1
|
Marcelin C, Crombé A, Jambon E, Robert G, Bladou F, Bour P, Faller T, Ozenne V, Grenier N, Quesson B. Real-time multislice MR-thermometry of the prostate: Assessment of feasibility, accuracy and sources of biases in patients. Diagn Interv Imaging 2025; 106:183-191. [PMID: 39706734 DOI: 10.1016/j.diii.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE The primary purpose of this study was to evaluate the accuracy of an MR-thermometry sequence for monitoring prostate temperature. The secondary purposes were to analyze clinical and technical factors that may affect accuracy and testing the method in a realistic setting, with MR-guided Laser ablation on an ex vivo muscle sample. MATERIALS AND METHODS An ex vivo muscle sample was subjected to Laser ablation while using a two-dimensional multislice segmented echo planar imaging sequence for MR thermometry. The MR thermometry measurements were compared with invasive sensor temperature readings to assess accuracy. Subsequently, 56 men with a median age of 70 years (age range: 53-84 years) who underwent prostate MRI examinations at 1.5- (n = 27) or 3 T (n = 24) were prospectively included. For each patient, the proportion of 'noisy voxels' (i.e., those with a temporal standard deviation of temperature [SD(T)] > 2 °C) in the prostate was calculated. The impact of clinical and technical factors on the proportion of noisy voxels was also examined. RESULTS MR-thermometry showed excellent correlation with invasive sensors during MR-guided Laser ablation on the ex vivo muscle sample. The median proportion of noisy voxels per patient in the entire cohort was 1 % (Q1, 0.2; Q3, 4.9; range: 0-90.4). No significant differences in median proportion of noisy voxels were observed between examinations performed at 1.5 T and those at 3 T (P = 0.89 before and after adjustment). No clinical or technical factors significantly influenced the proportion of noisy voxels. CONCLUSION Two-dimensional real time multislice MR-thermometry is feasible and accurate for monitoring prostate temperature in patients.
Collapse
Affiliation(s)
- Clément Marcelin
- CHU de Bordeaux, Service d'Imagerie Diagnostique et Thérapeutique de l'Adulte, INSERM, U 1312, 33000 Bordeaux, France; Univ. Bordeaux, INSERM, BRIC, U 1312, 33000 Bordeaux, France.
| | - Amandine Crombé
- CHU de Bordeaux, Service d'Imagerie Diagnostique et Thérapeutique de l'Adulte, INSERM, U 1312, 33000 Bordeaux, France; Univ. Bordeaux, INSERM, BRIC, U 1312, 33000 Bordeaux, France
| | - Eva Jambon
- CHU de Bordeaux, Service d'Imagerie Diagnostique et Thérapeutique de l'Adulte, INSERM, U 1312, 33000 Bordeaux, France
| | - Grégoire Robert
- CHU de Bordeaux, Service de Chirurgie Urologique, INSERM, U 1312, 33000 Bordeaux, France
| | - Franck Bladou
- CHU de Bordeaux, Service de Chirurgie Urologique, INSERM, U 1312, 33000 Bordeaux, France
| | | | | | - Valéry Ozenne
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, IHU Liryc, 33000 Bordeaux, France
| | - Nicolas Grenier
- CHU de Bordeaux, Service d'Imagerie Diagnostique et Thérapeutique de l'Adulte, INSERM, U 1312, 33000 Bordeaux, France
| | - Bruno Quesson
- Univ. Bordeaux, CNRS, CRMSB, UMR 5536, IHU Liryc, 33000 Bordeaux, France
| |
Collapse
|
2
|
Couchoux T, Jaouen T, Melodelima-Gonindard C, Baseilhac P, Branchu A, Arfi N, Aziza R, Barry Delongchamps N, Bladou F, Bratan F, Brunelle S, Colin P, Correas JM, Cornud F, Descotes JL, Eschwege P, Fiard G, Guillaume B, Grange R, Grenier N, Lang H, Lefèvre F, Malavaud B, Marcelin C, Moldovan PC, Mottet N, Mozer P, Potiron E, Portalez D, Puech P, Renard-Penna R, Roumiguié M, Roy C, Timsit MO, Tricard T, Villers A, Walz J, Debeer S, Mansuy A, Mège-Lechevallier F, Decaussin-Petrucci M, Badet L, Colombel M, Ruffion A, Crouzet S, Rabilloud M, Souchon R, Rouvière O. Performance of a Region of Interest-based Algorithm in Diagnosing International Society of Urological Pathology Grade Group ≥2 Prostate Cancer on the MRI-FIRST Database-CAD-FIRST Study. Eur Urol Oncol 2024; 7:1113-1122. [PMID: 38493072 DOI: 10.1016/j.euo.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Prostate multiparametric magnetic resonance imaging (MRI) shows high sensitivity for International Society of Urological Pathology grade group (GG) ≥2 cancers. Many artificial intelligence algorithms have shown promising results in diagnosing clinically significant prostate cancer on MRI. To assess a region-of-interest-based machine-learning algorithm aimed at characterising GG ≥2 prostate cancer on multiparametric MRI. METHODS The lesions targeted at biopsy in the MRI-FIRST dataset were retrospectively delineated and assessed using a previously developed algorithm. The Prostate Imaging-Reporting and Data System version 2 (PI-RADSv2) score assigned prospectively before biopsy and the algorithm score calculated retrospectively in the regions of interest were compared for diagnosing GG ≥2 cancer, using the areas under the curve (AUCs), and sensitivities and specificities calculated with predefined thresholds (PIRADSv2 scores ≥3 and ≥4; algorithm scores yielding 90% sensitivity in the training database). Ten predefined biopsy strategies were assessed retrospectively. KEY FINDINGS AND LIMITATIONS After excluding 19 patients, we analysed 232 patients imaged on 16 different scanners; 85 had GG ≥2 cancer at biopsy. At patient level, AUCs of the algorithm and PI-RADSv2 were 77% (95% confidence interval [CI]: 70-82) and 80% (CI: 74-85; p = 0.36), respectively. The algorithm's sensitivity and specificity were 86% (CI: 76-93) and 65% (CI: 54-73), respectively. PI-RADSv2 sensitivities and specificities were 95% (CI: 89-100) and 38% (CI: 26-47), and 89% (CI: 79-96) and 47% (CI: 35-57) for thresholds of ≥3 and ≥4, respectively. Using the PI-RADSv2 score to trigger a biopsy would have avoided 26-34% of biopsies while missing 5-11% of GG ≥2 cancers. Combining prostate-specific antigen density, the PI-RADSv2 and algorithm's scores would have avoided 44-47% of biopsies while missing 6-9% of GG ≥2 cancers. Limitations include the retrospective nature of the study and a lack of PI-RADS version 2.1 assessment. CONCLUSIONS AND CLINICAL IMPLICATIONS The algorithm provided robust results in the multicentre multiscanner MRI-FIRST database and could help select patients for biopsy. PATIENT SUMMARY An artificial intelligence-based algorithm aimed at diagnosing aggressive cancers on prostate magnetic resonance imaging showed results similar to expert human assessment in a prospectively acquired multicentre test database.
Collapse
Affiliation(s)
- Thibaut Couchoux
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | | | - Pierre Baseilhac
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Arthur Branchu
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Arfi
- Department of Urology, Hôpital Saint Joseph Saint Luc, Lyon, France
| | - Richard Aziza
- Department of Radiology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | - Franck Bladou
- Department of Urology, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Flavie Bratan
- Department of Diagnostic and Interventional Imaging, Hôpital Saint Joseph Saint Luc, Lyon, France
| | - Serge Brunelle
- Department of Radiology and Medical Imaging, Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Pierre Colin
- Department of Urology, Hôpital privé La Louvrière, Lille, France
| | - Jean-Michel Correas
- Department of Radiology, Hôpital Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - François Cornud
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jean-Luc Descotes
- Université Grenoble Alpes, Grenoble, France; Department of Urology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Pascal Eschwege
- Department of Urology, Centre Hospitalier Régional et Universitaire de Nancy, Vandoeuvre, France
| | - Gaelle Fiard
- Université Grenoble Alpes, Grenoble, France; Department of Urology, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Bénédicte Guillaume
- Department of Radiology, Centre Hospitalier Universitaire de Grenoble, Université Grenoble Apes, Grenoble, France
| | - Rémi Grange
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Nicolas Grenier
- Department of Radiology, Centre Hospitalier Universitaire de Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | - Hervé Lang
- Department of Urology, Centre Hospitalier Universitaire de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Frédéric Lefèvre
- Department of Radiology, Centre Hospitalier Régional et Universitaire de Nancy, Vandoeuvre, France
| | - Bernard Malavaud
- Department of Urology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Clément Marcelin
- Department of Radiology, Centre Hospitalier Universitaire de Bordeaux, Hôpital Pellegrin, Bordeaux, France
| | - Paul C Moldovan
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Mottet
- Department of Urology, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France
| | - Pierre Mozer
- Department of Urology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Eric Potiron
- Clinique Urologique de Nantes, Saint-Herblain, France
| | - Daniel Portalez
- Department of Radiology, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Philippe Puech
- Department of Radiology, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Raphaele Renard-Penna
- Department of Radiology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France; GRC no 5, ONCOTYPE-URO, Sorbonne Universités, Paris, France
| | - Matthieu Roumiguié
- Department of Urology, Toulouse-Rangueil University Hospital, Toulouse France
| | - Catherine Roy
- Department of Radiology B, Centre Hospitalier Universitaire de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Marc-Olivier Timsit
- Department of Urology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Thibault Tricard
- Department of Urology, Centre Hospitalier Universitaire de Strasbourg, Nouvel Hôpital Civil, Strasbourg, France
| | - Arnauld Villers
- Department of Urology, Univ. Lille, CHU Lille, Lille, France
| | - Jochen Walz
- Department of Urology, Institut Paoli-Calmettes Cancer Center, Marseille, France
| | - Sabine Debeer
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Adeline Mansuy
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | | | - Lionel Badet
- Department of Urology, University Hospital of Saint-Etienne, Saint-Priest-en-Jarez, France; Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Université Lyon 1, Université de Lyon, Lyon, France
| | - Marc Colombel
- Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Université Lyon 1, Université de Lyon, Lyon, France
| | - Alain Ruffion
- Université Lyon 1, Université de Lyon, Lyon, France; Department of Urology, Centre Hospitalier Lyon Sud, Hospices Cibvils de Lyon, Pierre-Bénite, France
| | - Sébastien Crouzet
- LabTau, INSERM Unit 1032, Lyon, France; Department of Urology, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Université Lyon 1, Université de Lyon, Lyon, France
| | - Muriel Rabilloud
- Université Lyon 1, Université de Lyon, Lyon, France; Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Hospices Civils de Lyon, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France
| | | | - Olivier Rouvière
- Department of Urinary and Vascular Imaging, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France; LabTau, INSERM Unit 1032, Lyon, France; Université Lyon 1, Université de Lyon, Lyon, France.
| |
Collapse
|
3
|
Antolin A, Roson N, Mast R, Arce J, Almodovar R, Cortada R, Maceda A, Escobar M, Trilla E, Morote J. The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review. Cancers (Basel) 2024; 16:2951. [PMID: 39272809 PMCID: PMC11393977 DOI: 10.3390/cancers16172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Early detection of clinically significant prostate cancer (csPCa) has substantially improved with the latest PI-RADS versions. However, there is still an overdiagnosis of indolent lesions (iPCa), and radiomics has emerged as a potential solution. The aim of this systematic review is to evaluate the role of handcrafted and deep radiomics in differentiating lesions with csPCa from those with iPCa and benign lesions on prostate MRI assessed with PI-RADS v2 and/or 2.1. The literature search was conducted in PubMed, Cochrane, and Web of Science databases to select relevant studies. Quality assessment was carried out with Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2), Radiomic Quality Score (RQS), and Checklist for Artificial Intelligence in Medical Imaging (CLAIM) tools. A total of 14 studies were deemed as relevant from 411 publications. The results highlighted a good performance of handcrafted and deep radiomics methods for csPCa detection, but without significant differences compared to radiologists (PI-RADS) in the few studies in which it was assessed. Moreover, heterogeneity and restrictions were found in the studies and quality analysis, which might induce bias. Future studies should tackle these problems to encourage clinical applicability. Prospective studies and comparison with radiologists (PI-RADS) are needed to better understand its potential.
Collapse
Affiliation(s)
- Andreu Antolin
- Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Nuria Roson
- Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Richard Mast
- Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Javier Arce
- Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ramon Almodovar
- Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Roger Cortada
- Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | | | - Manuel Escobar
- Department of Radiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Enrique Trilla
- Department of Surgery, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Urology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Juan Morote
- Department of Surgery, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Urology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| |
Collapse
|
4
|
Mukherjee S, Papadopoulos D, Chari N, Ellis D, Charitopoulos K, Charitopoulos I, Bishara S. High-grade prostate cancer demonstrates preferential growth in the cranio-caudal axis and provides discrimination of disease grade in an MRI parametric model. Br J Radiol 2024; 97:574-582. [PMID: 38276882 PMCID: PMC11027337 DOI: 10.1093/bjr/tqad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVES To determine if multiparametric MRI prostate cancer (PC) lesion dimensions in different axes could distinguish between PC, grade group (GG) >2, and GG >3 on targeted transperineal biopsy and create and validate a predictive model on a separate cohort. METHODS The maximum transverse, anterio-posterior, and cranio-caudal lesion dimensions were assessed against the presence of any cancer, GG >2, and GG >3 on biopsy by binary logistic regression. The optimum multivariate models were evaluated on a separate cohort. RESULTS One hundred and ninety-three lesions from 148 patients were evaluated. Increased lesion volume, Prostate Specific Antigen (PSA), Prostate Imaging Reporting and Data System score, and decreased Apparent Diffusion Coefficient (ADC) were associated with increased GG (P < .001). The ratio of cranio-caudal to anterior-posterior lesion dimension increased from 1.20 (95% CI, 1.14-1.25) for GG ≤ 3 to 1.43 (95% CI, 1.28-1.57) for GG > 3 (P = .0022). The cranio-caudal dimension of the lesion was the strongest predictor of GG >3 (P = .000, area under the receiver operator characteristic curve [AUC] = 0.81). The best multivariate models had an AUC of 0.84 for cancer, 0.88 for GG > 2, and 0.89 for GG > 3. These models were evaluated on a separate cohort of 40 patients with 61 lesions. They demonstrated an AUC, sensitivity, and specificity of 0.82, 82.3%, and 55.5%, respectively, for the detection of cancer. For GG > 2, the models achieved an AUC of 0.84, sensitivity of 91.7%, and specificity of 69.4%. Additionally, for GG > 3, the models showed an AUC of 0.92, sensitivity of 88.9%, and specificity of 98.1%. CONCLUSIONS Cranio-caudal lesion dimension when used in conjunction with other parameters can create a model superior to the Prostate Imaging Reporting and Data Systems score in predicting cancer. ADVANCES IN KNOWLEDGE Higher-grade PC has a propensity to grow in the cranio-caudal direction, and this could be factored into MRI-based predictive models of prostate biopsy grade.
Collapse
Affiliation(s)
- Subhabrata Mukherjee
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| | - Dimitrios Papadopoulos
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| | - Natasha Chari
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| | - David Ellis
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| | - Konstantinos Charitopoulos
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| | - Ivo Charitopoulos
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| | - Samuel Bishara
- Department of Urology, West Middlesex Hospital, Chelsea and Westminster NHS Trust, Twickenham Road, London, TW7 6AF, United Kingdom
| |
Collapse
|
5
|
Feretzakis G, Juliebø-Jones P, Tsaturyan A, Sener TE, Verykios VS, Karapiperis D, Bellos T, Katsimperis S, Angelopoulos P, Varkarakis I, Skolarikos A, Somani B, Tzelves L. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. Cancers (Basel) 2024; 16:810. [PMID: 38398201 PMCID: PMC10886599 DOI: 10.3390/cancers16040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review critically examines the transformative impact of artificial intelligence (AI) and radiomics in the diagnosis, prognosis, and management of bladder, kidney, and prostate cancers. These cutting-edge technologies are revolutionizing the landscape of cancer care, enhancing both precision and personalization in medical treatments. Our review provides an in-depth analysis of the latest advancements in AI and radiomics, with a specific focus on their roles in urological oncology. We discuss how AI and radiomics have notably improved the accuracy of diagnosis and staging in bladder cancer, especially through advanced imaging techniques like multiparametric MRI (mpMRI) and CT scans. These tools are pivotal in assessing muscle invasiveness and pathological grades, critical elements in formulating treatment plans. In the realm of kidney cancer, AI and radiomics aid in distinguishing between renal cell carcinoma (RCC) subtypes and grades. The integration of radiogenomics offers a comprehensive view of disease biology, leading to tailored therapeutic approaches. Prostate cancer diagnosis and management have also seen substantial benefits from these technologies. AI-enhanced MRI has significantly improved tumor detection and localization, thereby aiding in more effective treatment planning. The review also addresses the challenges in integrating AI and radiomics into clinical practice, such as the need for standardization, ensuring data quality, and overcoming the "black box" nature of AI. We emphasize the importance of multicentric collaborations and extensive studies to enhance the applicability and generalizability of these technologies in diverse clinical settings. In conclusion, AI and radiomics represent a major paradigm shift in oncology, offering more precise, personalized, and patient-centric approaches to cancer care. While their potential to improve diagnostic accuracy, patient outcomes, and our understanding of cancer biology is profound, challenges in clinical integration and application persist. We advocate for continued research and development in AI and radiomics, underscoring the need to address existing limitations to fully leverage their capabilities in the field of oncology.
Collapse
Affiliation(s)
- Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (V.S.V.)
| | - Patrick Juliebø-Jones
- Department of Urology, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical, Medicine University of Bergen, 5021 Bergen, Norway
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
| | - Arman Tsaturyan
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Department of Urology, Erebouni Medical Center, Yerevan 0087, Armenia
| | - Tarik Emre Sener
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Department of Urology, Marmara University School of Medicine, Istanbul 34854, Turkey
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 26335 Patras, Greece; (G.F.); (V.S.V.)
| | - Dimitrios Karapiperis
- School of Science and Technology, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Themistoklis Bellos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Stamatios Katsimperis
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Panagiotis Angelopoulos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Ioannis Varkarakis
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Andreas Skolarikos
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| | - Bhaskar Somani
- Department of Urology, University of Southampton, Southampton SO17 1BJ, UK;
| | - Lazaros Tzelves
- European Association of Urology, Young Academic Urologists, Urolithiasis Group, NL-6803 Arnhem, The Netherlands; (A.T.); (T.E.S.)
- Second Department of Urology, Sismanoglio Hospital, National and Kapodistrian University of Athens, 15126 Athens, Greece; (T.B.); (S.K.); (P.A.); (I.V.); (A.S.)
| |
Collapse
|
6
|
Molière S, Hamzaoui D, Granger B, Montagne S, Allera A, Ezziane M, Luzurier A, Quint R, Kalai M, Ayache N, Delingette H, Renard-Penna R. Reference standard for the evaluation of automatic segmentation algorithms: Quantification of inter observer variability of manual delineation of prostate contour on MRI. Diagn Interv Imaging 2024; 105:65-73. [PMID: 37822196 DOI: 10.1016/j.diii.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE The purpose of this study was to investigate the relationship between inter-reader variability in manual prostate contour segmentation on magnetic resonance imaging (MRI) examinations and determine the optimal number of readers required to establish a reliable reference standard. MATERIALS AND METHODS Seven radiologists with various experiences independently performed manual segmentation of the prostate contour (whole-gland [WG] and transition zone [TZ]) on 40 prostate MRI examinations obtained in 40 patients. Inter-reader variability in prostate contour delineations was estimated using standard metrics (Dice similarity coefficient [DSC], Hausdorff distance and volume-based metrics). The impact of the number of readers (from two to seven) on segmentation variability was assessed using pairwise metrics (consistency) and metrics with respect to a reference segmentation (conformity), obtained either with majority voting or simultaneous truth and performance level estimation (STAPLE) algorithm. RESULTS The average segmentation DSC for two readers in pairwise comparison was 0.919 for WG and 0.876 for TZ. Variability decreased with the number of readers: the interquartile ranges of the DSC were 0.076 (WG) / 0.021 (TZ) for configurations with two readers, 0.005 (WG) / 0.012 (TZ) for configurations with three readers, and 0.002 (WG) / 0.0037 (TZ) for configurations with six readers. The interquartile range decreased slightly faster between two and three readers than between three and six readers. When using consensus methods, variability often reached its minimum with three readers (with STAPLE, DSC = 0.96 [range: 0.945-0.971] for WG and DSC = 0.94 [range: 0.912-0.957] for TZ, and interquartile range was minimal for configurations with three readers. CONCLUSION The number of readers affects the inter-reader variability, in terms of inter-reader consistency and conformity to a reference. Variability is minimal for three readers, or three readers represent a tipping point in the variability evolution, with both pairwise-based metrics or metrics with respect to a reference. Accordingly, three readers may represent an optimal number to determine references for artificial intelligence applications.
Collapse
Affiliation(s)
- Sébastien Molière
- Department of Radiology, Hôpitaux Universitaire de Strasbourg, Hôpital de Hautepierre, 67200, Strasbourg, France; Breast and Thyroid Imaging Unit, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400, Illkirch, France.
| | - Dimitri Hamzaoui
- Inria, Epione Team, Sophia Antipolis, Université Côte d'Azur, 06902, Nice, France
| | - Benjamin Granger
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, IPLESP, AP-HP, Hôpital Pitié Salpêtrière, Département de Santé Publique, 75013, Paris, France
| | - Sarah Montagne
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France; Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France; GRC N° 5, Oncotype-Uro, Sorbonne Université, 75020, Paris, France
| | - Alexandre Allera
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Malek Ezziane
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Anna Luzurier
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Raphaelle Quint
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Mehdi Kalai
- Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
| | - Nicholas Ayache
- Department of Radiology, Hôpitaux Universitaire de Strasbourg, Hôpital de Hautepierre, 67200, Strasbourg, France
| | - Hervé Delingette
- Department of Radiology, Hôpitaux Universitaire de Strasbourg, Hôpital de Hautepierre, 67200, Strasbourg, France
| | - Raphaële Renard-Penna
- Department of Radiology, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020, Paris, France; Department of Radiology, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France; GRC N° 5, Oncotype-Uro, Sorbonne Université, 75020, Paris, France
| |
Collapse
|
7
|
Arber T, Jaouen T, Campoy S, Rabilloud M, Souchon R, Abbas F, Moldovan PC, Colombel M, Crouzet S, Ruffion A, Neuville P, Rouvière O. Zone-specific computer-aided diagnosis system aimed at characterizing ISUP ≥ 2 prostate cancers on multiparametric magnetic resonance images: evaluation in a cohort of patients on active surveillance. World J Urol 2023; 41:3527-3533. [PMID: 37845554 DOI: 10.1007/s00345-023-04643-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023] Open
Abstract
PURPOSE To assess a region-of-interest-based computer-assisted diagnosis system (CAD) in characterizing aggressive prostate cancer on magnetic resonance imaging (MRI) from patients under active surveillance (AS). METHODS A prospective biopsy database was retrospectively searched for patients under AS who underwent MRI and subsequent biopsy at our institution. MRI lesions targeted at baseline biopsy were retrospectively delineated to calculate the CAD score that was compared to the Prostate Imaging-Reporting and Data System (PI-RADS) version 2 score assigned at baseline biopsy. RESULTS 186 patients were selected. At baseline biopsy, 51 and 15 patients had International Society of Urological Pathology (ISUP) grade ≥ 2 and ≥ 3 cancer respectively. The CAD score had significantly higher specificity for ISUP ≥ 2 cancers (60% [95% confidence interval (CI): 51-68]) than the PI-RADS score (≥ 3 dichotomization: 24% [CI: 17-33], p = 0.0003; ≥ 4 dichotomization: 32% [CI: 24-40], p = 0.0003). It had significantly lower sensitivity than the PI-RADS ≥ 3 dichotomization (85% [CI: 74-92] versus 98% [CI: 91-100], p = 0.015) but not than the PI-RADS ≥ 4 dichotomization (94% [CI:85-98], p = 0.104). Combining CAD findings and PSA density could have avoided 47/184 (26%) baseline biopsies, while missing 3/51 (6%) ISUP 2 and no ISUP ≥ 3 cancers. Patients with baseline negative CAD findings and PSAd < 0.15 ng/mL2 who stayed on AS after baseline biopsy had a 9% (4/44) risk of being diagnosed with ISUP ≥ 2 cancer during a median follow-up of 41 months, as opposed to 24% (18/74) for the others. CONCLUSION The CAD could help define AS patients with low risk of aggressive cancer at baseline assessment and during subsequent follow-up.
Collapse
Affiliation(s)
- Théo Arber
- Department of Urology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | | | - Séphora Campoy
- Service de Biostatistique Et Bioinformatique, Hospices Civils de Lyon, Pôle Santé Publique, 69003, Lyon, France
- UMR 5558, Laboratoire de Biométrie Et Biologie Évolutive, CNRS, Équipe Biostatistique-Santé, 69100, Villeurbanne, France
| | - Muriel Rabilloud
- Service de Biostatistique Et Bioinformatique, Hospices Civils de Lyon, Pôle Santé Publique, 69003, Lyon, France
- UMR 5558, Laboratoire de Biométrie Et Biologie Évolutive, CNRS, Équipe Biostatistique-Santé, 69100, Villeurbanne, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
| | | | - Fatima Abbas
- Service de Biostatistique Et Bioinformatique, Hospices Civils de Lyon, Pôle Santé Publique, 69003, Lyon, France
- UMR 5558, Laboratoire de Biométrie Et Biologie Évolutive, CNRS, Équipe Biostatistique-Santé, 69100, Villeurbanne, France
| | - Paul C Moldovan
- Department of Radiology, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon, France
| | - Marc Colombel
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- Department of Urology, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon, France
- Faculté de Médecine Lyon Est, Lyon, France
| | - Sébastien Crouzet
- LabTau, INSERM U1032, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- Department of Urology, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon, France
- Faculté de Médecine Lyon Est, Lyon, France
| | - Alain Ruffion
- Department of Urology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- Faculté de Médecine Lyon Sud, Pierre Bénite, France
| | - Paul Neuville
- Department of Urology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Olivier Rouvière
- LabTau, INSERM U1032, Lyon, France.
- Université de Lyon, Lyon, France.
- Université Lyon 1, Lyon, France.
- Department of Radiology, Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437, Lyon, France.
- Faculté de Médecine Lyon Est, Lyon, France.
| |
Collapse
|
8
|
Fennessy FM, Maier SE. Quantitative diffusion MRI in prostate cancer: Image quality, what we can measure and how it improves clinical assessment. Eur J Radiol 2023; 167:111066. [PMID: 37651828 PMCID: PMC10623580 DOI: 10.1016/j.ejrad.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Diffusion-weighted imaging is a dependable method for detection of clinically significant prostate cancer. In prostate tissue, there are several compartments that can be distinguished from each other, based on different water diffusion decay signals observed. Alterations in cell architecture, such as a relative increase in tumor infiltration and decrease in stroma, will influence the observed diffusion signal in a voxel due to impeded random motion of water molecules. The amount of restricted diffusion can be assessed quantitatively by measuring the apparent diffusion coefficient (ADC) value. This is traditionally calculated using a monoexponential decay formula represented by the slope of a line produced between the logarithm of signal intensity decay plotted against selected b-values. However, the choice and number of b-values and their distribution, has a significant effect on the measured ADC values. There have been many models that attempt to use higher-order functions to better describe the observed diffusion signal decay, requiring an increased number and range of b-values. While ADC can probe heterogeneity on a macroscopic level, there is a need to optimize advanced diffusion techniques to better interrogate prostate tissue microstructure. This could be of benefit in clinical challenges such as identifying sparse tumors in normal prostate tissue or better defining tumor margins. This paper reviews the principles of diffusion MRI and novel higher order diffusion signal analysis techniques to improve the detection of prostate cancer.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Stephan E Maier
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|