1
|
Sahu C, Sahu RK, Roy A. A Review on Nanotechnologically Derived Phytomedicines for the Treatment of Hepatocellular Carcinoma: Recent Advances in Molecular Mechanism and Drug Targeting. Curr Drug Targets 2025; 26:167-187. [PMID: 39385414 DOI: 10.2174/0113894501312571240920070441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.
Collapse
Affiliation(s)
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Amit Roy
- Chhatrapati Shivaji Institute of Pharmacy, Bhilai, Chhattisgarh-491001, India
| |
Collapse
|
2
|
Zheng SS, Wu JF, Wu WX, Hu JW, Zhang D, Huang C, Zhang BH. CBX1 is involved in hepatocellular carcinoma progression and resistance to sorafenib and lenvatinib via IGF-1R/AKT/SNAIL signaling pathway. Hepatol Int 2024; 18:1499-1515. [PMID: 38769286 PMCID: PMC11461582 DOI: 10.1007/s12072-024-10696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Chromobox Homolog 1 (CBX1) plays a crucial role in the pathogenesis of numerous diseases, including the evolution and advancement of diverse cancers. The role of CBX1 in pan-cancer and its mechanism in hepatocellular carcinoma (HCC), however, remains to be further investigated. METHODS Bioinformatics approaches were harnessed to scrutinize CBX1's expression profile, its association with tumor staging, and its potential impact on patient outcomes across various cancers. Single-cell RNA sequencing data facilitated the investigation of CBX1 expression patterns at the individual cell level. The CBX1 expression levels in HCC and adjacent non-tumor tissues were quantified through Real-Time Polymerase Chain Reaction (RT-PCR), Western Blotting (WB), and Immunohistochemical analyses. A tissue microarray was employed to explore the relationship between CBX1 levels, patient prognosis, and clinicopathological characteristics in HCC. Various in vitro assays-including CCK-8, colony formation, Transwell invasion, and scratch tests-were conducted to assess the proliferative and motility properties of HCC cells upon modulation of CBX1 expression. Moreover, the functional impact of CBX1 on HCC was further discerned through xenograft studies in nude mice. RESULTS CBX1 was found to be upregulated in most cancer forms, with heightened expression correlating with adverse patient prognoses. Within the context of HCC, elevated levels of CBX1 were consistently indicative of poorer clinical outcomes. Suppression of CBX1 through knockdown methodologies markedly diminished HCC cell proliferation, invasive capabilities, migratory activity, Epithelial-mesenchymal transition (EMT) processes, and resistance to Tyrosine kinase inhibitors (TKIs). Contrastingly, CBX1 augmentation facilitated the opposite effects. Subsequent investigative efforts revealed CBX1 to be a promoter of EMT and a contributor to increased TKI resistance within HCC cells, mediated via the IGF-1R/AKT/SNAIL signaling axis. The oncogenic activities of CBX1 proved to be attenuable either by AKT pathway inhibition or by targeted silencing of IGF-1R. CONCLUSIONS The broad overexpression of CBX1 in pan-cancer and specifically in HCC positions it as a putative oncogenic entity. It is implicated in forwarding HCC progression and exacerbating TKI resistance through its interaction with the IGF-1R/AKT/SNAIL signaling cascade.
Collapse
Affiliation(s)
- Su-Su Zheng
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
| | - Jing-Fang Wu
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wei-Xun Wu
- Department of Liver Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China
| | - Jin-Wu Hu
- Department of Liver Cancer, Shanghai Geriatrics Medical Center, 2560 Chunshen Road, Shanghai, 201104, China
| | - Dai Zhang
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cheng Huang
- Department of Liver Surgery, Liver Cancer Institute, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo-Heng Zhang
- Department of Hepatic Oncology, Xiamen Clinical Research Center for Cancer Therapy, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, 361015, China.
- Department of Hepatic Oncology, Liver Cancer Institute, Key Laboratory for Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Center for Evidence-Based Medicine, Shanghai Medical School, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
de Biase MS, Massip F, Wei TT, Giorgi FM, Stark R, Stone A, Gladwell A, O'Reilly M, Schütte D, de Santiago I, Meyer KB, Markowetz F, Ponder BAJ, Rintoul RC, Schwarz RF. Smoking-associated gene expression alterations in nasal epithelium reveal immune impairment linked to lung cancer risk. Genome Med 2024; 16:54. [PMID: 38589970 PMCID: PMC11000304 DOI: 10.1186/s13073-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.
Collapse
Affiliation(s)
- Maria Stella de Biase
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
| | - Florian Massip
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- MINES Paris, PSL University, CBIO-Centre for Computational Biology, 60 bd Saint Michel, 75006, Paris, France.
- Institut Curie, Cedex, Paris, France.
- INSERM, U900, Cedex, Paris, France.
| | - Tzu-Ting Wei
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Amanda Stone
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Amy Gladwell
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Daniel Schütte
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: e-therapeutics plc, 17 Blenheim Office Park, Long Hanborough, OX29 8LN, UK
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: The Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
| | - Robert C Rintoul
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK.
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Roland F Schwarz
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Zhou K, Wu C, Cheng W, Zhang B, Wei R, Cheng D, Li Y, Cao Y, Zhang W, Yao Z, Zhang X. Transglutaminase 3 regulates cutaneous squamous carcinoma differentiation and inhibits progression via PI3K-AKT signaling pathway-mediated Keratin 14 degradation. Cell Death Dis 2024; 15:252. [PMID: 38589352 PMCID: PMC11001918 DOI: 10.1038/s41419-024-06626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.
Collapse
Affiliation(s)
- Kaili Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenglong Wu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenjie Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Boyuan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daian Cheng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Cao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Wenqing Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xue Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Department of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Chen R, Fang T, Liu N, Shi X, Wang J, Yu H. Transglutaminase 3 suppresses proliferation and cisplatin resistance of cervical cancer cells by inactivation of the PI3K/AKT pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2269-2280. [PMID: 37812238 DOI: 10.1007/s00210-023-02757-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Recent studies have shown that dysregulation of transglutaminase 3 (TGM3) is related to the aggressive progression of several cancer types. Our study aimed to determine the function of TGM3 in cervical cancer (CC) tumorigenesis. Gene expression profiles GSE63514, GSE9750, GSE46857 and GSE67522 were obtained from the Gene Expression Omnibus (GEO) database. Overlapping differential expressed genes (DEGs) in CC were screened using GEO2R online tool and Venn diagram software. The Kaplan-Meier plotter was used to determine overall survival. TGM3 expression was analyzed based on GEO and The Cancer Genome Atlas (TCGA) databases, qRT-PCR and western blot analyses. Cell proliferation was evaluated by CCK-8 and EdU incorporation assays. The half-maximal inhibitory concentration (IC50) value of cisplatin and cell apoptosis was assessed by CCK-8 and TUNEL assays, respectively. P-glycoprotein (P-gp) expression and the changes of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway were examined using western blot analysis. We identified 3 overlapping DEGs, including TGM3, glutathione peroxidase 3 (GPX3), and alpha B-crystallin (CRYAB), which were downregulated in CC tissues. TGM3 expression was reduced in CC cells and related to the poor prognosis of CC patients. TGM3 overexpression retarded the proliferation, reduced IC50 value of cisplatin, accelerated cisplatin-induced apoptosis, and inhibited cisplatin-induced P-gp level in CC cells. Furthermore, TGM3 overexpression suppressed the PI3K/Akt pathway in CC cells. Moreover, treatment with 740Y-P, a PI3K activator, abolished the effect of TGM3 overexpression on proliferation and cisplatin resistance in CC cells. In conclusion, overexpression of TGM3 suppressed proliferation and cisplatin resistance in CC cells by blocking the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ruipu Chen
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China.
| | - Tingyu Fang
- Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Na Liu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Xuejiao Shi
- Department of Nursing, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Junsen Wang
- Department of Operating, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| | - Huaping Yu
- International Department of Obstetrics, Fokind Hospital Affiliated to Tibet University, Lhasa, 850099, Tibet, China
| |
Collapse
|
6
|
Zhang S, Yao HF, Li H, Su T, Jiang SH, Wang H, Zhang ZG, Dong FY, Yang Q, Yang XM. Transglutaminases are oncogenic biomarkers in human cancers and therapeutic targeting of TGM2 blocks chemoresistance and macrophage infiltration in pancreatic cancer. Cell Oncol (Dordr) 2023; 46:1473-1492. [PMID: 37246171 DOI: 10.1007/s13402-023-00824-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/30/2023] Open
Abstract
PURPOSE Transglutaminases (TGs) are multifunctional enzymes exhibiting transglutaminase crosslinking, as well as atypical GTPase/ATPase and kinase activities. Here, we used an integrated comprehensive analysis to assess the genomic, transcriptomic and immunological landscapes of TGs across cancers. METHODS Gene expression and immune cell infiltration patterns across cancers were obtained from The Cancer Genome Atlas (TCGA) database and Gene Set Enrichment Analysis (GSEA) datasets. Western blotting, immunofluorescence staining, enzyme-linked immunosorbent assays, and orthotopic xenograft models were used to validate our database-derived results. RESULTS We found that the overall expression of TGs (designated as the TG score) is significantly upregulated in multiple cancers and related to a worse patient survival. The expression of TG family members can be regulated through multiple mechanisms at the genetic, epigenetic and transcriptional levels. The expression of transcription factors crucial for epithelial-to-mesenchymal transition (EMT) is commonly correlated with the TG score in many cancer types. Importantly, TGM2 expression displays a close connection with chemoresistance to a wide range of chemotherapeutic drugs. We found that TGM2 expression, F13A1 expression and the overall TG score were positively correlated with the infiltration of immune cells in all cancer types tested. Functional and clinical verification revealed that a higher TGM2 expression is linked with a worse patient survival, an increased IC50 value of gemcitabine, and a higher abundance of tumor-infiltrating macrophages in pancreatic cancer. Mechanistically, we found that increased C-C motif chemokine ligand 2 (CCL2) release mediated by TGM2 contributes to macrophage infiltration into the tumor microenvironment. CONCLUSIONS Our results reveal the relevance and molecular networks of TG genes in human cancers and highlight the importance of TGM2 in pancreatic cancer, which may provide promising directions for immunotherapy and for addressing chemoresistance.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, People's Republic of China
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tong Su
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Pudong District, Shanghai, 200123, China
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Fang-Yuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China.
| | - Qin Yang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Mei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
7
|
Zhang W, Wu C, Zhou K, Cao Y, Zhou W, Zhang X, Deng D. Clinical and immunological characteristics of TGM3 in pan-cancer: A potential prognostic biomarker. Front Genet 2023; 13:993438. [PMID: 36685895 PMCID: PMC9852731 DOI: 10.3389/fgene.2022.993438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023] Open
Abstract
Background: Recent studies have identified that transglutaminases (TGMs) are involved in a widespread epigenetic modification in tumorigenesis. However, it remains unclear how transglutaminase 3 (TGM3) affects in pan-cancer. The present study aimed to explore the clinical and prognostic function of TGM3 in pan-cancer as well as to explore the relationship of TGM3 expression with clinical stage, survival rate, prognosis condition, immune infiltration and mutation indicators. Methods: The relevant data of tumors were obtained from The Cancer Genome Atlas (TCGA), TARGET, Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression (GTEx) databases. According to the Human Protein Atlas (HPA) and TIMER databases, we evaluated the protein expression levels of TGM3 in different organs and tissues as well as their association with immune cell infiltration and immunotherapeutic response in pan-cancers. Expression differences between normal and tumor tissues as well as survival and prognosis situation, clinical data characteristics, tumor mutational burden (TMB), microsatellite instability (MSI), and RNA methylation were also assessed. Oncogenic analyses were also evaluated by GSEA. Results: Compared to normal tissues, some tumor tissues had a lower expression level of TGM3, while other tumor tissues had a high expression level of TGM3. Further studies showed that high TGM3 expression had a certain risk impact on pan-cancer as high TGM3 expression levels were detrimental to the survival of several cancers, except for pancreatic cancer (PAAD). High expression level of TGM3 was also related to higher clinical stages in most cancers. The expression level of TGM3 was significantly negatively correlated with the expression of immune infiltration-related cells, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, macrophages and dendritic cells (DCs). Furthermore, in most cancer types, TGM3 was inversely correlated with TMB, MSI, and methylation, suggesting that TGM3 expression can be used to assess potential therapeutic response, especially immune-related targeted therapy. GSEA analysis elucidated the biological and molecular function of TGM3 in various cancer types. Taken together, these bioinformatic analyses identified TGM3 as an important biomarker for clinical tumor prognosis and evaluation of treatment efficacy. Conclusion: We comprehensively analyzed the clinical characteristics, tumor stages, immune infiltration, methylation level, gene mutation, functional enrichment analysis and immunotherapeutic value of TGM3 in pan-cancer, providing implications for the function of TGM3 and its role in clinical treatment.
Collapse
Affiliation(s)
- Wenqing Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenglong Wu
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kaili Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Cao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wange Zhou
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xue Zhang, ; Dan Deng,
| | - Dan Deng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China,Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Xue Zhang, ; Dan Deng,
| |
Collapse
|
8
|
Muthukrishnan L. "TGM3 - A novel biomarker as a potential diagnostic target for head and neck squamous cell carcinoma (HNSCC)". Oral Oncol 2022; 134:106118. [PMID: 36096048 DOI: 10.1016/j.oraloncology.2022.106118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
9
|
Chen Z, Ma Y, Guo Z, Song D, Chen Z, Sun M. Ubiquitin-specific protease 1 acts as an oncogene and promotes lenvatinib efficacy in hepatocellular carcinoma by stabilizing c-kit. Ann Hepatol 2022; 27:100669. [PMID: 35045360 DOI: 10.1016/j.aohep.2022.100669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Ubiquitin-specific proteases (USPs) act as proto-oncogenes or tumor suppressors in a wide variety of cancers. In this study, we intended to explore the role of USP1 in hepatocellular carcinoma (HCC). MATERIALS AND METHODS The clinical significance of USP1 in HCC was analyzed based on The Cancer Genome Atlas (TCGA) data and immunohistochemical staining. siRNAs and lentivirus were used to knock down and overexpress indicated genes, respectively. qRT-PCR and immunoblotting were performed to examine mRNA and protein expression, respectively. CCK8, colony formation and PI/Annexin V-APC staining were performed to examine cellular function. Immunoprecipitation, coomassie blue staining, mass spectrum and immunoblotting were conducted to evaluate the interaction between USP1 and c-kit. RESULTS USP1 was over-expressed in HCC patients. Patients with high expression of USP1 had shorter overall and disease free survival than those with low expression of USP1. Functional results showed that USP1 was critical for HCC cell growth and proliferation. Immunoprecipitation and immunoblotting results suggested that USP1 interacted with c-kit and promoted the stability of c-kit, which is an important target of lenvatinib in HCC. Knockdown of c-kit reversed the oncogenic function of USP1 on HCC cell growth. Lastly, USP1 upregulation conferred higher sensitivity of HCC cells to lenvatinib treatment. CONCLUSIONS Our study demonstrated that USP1 acted as an oncogene in HCC. It also promoted lenvatinib efficacy by stabilizing c-kit.
Collapse
Affiliation(s)
- Zhangbin Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | - Yifei Ma
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhitang Guo
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China
| | | | - Zili Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Min Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China.
| |
Collapse
|
10
|
Zhang X, Jiang M, Zhang X, Zhang J, Guo H, Wu C. An extracellular matrix-based signature associated with immune microenvironment predicts the prognosis of patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2022; 46:101877. [PMID: 35257959 DOI: 10.1016/j.clinre.2022.101877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Increased data showed that genes related to extracellular matrix (ECM) are important to hepatocellular carcinoma (HCC) development. In contrast, no research was carried out that proposed that ECM-related genes should be reliable prognostic signature. METHODS This study used data from The Cancer Genome Atlas along with The International Cancer Genome Consortium to gather ECM-related gene expression as well as clinical information related to the extracellular matrix. The least absolute shrinkage, Cox analysis, along with selection operator Cox regression and random forest have been utilized for establishing an ECM-related prognostic models. RESULTS A series of investigations led us to identify 13 ECMs which we utilized to construct a prognostic signature with a larger area under the curve of 0.808. HCC patients have been categorized into 2 main groups based on the risk score formula: low risk along with high risk. The findings of the Kaplan-Meier curve revealed that there had been a statistically significant difference between these two groups. Our ECM-related signature can be utilized as independent predictor of survival in HCC. Low-risk patients stratified by the final model presented higher sensitivity to 8 targeted drugs (especially sorafenib) and 2 common chemo-drugs. Our gene set enrichment analysis outcomes recommended that high-risk group have been enriched in ECM, tumorigenesis, as well as immune-related pathways. Immune cell analysis showed that high-risk group had lower cell fraction of CD8+ T cells, Macrophages M1, B naïve cells, memory resting CD4+ T cells, Monocytes, resting Dendritic cells and activated Mast cells, along with higher PD-1 and CTLA4 expression levels as compared to low-risk group. CONCLUSION Our identified ECM-related signature can also give new insight into underlying mechanisms along with therapeutic strategies in order to treat HCC.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
| | - Mengmeng Jiang
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases
| | - Xihao Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Department of Hepatobiliary Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Jinliang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Department of Hepatobiliary Surgery, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer
| | - Hongxing Guo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, The Third Central Hospital of Tianjin, China.
| | - Chenxuan Wu
- Department of Medical Oncology, The Third Central Hospital of Tianjin, China; Artificial Cell Engineering Technology Research Center, Tianjin, China; Tianjin Institute of Hepatobiliary Disease, Tianjin, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases.
| |
Collapse
|
11
|
Wu D, Zhang R, Zhan L. Transglutaminase 3 expression in hepatocellular carcinoma patients: Correlation with tumor features and survival profile. Clin Res Hepatol Gastroenterol 2022; 46:101812. [PMID: 34597849 DOI: 10.1016/j.clinre.2021.101812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Transglutaminase 3 (TGM3) regulates multiple oncogene pathways (GSK-3β/β-catenin pathway, Akt/ERK pathway, etc.) to promote hepatocellular carcinoma (HCC) cell proliferation, migration and invasion, however, its clinical value for HCC management is still limited. Therefore, we conducted this study to compare the TGM3 expression between tumor tissue and paired adjacent noncancerous tissue, aiming to explore the clinical application of TGM3 in HCC patients. METHODS Totally, 208 HCC patients were enrolled and their clinicopathological features were collected. Then, 208 pairs of HCC specimens and adjacent noncancerous specimens were used to detect TGM3 protein expression by IHC assay and assessed by a semi-quantitative scoring method. Besides, 157 pairs were proposed to detect TGM3 mRNA expression by RT-qPCR. RESULTS Both TGM3 protein (P<0.001) and mRNA (P<0.001) levels were increased in HCC specimens compared to adjacent noncancerous specimens. Besides, TGM3 high protein expression correlated with multifocal tumor nodules (P<0.001), advanced Barcelona Clinic Liver Cancer (BCLC) stage (P = 0.006), higher carcinoembryonic antigen (P = 0.038) and alpha-fetoprotein (AFP) (P<0.001). While TGM3 high mRNA expression correlated with multifocal tumor nodules (P = 0.025), largest tumor size ≥ 5.0 cm (P = 0.042) and higher AFP (P = 0.019). Furthermore, both TGM3 protein (P = 0.002) and mRNA (P = 0.028) high expressions correlated with shorter overall survival (OS). While after adjustment by multivariant Cox's regression, TGM3 protein high expression (vs. low) independently predicted worse OS (P = 0.004). CONCLUSIONS TMG3 expression is increased in tumor tissue, also its high expression correlates with multiple tumor nodules, higher BCLC stage, abnormal AFP and reduced OS in HCC patients.
Collapse
Affiliation(s)
- Deng Wu
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Renqian Zhang
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Lei Zhan
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China.
| |
Collapse
|
12
|
Jia G, Song Z, Xu Z, Tao Y, Wu Y, Wan X. Screening of gene markers related to the prognosis of metastatic skin cutaneous melanoma based on Logit regression and survival analysis. BMC Med Genomics 2021; 14:96. [PMID: 33823876 PMCID: PMC8022370 DOI: 10.1186/s12920-021-00923-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bioinformatics was used to analyze the skin cutaneous melanoma (SKCM) gene expression profile to provide a theoretical basis for further studying the mechanism underlying metastatic SKCM and the clinical prognosis. METHODS We downloaded the gene expression profiles of 358 metastatic and 102 primary (nonmetastatic) CM samples from The Cancer Genome Atlas (TCGA) database as a training dataset and the GSE65904 dataset from the National Center for Biotechnology Information database as a validation dataset. Differentially expressed genes (DEGs) were screened using the limma package of R3.4.1, and prognosis-related feature DEGs were screened using Logit regression (LR) and survival analyses. We also used the STRING online database, Cytoscape software, and Database for Annotation, Visualization and Integrated Discovery software for protein-protein interaction network, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses based on the screened DEGs. RESULTS Of the 876 DEGs selected, 11 (ZNF750, NLRP6, TGM3, KRTDAP, CAMSAP3, KRT6C, CALML5, SPRR2E, CD3G, RTP5, and FAM83C) were screened using LR analysis. The survival prognosis of nonmetastatic group was better compared to the metastatic group between the TCGA training and validation datasets. The 11 DEGs were involved in 9 KEGG signaling pathways, and of these 11 DEGs, CALML5 was a feature DEG involved in the melanogenesis pathway, 12 targets of which were collected. CONCLUSION The feature DEGs screened, such as CALML5, are related to the prognosis of metastatic CM according to LR. Our results provide new ideas for exploring the molecular mechanism underlying CM metastasis and finding new diagnostic prognostic markers.
Collapse
Affiliation(s)
- Guoliang Jia
- Department of Orthopedics, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin, China
| | - Zheyu Song
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Zhonghang Xu
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Youmao Tao
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China
| | - Yuanyu Wu
- Department of Gastrointestinal and Colorectal Surgery, The Third Hospital of Jilin University, No.126, Xiantai Street, Changchun, 130033, Jilin, China.
| | - Xiaoyu Wan
- Department of Brest Surgery, The Second Clinical Hospital of Jilin University, NO.218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin, China.
| |
Collapse
|
13
|
Tong X, Qu X, Wang M. A Four-Gene-Based Prognostic Model Predicts Overall Survival in Patients With Cutaneous Melanoma. Front Oncol 2021; 11:639874. [PMID: 33842346 PMCID: PMC8024561 DOI: 10.3389/fonc.2021.639874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/29/2021] [Indexed: 01/29/2023] Open
Abstract
Background Cutaneous melanoma (CM) is one of the most aggressive cancers with highly metastatic ability. To make things worse, there are limited effective therapies to treat advanced CM. Our study aimed to investigate new biomarkers for CM prognosis and establish a novel risk score system in CM. Methods Gene expression data of CM from Gene Expression Omnibus (GEO) datasets were downloaded and analyzed to identify differentially expressed genes (DEGs). The overlapped DEGs were then verified for prognosis analysis by univariate and multivariate COX regression in The Cancer Genome Atlas (TCGA) datasets. Based on the gene signature of multiple survival associated DEGs, a risk score model was established, and its prognostic and predictive role was estimated through Kaplan-Meier (K-M) analysis and log-rank test. Furthermore, the correlations between prognosis related genes expression and immune infiltrates were analyzed via Tumor Immune Estimation Resource (TIMER) site. Results A total of 103 DEGs were obtained based on GEO cohorts, and four genes were verified in TCGA datasets. Subsequently, four genes (ADAMDEC1, GNLY, HSPA13, and TRIM29) model was developed by univariate and multivariate Cox regression analyses. The K-M plots showed that the high-risk group was associated with shortened survival than that in the low-risk group (P < 0.0001). Multivariate analysis suggested that the model was an independent prognostic factor (high-risk vs. low-risk, HR= 2.06, P < 0.001). Meanwhile, the high-risk group was prone to have larger breslow depth (P< 0.001) and ulceration (P< 0.001). Conclusions The four-gene risk score model functions well in predicting the prognosis and treatment response in CM and will be useful for guiding therapeutic strategies for CM patients. Additional clinical trials are needed to verify our findings.
Collapse
Affiliation(s)
- Xiaoxia Tong
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaofei Qu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Chermnykh ES, Alpeeva EV, Vorotelyak EA. Transglutaminase 3: The Involvement in Epithelial Differentiation and Cancer. Cells 2020; 9:cells9091996. [PMID: 32872587 PMCID: PMC7563467 DOI: 10.3390/cells9091996] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGMs) contribute to the formation of rigid, insoluble macromolecular complexes, which are essential for the epidermis and hair follicles to perform protective and barrier functions against the environment. During differentiation, epidermal keratinocytes undergo structural alterations being transformed into cornified cells, which constitute a highly tough outermost layer of the epidermis, the stratum corneum. Similar processes occur during the hardening of the hair follicle and the hair shaft, which is provided by the enzymatic cross-linking of the structural proteins and keratin intermediate filaments. TGM3, also known as epidermal TGM, is one of the pivotal enzymes responsible for the formation of protein polymers in the epidermis and the hair follicle. Numerous studies have shown that TGM3 is extensively involved in epidermal and hair follicle physiology and pathology. However, the roles of TGM3, its substrates, and its importance for the integument system are not fully understood. Here, we summarize the main advances that have recently been achieved in TGM3 analyses in skin and hair follicle biology and also in understanding the functional role of TGM3 in human tumor pathology as well as the reliability of its prognostic clinical usage as a cancer diagnosis biomarker. This review also focuses on human and murine hair follicle abnormalities connected with TGM3 mutations.
Collapse
|