1
|
Liu H, Li S, Yu X, Xu Q, Tang C, Yin C. Modulating the Protein Corona on Nanoparticles by Finely Tuning Cross-Linkers Improves Macrophage Targeting in Oral Small Interfering RNA Delivery. ACS NANO 2025. [PMID: 40275505 DOI: 10.1021/acsnano.4c18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The protein corona (PC) plays an important role in regulating the in vivo fate of nanoparticles (NPs). Modulating the surface chemical properties of NPs to control PC formation provides an alternative impetus for the oral delivery of small interfering RNA (siRNA). Herein, using tripolyphosphate (TPP), hyaluronic acid, and poly-γ-glutamic acid as cross-linkers, three types of mannose-modified trimethyl chitosan-cysteine (MTC)-based NPs with distinct surface chemistries were prepared to encapsulate siRNA via ionic gelation. The MTC-based NPs that were cross-linked exclusively with TPP (MTC/TPP/siRNA NPs) exhibited greater thiol group accessibility on their surfaces, resulting in a stronger affinity for apolipoprotein (APO) B48 during translocation across intestinal epithelia. Moreover, intracellular transport of MTC/TPP/siRNA NPs via the endoplasmic reticulum and Golgi apparatus further increased adsorption of APOB48, a key component of chylomicrons, which follow a similar transport pathway. Benefiting from the elevated APOB48 levels within the PC, the orally delivered MTC/TPP/siRNA NPs showed higher uptake by hepatic macrophages and better therapeutic efficacy for acute liver injury. Our results elucidate the role of NP surface chemical characteristics and translocation mechanisms across intestinal epithelia in forming oral PC, providing valuable insights for designing NPs that achieve effective oral gene delivery by customizing PC formation in vivo.
Collapse
Affiliation(s)
- Hengqing Liu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengqi Li
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin Yu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qian Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
- MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Yagi R, Masuda T, Ito S, Ohtsuki S. Effect of antibiotic-administration period on hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Drug Metab Pharmacokinet 2023; 50:100494. [PMID: 37119611 DOI: 10.1016/j.dmpk.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Antibiotic administration affects pharmacokinetics through changes in the intestinal microbiota, and bile acids are involved in this regulation. The purpose of the present study was to clarify the effect of different periods of antibiotic administration on the hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Vancomycin and polymyxin B were orally administered to mice for either 5- or 25-days. The hepatic bile acid profile of the 25-day treatment group was distinct. In the liver, the protein expression of cytochrome P450 (Cyp)3a11 showed the greatest reduction to 11.4% after the 5-day treatment and further reduced to 7.01% after the 25-day treatment. Similar reductions were observed for sulfotransferase 1d1, Cyp2b10, carboxylesterase 2e, UDP-glucuronosyltransferase (Ugt)1a5, and Ugt1a9. In the kidney and brain capillaries, no drug-metabolizing enzymes or drug transporters were changed with >1.5-fold or <0.66-fold statistical significance in either period. These results suggest that bile acids and metabolizing enzymes in the liver are affected in a period-dependent manner by antibiotic treatment, while the blood-brain barrier and kidneys are less affected. Drug-drug interactions of antibiotics via the intestinal microbiota should be considered by changing drug metabolism in the liver.
Collapse
Affiliation(s)
- Ryotaro Yagi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
4
|
Kiss M, Mbasu R, Nicolaï J, Barnouin K, Kotian A, Mooij MG, Kist N, Wijnen RMH, Ungell AL, Cutler P, Russel FGM, de Wildt SN. Ontogeny of Small Intestinal Drug Transporters and Metabolizing Enzymes Based on Targeted Quantitative Proteomics. Drug Metab Dispos 2021; 49:1038-1046. [PMID: 34548392 DOI: 10.1124/dmd.121.000559] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023] Open
Abstract
Most drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7. Samples from 58 children (48 ileums, 10 jejunums, age range: 8 weeks to 17 years) and 16 adults (8 ileums, 8 jejunums) were analyzed. When comparing age groups, BCRP, MDR1, PEPT1, and UGT1A1 abundance was significantly higher in adult ileum as compared with the pediatric ileum. Jejunal BCRP, MRP2, UGT1A1, and CYP3A4 abundance was higher in the adults compared with children 0-2 years of age. Examining the data on a continuous age scale showed that PEPT1 and UGT1A1 abundance was significantly higher, whereas MCT1 and UGT2B7 abundance was lower in adult ileum as compared with the pediatric ileum. Our data contribute to the deeper understanding of the ontogeny of small intestinal drug-metabolizing enzymes and drug transporters and shows DME-, DT-, and intestinal location-specific, age-related changes. SIGNIFICANCE STATEMENT: This is the first study that describes the ontogeny of small intestinal DTs and DMEs in human using liquid chromatography with tandem mass spectrometry-based targeted quantitative proteomics. The current analysis provides a detailed picture about the maturation of DT and DME abundances in the human jejunum and ileum. The presented results supply age-related DT and DME abundance data for building more accurate PBPK models that serve to support safer and more efficient drug dosing regimens for the pediatric population.
Collapse
Affiliation(s)
- Márton Kiss
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Richard Mbasu
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Johan Nicolaï
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Karin Barnouin
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Apoorva Kotian
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Miriam G Mooij
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Nico Kist
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Rene M H Wijnen
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Anna-Lena Ungell
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Paul Cutler
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.K., F.G.M.R., S.N.d.W.); Development Science (R.M., K.B., A.K., P.C.), and Statistical Sciences and Innovation (N.K.), UCB BioPharma, Slough, United Kingdom; Development Science, UCB BioPharma SRL, Braine-l'Alleud, Belgium (J.N., A.-L.U.); Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Centre, Leiden, The Netherlands (M.G.M.); and Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands (R.M.H.W.)
| |
Collapse
|
6
|
Masuda T, Mori A, Ito S, Ohtsuki S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metab Pharmacokinet 2020; 36:100361. [PMID: 33097418 DOI: 10.1016/j.dmpk.2020.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
Proteomics refers to the large-scale study of proteins, providing comprehensive and quantitative information on proteins in tissue, blood, and cell samples. In many studies, proteomics utilizes liquid chromatography-mass spectrometry. Proteomics has developed from a qualitative methodology of protein identification to a quantitative methodology for comparing protein expression, and it is currently classified into two distinct methodologies: quantitative and targeted proteomics. Quantitative proteomics comprehensively identifies proteins in samples, providing quantitative information on large-scale comparative profiles of protein expression. Targeted proteomics simultaneously quantifies only target proteins with high sensitivity and specificity. Therefore, in biomarker research, quantitative proteomics is used for the identification of biomarker candidates, and targeted proteomics is used for the validation of biomarkers. Understanding the specific characteristics of each method is important for conducting appropriate proteomics studies. In this review, we introduced the different characteristics and applications of quantitative and targeted proteomics, and then discussed the results of our recent proteomics studies that focused on the identification and validation of biomarkers of drug efficacy. These findings may enable us to predict the outcomes of cancer therapy and drug-drug interactions with antibiotics through changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|