dorsal counterparts. This finding is consistent with the intense morphogenetic activity/remodeling in the ventral half of the genital tubercle in both sexes involving formation of the urethral/vestibular plates, canalization of the urethral/vestibular plates and fusion of the urethral folds to form the penile urethra. Areas of reduced or absent Ki67 staining include the urethral fold epithelium that fuses to form the penile tubular urethra. In contrast, the urethral fold mesenchyme is positive for Ki67. Apoptosis was rarely noted in the developing penis and clitoris; the only area of minimal Caspase-3 localization was in the epithelium of the ventral epithelial glanular channel remodeling.
Collapse
Affiliation(s)
- Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA.
| | - Amber Derpinghaus
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
8
|
Cunha GR, Liu G, Sinclair A, Cao M, Baskin L. Clitoral development in the mouse and human. Differentiation 2019; 111:79-97. [PMID: 31731099 DOI: 10.1016/j.diff.2019.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The goal of this report is (a) to provide the first detailed description of mouse clitoral development, and (b) to compare mouse and human clitoral development. For this purpose, external genitalia of female mice were examined by wholemount microscopy, histology and immunohistochemistry from 14 days of gestation to 10 days postnatal. Human clitoral development was examined by these techniques as well as by scanning electron microscopy and optical projection tomography from 8 to 19 weeks of gestation. The adult mouse clitoris is an internal organ defined by a U-shaped clitoral lamina whose development is associated with the prenatal medial and distal growth of the female preputial swellings along the sides of the genital tubercle to form the circumferential preputial lamina. Regression of the ventral aspect of the preputial lamina leads to formation of the U-shaped clitoral lamina recognized as early as 17 days of gestation. While the adult U-shaped mouse clitoral lamina is closely associated with the vagina, and it appears to be completely non-responsive to estrogen as opposed to the highly estrogen-responsive vaginal epithelium. The prominent perineal appendage in adult females is prepuce, formed via fusion of the embryonic preputial swellings and is not the clitoris. The human clitoris is in many respects a smaller anatomic version of the human penis having all of the external and internal elements except the urethra. The human clitoris (like the human penis) is derived from the genital tubercle with the clitoral glans projecting into the vaginal vestibule. Adult morphology and developmental processes are virtually non-comparable in the mouse and human clitoris.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Ge Liu
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Adriane Sinclair
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
9
|
Cripps SM, Mattiske DM, Black JR, Risbridger GP, Govers LC, Phillips TR, Pask AJ. A loss of estrogen signaling in the aromatase deficient mouse penis results in mild hypospadias. Differentiation 2019; 109:42-52. [PMID: 31520742 DOI: 10.1016/j.diff.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022]
Abstract
Hypospadias is the abnormal opening of the urethra on the underside of the penis and occurs in approximately 1/125 live male births worldwide. The incidence rate of hypospadias has dramatically increased over the past few decades. This is now attributed, at least in part, to our exposure to endocrine-disrupting chemicals (EDCs) which alter the hormonal signals required for development of the penis. In humans androgens are the main drivers of fusion of the urethral folds to form the urethra within the shaft of the penis, a process required for termination of the urethra in its normal location at the tip of the penis. However, recent research has suggested that estrogen also plays a role in this process. To better understand how EDCs impact urethral development it is essential that we understand the normal function of hormones during development of the penis. To define the role of estrogen in urethral development we examined development of the penis in the aromatase (Cyp19a1) Knockout (ArKO) mouse strain in which endogenous estrogen production is completely ablated. We found that the ArKO penis had a mild hypospadias phenotype. The developing ArKO postnatal penis displayed an early disruption in preputial development, which likely causes the mild hypospadias observed in adults. Using qPCR, we found altered expression of keratin genes and key urethral patterning genes in response to the disrupted estrogen signaling. The hypospadias phenotype was almost identical to that reported for the estrogen receptor α (ERα) knockout confirming that ERα is the predominant receptor for mediating estrogen action during development of the mouse penis. Our results show that estrogen is required for normal prepucial development and placement of the mature urethral opening at the distal aspect of the penis. We also identified several genes which are potential downstream targets of estrogen during normal urethral closure. With this knowledge, we can now better understand how anti-estrogenic as well as estrogenic EDCs disrupt urethral closure to cause mild hypospadias in both mice and humans.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Jay R Black
- School of Earth Sciences, The University of Melbourne, Victoria, Australia
| | - Gail P Risbridger
- Monash Biomedicine Discovery Institute, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Luke C Govers
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | | | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Isaacson D, Shen J, Overland M, Li Y, Sinclair A, Cao M, McCreedy D, Calvert M, McDevitt T, Cunha GR, Baskin L. Three-dimensional imaging of the developing human fetal urogenital-genital tract: Indifferent stage to male and female differentiation. Differentiation 2018; 103:14-23. [PMID: 30262218 DOI: 10.1016/j.diff.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
Recent studies in our lab have utilized three imaging techniques to visualize the developing human fetal urogenital tract in three dimensions: optical projection tomography, scanning electron microscopy and lightsheet fluorescence microscopy. We have applied these technologies to examine changes in morphology and differential gene expression in developing human external genital specimens from the ambisexual stage (<9 weeks fetal age) to well-differentiated male and female organs (>13 weeks fetal age). This work outlines the history and function of each of these three imaging modalities, our methods to prepare specimens for each and the novel findings we have produced thus far. We believe the images in this paper of human fetal urogenital organs produced using lightsheet fluorescence microscopy are the first published to date.
Collapse
Affiliation(s)
- Dylan Isaacson
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Overland
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Meredith Calvert
- J. David Gladstone Institutes, San Francisco, CA, USA; Histology and Light Microscopy Core, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Todd McDevitt
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Division of Pediatric Urology, University of California San Francisco Benioff Children's Hospital, 550 16th St, 5th Floor, Mission Hall Pediatric Urology, San Francisco, CA 94158, USA.
| |
Collapse
|
11
|
Cunha GR, Baskin L. Development of human male and female urogenital tracts. Differentiation 2018; 103:1-4. [DOI: 10.1016/j.diff.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 11/28/2022]
|
12
|
Cunha GR, Vezina CM, Isaacson D, Ricke WA, Timms BG, Cao M, Franco O, Baskin LS. Development of the human prostate. Differentiation 2018; 103:24-45. [PMID: 30224091 PMCID: PMC6234090 DOI: 10.1016/j.diff.2018.08.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
This paper provides a detailed compilation of human prostatic development that includes human fetal prostatic gross anatomy, histology, and ontogeny of selected epithelial and mesenchymal differentiation markers and signaling molecules throughout the stages of human prostatic development: (a) pre-bud urogenital sinus (UGS), (b) emergence of solid prostatic epithelial buds from urogenital sinus epithelium (UGE), (c) bud elongation and branching, (d) canalization of the solid epithelial cords, (e) differentiation of luminal and basal epithelial cells, and (f) secretory cytodifferentiation. Additionally, we describe the use of xenografts to assess the actions of androgens and estrogens on human fetal prostatic development. In this regard, we report a new model of de novo DHT-induction of prostatic development from xenografts of human fetal female urethras, which emphasizes the utility of the xenograft approach for investigation of initiation of human prostatic development. These studies raise the possibility of molecular mechanistic studies on human prostatic development through the use of tissue recombinants composed of mutant mouse UGM combined with human fetal prostatic epithelium. Our compilation of human prostatic developmental processes is likely to advance our understanding of the pathogenesis of benign prostatic hyperplasia and prostate cancer as the neoformation of ductal-acinar architecture during normal development is shared during the pathogenesis of benign prostatic hyperplasia and prostate cancer.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States.
| | - Chad M Vezina
- School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Dylan Isaacson
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - William A Ricke
- Department of Urology, University of Wisconsin, Madison, WI 53705, United States
| | - Barry G Timms
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| | - Omar Franco
- Department of Surgery, North Shore University Health System, 1001 University Place, Evanston, IL 60201, United States
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA 94143, United States
| |
Collapse
|
13
|
Liu X, Liu G, Shen J, Yue A, Isaacson D, Sinclair A, Cao M, Liaw A, Cunha GR, Baskin L. Human glans and preputial development. Differentiation 2018; 103:86-99. [PMID: 30245194 PMCID: PMC6234068 DOI: 10.1016/j.diff.2018.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/30/2023]
Abstract
The urethra within the human penile shaft develops via (1) an "Opening Zipper" that facilitates distal canalization of the solid urethral plate to form a wide urethral groove and (2) a "Closing Zipper" that facilitates fusion of the epithelial surfaces of the urethral folds. Herein, we extend our knowledge by describing formation of the human urethra within the glans penis as well as development of the prepuce. Forty-eight normal human fetal penile specimens were examined using scanning electron microscopy and optical projection tomography. Serial histologic sections were evaluated for morphology and immunohistochemical localization for epithelial differentiation markers: Cytokeratins 6, 7, 10, FoxA1, uroplakin and the androgen receptor. As the closing zipper completes fusion of the urethral folds within the penile shaft to form a tubular urethra (~ 13 weeks), canalization of the urethral plate continues in proximal to distal fashion into the glans penis to directly form the urethra within the glans without forming an open urethral groove. Initially, the urethral plate is attached ventrally to the epidermis via an epithelial seam, which is remodeled and eliminated, thus establishing mesenchymal confluence ventral to the glanular urethra. The morphogenetic remodeling involves the strategic expression of cytokeratin 7, FoxA1 and uroplakin in endodermal epithelial cells as the tubular glanular urethra forms. The most ventral epithelial cells of the urethral plate are pinched off from the glanular urethra and are reabsorbed into the epidermis ultimately losing expression of their markers, a process undoubtedly regulated by androgens. The prepuce initially forms on the dorsal aspect of the glans at approximately 12 weeks of gestation. After sequential proximal to distal remodeling of the ventral urethral plate along the ventral aspect of glans, the prepuce of epidermal origin fuses in the ventral midline.
Collapse
|
14
|
Baskin L, Shen J, Sinclair A, Cao M, Liu X, Liu G, Isaacson D, Overland M, Li Y, Cunha GR. Development of the human penis and clitoris. Differentiation 2018; 103:74-85. [PMID: 30249413 DOI: 10.1016/j.diff.2018.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
The human penis and clitoris develop from the ambisexual genital tubercle. To compare and contrast the development of human penis and clitoris, we used macroscopic photography, optical projection tomography, light sheet microscopy, scanning electron microscopy, histology and immunohistochemistry. The human genital tubercle differentiates into a penis under the influence of androgens forming a tubular urethra that develops by canalization of the urethral plate to form a wide diamond-shaped urethral groove (opening zipper) whose edges (urethral folds) fuse in the midline (closing zipper). In contrast, in females, without the influence of androgens, the vestibular plate (homologue of the urethral plate) undergoes canalization to form a wide vestibular groove whose edges (vestibular folds) remain unfused, ultimately forming the labia minora defining the vaginal vestibule. The neurovascular anatomy is similar in both the developing human penis and clitoris and is the key to successful surgical reconstructions.
Collapse
|