1
|
Mulé S, Kharrat R, Zerbib P, Massire A, Nickel MD, Ambarki K, Reizine E, Baranes L, Zegai B, Pigneur F, Kobeiter H, Luciani A. Fast T2-weighted liver MRI: Image quality and solid focal lesions conspicuity using a deep learning accelerated single breath-hold HASTE fat-suppressed sequence. Diagn Interv Imaging 2022; 103:479-485. [PMID: 35597761 DOI: 10.1016/j.diii.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Acceleration of MRI acquisitions and especially of T2-weighted sequences is essential to reduce the duration of MRI examinations but also kinetic artifacts in liver imaging. The purpose of this study was to compare the acquisition time and the image quality of a single-shot fat-suppressed turbo spin-echo (TSE) T2-weighted sequence with deep learning reconstruction (HASTEDL) with that of a fat-suppressed T2-weighted BLADE TSE sequence in patients with focal liver lesions. MATERIALS AND METHODS Ninety-five patients (52 men, 43 women; mean age: 61 ± 14 [SD]; age range: 28-87 years) with 42 focal liver lesions (17 hepatocellular carcinomas, 10 sarcoidosis lesions, 9 myeloma lesions, 3 liver metastases and 3 focal nodular hyperplasias) who underwent liver MRI at 1.5 T including HASTEDL and BLADE sequences were retrospectively included. Overall image quality, noise level in the liver, lesion conspicuity and sharpness of liver lesion contours were assessed by two independent readers. Liver signal-to-noise ratio (SNR) and lesion contrast-to-noise ratio (CNR) were measured and compared between the two sequences, as well as the mean duration of the sequences (Student t-test or Wilcoxon test for paired data). RESULTS Median overall quality on HASTEDL images (3; IQR: 3, 3) was significantly greater than that on BLADE images (2; IQR: 1, 3) (P < 0.001). Median noise level in the liver on HASTEDL images (0; IQR: 0, 0.5) was significantly lower than that on BLADE images (1; IQR: 1, 2) (P < 0.001). On HASTEDL images, mean liver SNR (107.3 ± 39.7 [SD]) and mean focal liver lesion CNR (87.0 ± 76.6 [SD]) were significantly greater than those on BLADE images (67.1 ± 23.8 [SD], P < 0.001 and 48.6 ± 43.9 [SD], P = 0.027, respectively). Acquisition time was significantly shorter with the HASTEDL sequence (18 ± [0] s; range: 18-18 s) compared to BLADE sequence (152 ± 47 [SD] s; range: 87-263 s) (P < 0.001). CONCLUSION By comparison with the BLADE sequence, HASTEDL sequence significantly reduces acquisition time while improving image quality, liver SNR and focal liver lesions CNR.
Collapse
Affiliation(s)
- Sébastien Mulé
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France; Faculté de Santé, Université Paris Est Créteil, Créteil 94000, France; INSERM IMRB, U 955, Equipe 18, Créteil 94000, France.
| | - Rym Kharrat
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France
| | - Pierre Zerbib
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France
| | | | | | | | - Edouard Reizine
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France; Faculté de Santé, Université Paris Est Créteil, Créteil 94000, France; INSERM IMRB, U 955, Equipe 18, Créteil 94000, France
| | - Laurence Baranes
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France
| | - Benhalima Zegai
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France
| | - Frederic Pigneur
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France
| | - Hicham Kobeiter
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France; Faculté de Santé, Université Paris Est Créteil, Créteil 94000, France
| | - Alain Luciani
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, Créteil 94000, France; Faculté de Santé, Université Paris Est Créteil, Créteil 94000, France; INSERM IMRB, U 955, Equipe 18, Créteil 94000, France
| |
Collapse
|
2
|
Görgec B, Hansen I, Kemmerich G, Syversveen T, Abu Hilal M, Belt EJT, Bisschops RHC, Bollen TL, Bosscha K, Burgmans MC, Cappendijk V, De Boer MT, D'Hondt M, Edwin B, Gielkens H, Grünhagen DJ, Gillardin P, Gobardhan PD, Hartgrink HH, Horsthuis K, Kok NFM, Kint PAM, Kruimer JWH, Leclercq WKG, Lips DJ, Lutin B, Maas M, Marsman HA, Morone M, Pennings JP, Peringa J, Te Riele WW, Vermaas M, Wicherts D, Willemssen FEJA, Zonderhuis BM, Bossuyt PMM, Swijnenburg RJ, Fretland ÅA, Verhoef C, Besselink MG, Stoker J. Clinical added value of MRI to CT in patients scheduled for local therapy of colorectal liver metastases (CAMINO): study protocol for an international multicentre prospective diagnostic accuracy study. BMC Cancer 2021; 21:1116. [PMID: 34663243 PMCID: PMC8524830 DOI: 10.1186/s12885-021-08833-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/04/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Abdominal computed tomography (CT) is the standard imaging method for patients with suspected colorectal liver metastases (CRLM) in the diagnostic workup for surgery or thermal ablation. Diffusion-weighted and gadoxetic-acid-enhanced magnetic resonance imaging (MRI) of the liver is increasingly used to improve the detection rate and characterization of liver lesions. MRI is superior in detection and characterization of CRLM as compared to CT. However, it is unknown how MRI actually impacts patient management. The primary aim of the CAMINO study is to evaluate whether MRI has sufficient clinical added value to be routinely added to CT in the staging of CRLM. The secondary objective is to identify subgroups who benefit the most from additional MRI. METHODS In this international multicentre prospective incremental diagnostic accuracy study, 298 patients with primary or recurrent CRLM scheduled for curative liver resection or thermal ablation based on CT staging will be enrolled from 17 centres across the Netherlands, Belgium, Norway, and Italy. All study participants will undergo CT and diffusion-weighted and gadoxetic-acid enhanced MRI prior to local therapy. The local multidisciplinary team will provide two local therapy plans: first, based on CT-staging and second, based on both CT and MRI. The primary outcome measure is the proportion of clinically significant CRLM (CS-CRLM) detected by MRI not visible on CT. CS-CRLM are defined as liver lesions leading to a change in local therapeutical management. If MRI detects new CRLM in segments which would have been resected in the original operative plan, these are not considered CS-CRLM. It is hypothesized that MRI will lead to the detection of CS-CRLM in ≥10% of patients which is considered the minimal clinically important difference. Furthermore, a prediction model will be developed using multivariable logistic regression modelling to evaluate the predictive value of patient, tumor and procedural variables on finding CS-CRLM on MRI. DISCUSSION The CAMINO study will clarify the clinical added value of MRI to CT in patients with CRLM scheduled for local therapy. This study will provide the evidence required for the implementation of additional MRI in the routine work-up of patients with primary and recurrent CRLM for local therapy. TRIAL REGISTRATION The CAMINO study was registered in the Netherlands National Trial Register under number NL8039 on September 20th 2019.
Collapse
Affiliation(s)
- B Görgec
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - I Hansen
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - G Kemmerich
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - T Syversveen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - M Abu Hilal
- Department of Surgery, Poliambulanza Foundation Hospital, Brescia, Italy
| | - E J T Belt
- Department of Surgery, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - R H C Bisschops
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - T L Bollen
- Department of Radiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - K Bosscha
- Department of Surgery, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - M C Burgmans
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Cappendijk
- Department of Radiology, Jeroen Bosch Hospital, 's-Hertogenbosch, The Netherlands
| | - M T De Boer
- Department of Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - M D'Hondt
- Department of Digestive and Hepatobiliary/Pancreatic Surgery, Groeninge Hospital, Kortrijk, Belgium
| | - B Edwin
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - H Gielkens
- Department of Radiology, Medical Spectrum Twente, Enschede, The Netherlands
| | - D J Grünhagen
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Gillardin
- Department of Radiology, Hospital Oost-Limburg, Genk, Belgium
| | - P D Gobardhan
- Department of Surgery, Amphia Hospital, Breda, The Netherlands
| | - H H Hartgrink
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - K Horsthuis
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - N F M Kok
- Department of Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - P A M Kint
- Department of Radiology, Amphia Hospital, Breda, The Netherlands
| | - J W H Kruimer
- Department of Radiology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - W K G Leclercq
- Department of Surgery, Máxima Medical Centre, Veldhoven, The Netherlands
| | - D J Lips
- Department of Surgery, Medical Spectrum Twente, Enschede, The Netherlands
| | - B Lutin
- Department of Radiology, Groeninge Hospital, Kortrijk, Belgium
| | - M Maas
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - H A Marsman
- Department of Surgery, OLVG, Amsterdam, The Netherlands
| | - M Morone
- Department of Radiology, Poliambulanza Foundation Hospital, Brescia, Italy
| | - J P Pennings
- Department of Radiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - J Peringa
- Department of Radiology, OLVG, Amsterdam, The Netherlands
| | - W W Te Riele
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - M Vermaas
- Department of Surgery, IJsselland Hospital, Capelle aan den IJssel, The Netherlands
| | - D Wicherts
- Department of Surgery, Hospital Oost-Limburg, Genk, Belgium
| | - F E J A Willemssen
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - B M Zonderhuis
- Department of Surgery, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - P M M Bossuyt
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - R J Swijnenburg
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Å A Fretland
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - C Verhoef
- Department of Surgical Oncology, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
4
|
Vogl TJ, Martin SS, Johnson AA, Haas Y. Evaluation of MR elastography as a response parameter for transarterial chemoembolization of colorectal liver metastases. Eur Radiol 2020; 30:3900-3907. [PMID: 32086582 PMCID: PMC7305258 DOI: 10.1007/s00330-020-06706-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate magnetic resonance elastography (MRE) as a response parameter in patients who received transarterial chemoembolization (TACE) for the treatment of colorectal liver metastases. MATERIALS AND METHODS Forty-two patients (29 male patients; mean age, 61.5 years; range, 41-84 years) with repeated TACE therapy of colorectal liver metastases underwent on average 2 repetitive magnetic resonance imaging (MRI) and MRE exams in 4- to 6-week intervals using a 1.5-T scanner. MRE-based liver stiffness measurements were performed in normal liver parenchyma and in metastatic lesions. Moreover, the size of the liver metastases was assessed during treatment and compared with the results of the MRE analysis. RESULTS Liver metastases showed a significantly higher degree of stiffness compared with the normal liver parenchyma (p < 0.001). However, only a weak correlation was found between the lesion size and stiffness (r = - 0.32, p = 0.1). MRE analysis revealed an increase in stiffness of the colorectal liver metastases from 4.4 to 7.1 kPa after three cycles of TACE (p < 0.001). Also, the mean size of the metastases decreased from 17.0 to 11.3 cm2 (p < 0.001). Finally, the entire liver stiffness increased from 2.9 to 3.1 kPa over the three cycles of TACE therapy. CONCLUSION In conclusion, MRE showed a significant change in stiffness and size of liver metastases. Therefore, MRE may provide an added value for an evaluation of treatment response in patients with colorectal liver metastases undergoing TACE. KEY POINTS • MRE showed an increase in stiffness of the colorectal liver metastases during TACE therapy. • Liver metastases showed a significantly higher degree of stiffness compared with the normal liver parenchyma. • However, only a weak correlation was found between the lesion size and stiffness.
Collapse
Affiliation(s)
- Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Addison A Johnson
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Yannick Haas
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Van Cutsem E, Verheul HMW, Flamen P, Rougier P, Beets-Tan R, Glynne-Jones R, Seufferlein T. Imaging in Colorectal Cancer: Progress and Challenges for the Clinicians. Cancers (Basel) 2016; 8:cancers8090081. [PMID: 27589804 PMCID: PMC5040983 DOI: 10.3390/cancers8090081] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023] Open
Abstract
The use of imaging in colorectal cancer (CRC) has significantly evolved over the last twenty years, establishing important roles in surveillance, diagnosis, staging, treatment selection and follow up. The range of modalities has broadened with the development of novel tracer and contrast agents, and the fusion of technologies such as positron emission tomography (PET) and computed tomography (CT). Traditionally, the most widely used modality for assessing treatment response in metastasised colon and rectal tumours is CT, combined with use of the RECIST guidelines. However, a growing body of evidence suggests that tumour size does not always adequately correlate with clinical outcomes. Magnetic resonance imaging (MRI) is a more versatile technique and dynamic contrast-enhanced (DCE)-MRI and diffusion-weighted (DW)-MRI may be used to evaluate biological and functional effects of treatment. Integrated fluorodeoxyglucose (FDG)-PET/CT combines metabolic and anatomical imaging to improve sensitivity and specificity of tumour detection, and a number of studies have demonstrated improved diagnostic accuracy of this modality in a variety of tumour types, including CRC. These developments have enabled the progression of treatment strategies in rectal cancer and improved the detection of hepatic metastatic disease, yet are not without their limitations. These include technical, economical and logistical challenges, along with a lack of robust evidence for standardisation and formal guidance. In order to successfully apply these novel imaging techniques and utilise their benefit to provide truly personalised cancer care, advances need to be clinically realised in a routine and robust manner.
Collapse
Affiliation(s)
- Eric Van Cutsem
- Department of Gastroenterology/Digestive Oncology, University Hospitals Gasthuisberg Leuven and KU Leuven, 3000 Leuven, Belgium.
| | - Henk M W Verheul
- Division of Medical Oncology, VU University Medical Centre, 1081 HV Amsterdam, The Netherlands.
| | - Patrik Flamen
- Nuclear Medicine Imaging and Therapy Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium.
| | - Philippe Rougier
- Gastroenterology and Digestive Oncology Department, European Hospital, Georges Pompidou, 75015 Paris, France.
| | - Regina Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | - Rob Glynne-Jones
- Department of Medical Oncology, Mount Vernon Centre for Cancer Treatment, HA6 2RN Middlesex, UK.
| | - Thomas Seufferlein
- Clinic of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany.
| |
Collapse
|