1
|
Zhang S, Wang J, Chen Y, Liang W, Liu H, Du R, Sun Y, Hu C, Shang Z. CAFs-derived lactate enhances the cancer stemness through inhibiting the MST1 ubiquitination degradation in OSCC. Cell Biosci 2024; 14:144. [PMID: 39605072 PMCID: PMC11603751 DOI: 10.1186/s13578-024-01329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), a predominant stromal cell type in the tumor microenvironment, significantly affect the progression of oral squamous cell carcinoma (OSCC). RESULTS The specific mechanisms through which CAFs influence the cancer stem cell phenotype in OSCC are not fully understood. This study explored the effects of lactic acid produced by CAFs on the cancer stem cells (CSCs) phenotype of OSCC cells. Our results demonstrated that CAFs exhibit increased glycolysis and lactic acid production. Lactic acid treatment enhances CSCs-related markers expression, sphere formation, and clonogenic ability of OSCC cells. RNA sequencing revealed that lactic acid treatment elevates Discs Large Homolog 5 (DLG5) expression and markedly affects the Hippo pathway. Further investigation revealed that DLG5 mediates the effects of lactic acid on the CSCs phenotype. DLG5 knockdown results in elevated expression of E3 ubiquitin ligase Cullin 3, which can promote the ubiquitination and degradation of MST1, but the expression of phosphorylated MST1 remains unchanged. This leads to enhanced binding of phosphorylated MST1 to YAP1, increasing YAP1 phosphorylation and activating the Hippo pathway. CONCLUSION Collectively, our findings suggest that lactic acid from CAFs promotes the CSCs phenotype in OSCC through the DLG5/CUL3/MST1 axis. Therefore, targeting lactic acid exchange between CAFs and tumor cells may provide a novel therapeutic approach to suppress the CSCs phenotype in OSCC.
Collapse
Affiliation(s)
- Shuzhen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Central Department School & Hospital of Stomatology, Wuhan University, Wuhan, 430022, China
| | - Jingjing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Weilian Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ruixue Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yunqing Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Goyal H, Parwani S, Kaur J. Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons. Cell Death Discov 2024; 10:451. [PMID: 39448589 PMCID: PMC11502918 DOI: 10.1038/s41420-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant global health challenge with few effective treatment options. The dysregulation of endoplasmic reticulum (ER) stress responses has emerged as a pivotal factor in HCC progression and therapy resistance. Long non-coding RNAs (lncRNAs) play a crucial role as key epigenetic modifiers in this process. Recent research has explored how lncRNAs influence ER stress which in turn affects lncRNAs activity in HCC. We systematically analyze the current literature to highlight the regulatory roles of lncRNAs in modulating ER stress and vice versa in HCC. Our scrutinization highlights how dysregulated lncRNAs contribute to various facets of HCC, including apoptosis resistance, enhanced proliferation, invasion, and metastasis, all driven by ER stress. Moreover, we delve into the emerging paradigm of the lncRNA-miRNA-mRNA axis, elucidating it as the promising avenue for developing novel biomarkers and paving the way for more personalized treatment options in HCC. Nevertheless, we acknowledge the challenges and future directions in translating these insights into clinical practice. In conclusion, our review provides insights into the complex regulatory mechanisms governing ER stress modulation by lncRNAs in HCC.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Parwani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
3
|
Chuang TD, Ton N, Rysling S, Boos D, Khorram O. The Effect of Race/Ethnicity and MED12 Mutation on the Expression of Long Non-Coding RNAs in Uterine Leiomyoma and Myometrium. Int J Mol Sci 2024; 25:1307. [PMID: 38279317 PMCID: PMC10816284 DOI: 10.3390/ijms25021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
5
|
Song XQ, Li Q, Zhang J. A double-edged sword: DLG5 in diseases. Biomed Pharmacother 2023; 162:114611. [PMID: 37001186 DOI: 10.1016/j.biopha.2023.114611] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Discs large homolog 5 (DLG5), a key member of the membrane-associated guanylate kinase (MAGUKs) family, is a scaffold molecule for signal transduction complexes and is responsible for assembling receptors and adapters. This scaffold protein stabilizes adhesion and tight bonding complexes in many organs and tissues, and is involved of maintaining epithelial polarity. Although DLG5 plays a role in normal development in mice, it has also been linked to the onset and development of several diseases, particularly Crohn's disease and various malignancies. DLG5 has been shown to impact the progression of cancer through direct or indirect interactions with H-catenin, E-cadherin, Vimentin, p53, P21, Cyclin D1, TGF-β1, AKT, Hippo, and classic G protein signaling pathways. DLG5 and DLG5 variants has been found to have a dual role in human diseases. Although it is overexpressed in pancreatic adenocarcinoma, its expression is reduced in lung, liver, breast, prostate, and bladder cancers. However, two independent studies on glioblastoma (GBM) have shown the opposite effects of DLG5. Our study evaluates the existing literature on the role of DLG5 and DLG5 variants in disease processes, and summarizes the available data on the role of DLG5 in disease based on cell experiments, clinical samples, and animal models, while highlighting its future potential in disease treatment.
Collapse
|
6
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Li X, Jiang P, Li R, Wu B, Zhao K, Li S, Cai J. Analysis of cuproptosis in hepatocellular carcinoma using multi-omics reveals a comprehensive HCC landscape and the immune patterns of cuproptosis. Front Oncol 2022; 12:1009036. [PMID: 36408192 PMCID: PMC9666696 DOI: 10.3389/fonc.2022.1009036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Cuproptosis represents a novel copper-dependent regulated cell death, distinct from other known cell death processes. In this report, a comprehensive analysis of cuproptosis in hepatocellular carcinoma (HCC) was conducted using multi-omics including genomics, bulk RNA-seq, single cell RNA-seq and proteomics. ATP7A, PDHA1 and DLST comprised the top 3 mutation genes in The Cancer Genome Atlas (TCGA)-LIHC; 9 cuproptosis-related genes showed significant, independent prognostic values. Cuproptosis-related hepatocytes were identified and their function were evaluated in single cell assays. Based on cuproptosis-related gene expressions, two immune patterns were found, with the cuproptosis-C1 subtype identified as a cytotoxic immune pattern, while the cuproptosis-C2 subtype was identified as a regulatory immune pattern. Cuproptosis-C2 was associated with a number of pathways involving tumorigenesis. A prognosis model based on differentially expressed genes (DEGs) of cuproptosis patterns was constructed and validated. We established a cuproptosis index (CPI) and further performed an analysis of its clinical relevance. High CPI values were associated with increased levels of alpha-fetoprotein (AFP) and advanced tumor stages. Taken together, this comprehensive analysis provides important, new insights into cuproptosis mechanisms associated with human HCC.
Collapse
Affiliation(s)
- Xinqiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Peng Jiang
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Ruixia Li
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Kai Zhao
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| | - Shipeng Li
- The Second Clinical Medical College, Capital Medical University, Beijing, China
| | - Jinzhen Cai
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Organ Donation and Transplantation, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Kong M, Yu X, Zheng Q, Zhang S, Guo W. Oncogenic roles of LINC01234 in various forms of human cancer. Biomed Pharmacother 2022; 154:113570. [PMID: 36030582 DOI: 10.1016/j.biopha.2022.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) plays an essential role in various malignant neoplasia. As a newly identified lncRNA, LINC01234 is abnormally expressed in several types of cancers and promotes the development of cancers. Accumulating evidence indicates that overexpression of LINC01234 is associated with poor clinical outcomes. Moreover, LINC01234 modulates many cellular events as a putative proto-oncogene, including proliferation, migration, invasion, apoptosis, cell cycle progression, and EMT. In terms of molecular mechanism, LINC01234 regulates gene expression by acting as ceRNA, participating in signaling pathways, interacting with proteins and other molecules, and encoding polypeptide. It reveals that LINC01234 may serve as a potential biomarker for cancer diagnosis, treatment, and prognosis. This review summarizes the expression pattern, biological function, and molecular mechanism of LINC01234 in human cancer and discusses its potential clinical utility.
Collapse
Affiliation(s)
- Minyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Liver Transplantation Centre, China; Henan Organ Transplantation Quality Control Centre, China; Open and Key Laboratory for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, China; Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, China.
| |
Collapse
|
9
|
Resaz R, Cangelosi D, Segalerba D, Morini M, Uva P, Bosco MC, Banderali G, Estrella A, Wanner C, Weinstein DA, Sechi A, Paci S, Melis D, Di Rocco M, Lee YM, Eva A. Exosomal MicroRNAs as Potential Biomarkers of Hepatic Injury and Kidney Disease in Glycogen Storage Disease Type Ia Patients. Int J Mol Sci 2021; 23:328. [PMID: 35008754 PMCID: PMC8745197 DOI: 10.3390/ijms23010328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is an inherited metabolic disorder caused by mutations in the enzyme glucose-6-phosphatase-α (G6Pase-α). Affected individuals develop renal and liver complications, including the development of hepatocellular adenoma/carcinoma and kidney failure. The purpose of this study was to identify potential biomarkers of the evolution of the disease in GSDIa patients. To this end, we analyzed the expression of exosomal microRNAs (Exo-miRs) in the plasma exosomes of 45 patients aged 6 to 63 years. Plasma from age-matched normal individuals were used as controls. We found that the altered expression of several Exo-miRs correlates with the pathologic state of the patients and might help to monitor the progression of the disease and the development of late GSDIa-associated complications.
Collapse
Affiliation(s)
- Roberta Resaz
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Davide Cangelosi
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (D.C.); (P.U.)
| | - Daniela Segalerba
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (D.C.); (P.U.)
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| | - Giuseppe Banderali
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, Presidio San Paolo, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142 Milano, Italy; (G.B.); (S.P.)
| | - Ana Estrella
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - Corbinian Wanner
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - David A. Weinstein
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - Annalisa Sechi
- Regional Coordinating Center for Rare Diseases, Presidio Ospedaliero Universitario di Udine, P.zzale SM Della Misericordia 15, 33100 Udine, Italy;
| | - Sabrina Paci
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, Presidio San Paolo, Università degli Studi di Milano, Via Antonio di Rudinì 8, 20142 Milano, Italy; (G.B.); (S.P.)
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, Section of Pediatrics, Università Degli Studi di Salerno, Via Salvador Allende 43, Baronissi, 84100 Salerno, Italy;
| | - Maja Di Rocco
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, 400 Farmington Ave, Farmington, CT 06030, USA; (A.E.); (C.W.); (D.A.W.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy; (R.R.); (D.S.); (M.M.); (M.C.B.)
| |
Collapse
|