1
|
Chen L, Gao H, Zhou B, Wang Y. Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR-Cas systems. FEBS Open Bio 2021; 11:1965-1980. [PMID: 33999508 PMCID: PMC8255852 DOI: 10.1002/2211-5463.13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The clustered, regularly interspaced, short palindromic repeats‐associated DNA nuclease (CRISPR‐Cas) protein system allows programmable gene editing through inducing double‐strand breaks. Reporter assays for DNA cleavage and DNA repair events play an important role in advancing the CRISPR technology and improving our understanding of the underlying molecular mechanisms. Here, we developed a series of reporter assays to probe mechanisms of action of various editing processes, including nonhomologous DNA end joining, homology‐directed repair and single‐strand annealing. With special target design, the reporter assays as an optimized toolbox can be used to take advantage of three distinct CRISPR‐Cas systems (Streptococcus pyogenes Cas9, Staphylococcus aureus Cas9 and Francisella novicida U112 Cpf1) and two different reporters (GFP and Gaussia luciferase). We further validated the Gaussia reporter assays using a series of small molecules, including NU7441, RI‐1 and Mirin, and showcased the use of a GFP reporter assay as an effective tool for enrichment of cells with edited genome.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haoyuan Gao
- College of Life Sciences and Oceanography, Shenzhen University, China.,Department of Biology, Oberlin College, OH, USA
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, China
| |
Collapse
|
2
|
Piatosa B, Wolska-Kuśnierz B, Tkaczyk K, Heropolitanska-Pliszka E, Grycuk U, Wakulinska A, Gregorek H. T Lymphocytes in Patients With Nijmegen Breakage Syndrome Demonstrate Features of Exhaustion and Senescence in Flow Cytometric Evaluation of Maturation Pathway. Front Immunol 2020; 11:1319. [PMID: 32695108 PMCID: PMC7338427 DOI: 10.3389/fimmu.2020.01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023] Open
Abstract
Patients with Nijmegen Breakage Syndrome (NBS) suffer from recurrent infections due to humoral and cellular immune deficiency. Despite low number of T lymphocytes and their maturation defect, the clinical manifestations of cell-mediated deficiency are not as severe as in case of patients with other types of combined immune deficiencies and similar T cell lymphopenia. In this study, multicolor flow cytometry was used for evaluation of peripheral T lymphocyte maturation according to the currently known differentiation pathway, in 46 patients with genetically confirmed NBS and 46 sex and age-matched controls. Evaluation of differential expression of CD27, CD31, CD45RA, CD95, and CD197 revealed existence of cell subsets so far not described in NBS patients. Although recent thymic emigrants and naïve T lymphocyte cell populations were significantly lower, the generation of antigen-primed T cells was similar or even greater in NBS patients than in healthy controls. Moreover, the senescent and exhausted T cell populations defined by expression of CD57, KLRG1, and PD1 were more numerous than in healthy people. Although this hypothesis needs further investigations, such properties might be related to an increased susceptibility to malignancy and milder clinical course than expected in view of T cell lymphopenia in patients with NBS.
Collapse
Affiliation(s)
- Barbara Piatosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Katarzyna Tkaczyk
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Urszula Grycuk
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Wakulinska
- Department of Oncology, Children's Memorial Health Institute, Warsaw, Poland
| | - Hanna Gregorek
- Department of Microbiology and Clinical Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
3
|
Lacoste S, Bhatia S, Chen Y, Bhatia R, O’Connor TR. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes. PLoS One 2017; 12:e0171473. [PMID: 28207808 PMCID: PMC5313139 DOI: 10.1371/journal.pone.0171473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient's stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much higher than the 0.65% predicted for such a short time frame, based on ageing results for healthy individuals.
Collapse
Affiliation(s)
- Sandrine Lacoste
- Department of Cancer Biology, Beckman Research Institute, Duarte, California, United States of America
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy R. O’Connor
- Department of Cancer Biology, Beckman Research Institute, Duarte, California, United States of America
| |
Collapse
|
4
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
5
|
DNA repair in human pluripotent stem cells is distinct from that in non-pluripotent human cells. PLoS One 2012; 7:e30541. [PMID: 22412831 PMCID: PMC3295811 DOI: 10.1371/journal.pone.0030541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use.
Collapse
|
6
|
Hada M, Huff JL, Patel ZS, Kawata T, Pluth JM, George KA, Cucinotta FA. AT cells are not radiosensitive for simple chromosomal exchanges at low dose. Mutat Res 2011; 716:76-83. [PMID: 21889946 DOI: 10.1016/j.mrfmmm.2011.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5Gy) of ionizing radiation (X-rays or γ-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1Gy and higher, but were similar to wild type cells at 0.5Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose.
Collapse
Affiliation(s)
- Megumi Hada
- USRA Division of Life Sciences, Houston, TX 77058, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Keimling M, Volcic M, Csernok A, Wieland B, Dörk T, Wiesmüller L. Functional characterization connects individual patient mutations in
ataxia telangiectasia mutated (ATM)
with dysfunction of specific DNA double‐strand break‐repair signaling pathways. FASEB J 2011; 25:3849-60. [DOI: 10.1096/fj.11-185546] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marlen Keimling
- Department of Obstetrics and GynecologyUlm University Ulm Germany
| | - Meta Volcic
- Department of Obstetrics and GynecologyUlm University Ulm Germany
| | - Andreea Csernok
- Department of Obstetrics and GynecologyUlm University Ulm Germany
| | - Britta Wieland
- Gynecology Research UnitHannover Medical School Hannover Germany
- Department of Radiation OncologyHannover Medical School Hannover Germany
| | - Thilo Dörk
- Gynecology Research UnitHannover Medical School Hannover Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and GynecologyUlm University Ulm Germany
| |
Collapse
|
8
|
Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Prog Neurobiol 2011; 94:166-200. [PMID: 21550379 PMCID: PMC3123739 DOI: 10.1016/j.pneurobio.2011.04.013] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/17/2023]
Abstract
Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington's disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration.
Collapse
Affiliation(s)
- Dennis Kjølhede Jeppesen
- Danish Centre for Molecular Gerontology and DanishAgingResearchCenter, University of Aarhus, Department of Molecular Biology, C. F. MoellersAllé 3, build. 1130, 8000 Aarhus C, Denmark
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD21224-8626, USA
| | - Tinna Stevnsner
- Danish Centre for Molecular Gerontology and DanishAgingResearchCenter, University of Aarhus, Department of Molecular Biology, C. F. MoellersAllé 3, build. 1130, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Chan CY, Zhu J, Schiestl RH. Effect of rad50 mutation on illegitimate recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2011; 285:471-84. [PMID: 21512733 DOI: 10.1007/s00438-011-0619-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
Abstract
Genes in the RAD52 epistasis group are involved in repairing DNA double-stranded breaks via homologous recombination. We have previously shown that RAD50 is involved in mitotic nonhomologous integration but not in homologous integration. However, the role of Rad50 in nonhomologous integration has not previously been examined. In the current work, we report that the rad50∆ mutation caused a tenfold decrease in the frequency of nonhomologous integration with the majority of nonhomologous integrants showing an unstable Ura(+) phenotype. Sequencing analysis of the integration target sites showed that integration events of both ends of the integrating vector in the rad50∆ mutant occurred at different chromosomal locations, resulting in large deletions or translocations on the genomic insertion sites. Interestingly, 47% of events in the rad50∆ mutant were integrated into repetitive sequences including rDNA locus, telomeres and Ty elements and 27% of events were integrated into non-repetitive sequences as compared to 11% of events integrated into rDNA and 70% into non-repetitive sequences in the wild-type cells. These results showed that deletion of RAD50 significantly changes the distribution of different classes of integration events, suggesting that Rad50 is required for nonhomologous integration at non-repetitive sequences more so than at repetitive ones. Furthermore, Southern analysis indicated that half of the events contained deletions at one or at both ends of the integrating DNA fragment, suggesting that Rad50 might have a role in protecting free ends of double-strand breaks. In contrast to the rad50∆ mutant, the rad50S mutant (separation of function allele) slightly increases the frequency of nonhomologous integration but the distribution of integration events is similar to that of wild-type cells with the majority of events integrated into a chromosomal locus. Our results suggest that deletion of RAD50 may block the major pathway of nonhomologous integration into a non-repetitive chromosomal locus and Rad50 may be involved in tethering two ends of the integrating DNA into close proximity that facilitates nonhomologous integration of both ends into a single chromosomal locus.
Collapse
Affiliation(s)
- Cecilia Y Chan
- Departments of Pathology, Environmental Health, and Radiation Oncology, David Geffen School of Medicine at UCLA and UCLA School of Public Health, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
10
|
Degerman S, Siwicki JK, Osterman P, Lafferty-Whyte K, Keith WN, Roos G. Telomerase upregulation is a postcrisis event during senescence bypass and immortalization of two Nijmegen breakage syndrome T cell cultures. Aging Cell 2010; 9:220-35. [PMID: 20089118 DOI: 10.1111/j.1474-9726.2010.00550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Our knowledge on immortalization and telomere biology is mainly based on genetically manipulated cells analyzed before and many population doublings post growth crisis. The general view is that growth crisis is telomere length (TL) dependent and that escape from crisis is coupled to increased expression of the telomerase reverse transcriptase (hTERT) gene, telomerase activity upregulation and TL stabilization. Here we have analyzed the process of spontaneous immortalization of human T cells, regarding pathways involved in senescence and telomerase regulation. Two Nijmegen breakage syndrome (NBS) T cell cultures (S3R and S4) showed gradual telomere attrition until a period of growth crisis followed by the outgrowth of immortalized cells. Whole genome expression analysis indicated differences between pre-, early post- and late postcrisis cells. Early postcrisis cells demonstrated a logarithmic growth curve, very short telomeres and, notably, no increase in hTERT or telomerase activity despite downregulation of several negative hTERT regulators (e.g. FOS, JUN D, SMAD3, RUNX2, TNF-a and TGFb-R2). Thereafter, cMYC mRNA increased in parallel with increased hTERT expression, telomerase activity and elongation of short telomeres, indicating a step-wise activation of hTERT transcription involving reduction of negative regulators followed by activation of positive regulator(s). Gene expression analysis indicated that cells escaped growth crisis by deregulated DNA damage response and senescence controlling genes, including downregulation of ATM, CDKN1B (p27), CDKN2D (p19) and ASF1A and upregulation of CDK4, TWIST1, TP73L (p63) and SYK. Telomerase upregulation was thus found to be uncoupled to escape of growth crisis but rather a later event in the immortalization process of NBS T cell cultures.
Collapse
Affiliation(s)
- Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, SE-90185 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
Uhl M, Csernok A, Aydin S, Kreienberg R, Wiesmüller L, Gatz SA. Role of SIRT1 in homologous recombination. DNA Repair (Amst) 2010; 9:383-93. [PMID: 20097625 DOI: 10.1016/j.dnarep.2009.12.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/27/2009] [Accepted: 12/21/2009] [Indexed: 11/27/2022]
Abstract
The class III histone deacetylase (HDAC) SIRT1 plays a role in the metabolism, aging, and carcinogenesis of organisms and regulates senescence and apoptosis in cells. Recent reports revealed that SIRT1 also deacetylates several DNA double-strand break (DSB) repair proteins. However, its exact functions in DNA repair remained elusive. Using nuclear foci analysis and fluorescence-based, chromosomal DSB repair reporter, we find that SIRT1 activity promotes homologous recombination (HR) in human cells. Importantly, this effect is unrelated to functions of poly(ADP-ribose) polymerase 1 (PARP1), another NAD(+)-catabolic protein, and does not correlate with cell cycle changes or apoptosis. Interestingly, we demonstrate that inactivation of Rad51 does not eliminate the effect of SIRT1 on HR. By epistasis-like analysis through knockdown and use of mutant cells of distinct SIRT1 target proteins, we show that the non-homologous end joining (NHEJ) factor Ku70 as well as the Nijmegen Breakage Syndrome protein (nibrin) are not needed for this SIRT1-mediated effect, even though a partial contribution of nibrin cannot be excluded. Strikingly however, the Werner helicase (WRN), which in its mutated form causes premature aging and cancer and which was linked to the Rad51-independent single-strand annealing (SSA) DSB repair pathway, is required for SIRT1-mediated HR. These results provide first evidence that links SIRT1's functions to HR with possible implications for genomic stability during aging and tumorigenesis.
Collapse
Affiliation(s)
- Miriam Uhl
- Department of Obstetrics and Gynecology of the University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Taylor EM, Cecillon SM, Bonis A, Chapman JR, Povirk LF, Lindsay HD. The Mre11/Rad50/Nbs1 complex functions in resection-based DNA end joining in Xenopus laevis. Nucleic Acids Res 2009; 38:441-54. [PMID: 19892829 PMCID: PMC2811014 DOI: 10.1093/nar/gkp905] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is essential to maintain genomic integrity. In higher eukaryotes, DNA DSBs are predominantly repaired by non-homologous end joining (NHEJ), but DNA ends can also be joined by an alternative error-prone mechanism termed microhomology-mediated end joining (MMEJ). In MMEJ, the repair of DNA breaks is mediated by annealing at regions of microhomology and is always associated with deletions at the break site. In budding yeast, the Mre11/Rad5/Xrs2 complex has been demonstrated to play a role in both classical NHEJ and MMEJ, but the involvement of the analogous MRE11/RAD50/NBS1 (MRN) complex in end joining in higher eukaryotes is less certain. Here we demonstrate that in Xenopus laevis egg extracts, the MRN complex is not required for classical DNA-PK-dependent NHEJ. However, the XMRN complex is necessary for resection-based end joining of mismatched DNA ends. This XMRN-dependent end joining process is independent of the core NHEJ components Ku70 and DNA-PK, occurs with delayed kinetics relative to classical NHEJ and brings about repair at sites of microhomology. These data indicate a role for the X. laevis MRN complex in MMEJ.
Collapse
Affiliation(s)
- Elaine M Taylor
- Divisions of Medicine and Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | | | | | | | | | | |
Collapse
|
13
|
Di Virgilio M, Ying CY, Gautier J. PIKK-dependent phosphorylation of Mre11 induces MRN complex inactivation by disassembly from chromatin. DNA Repair (Amst) 2009; 8:1311-20. [PMID: 19709933 DOI: 10.1016/j.dnarep.2009.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 11/17/2022]
Abstract
The role of Mre11 phosphorylation in the cellular response to DNA double-strand breaks (DSBs) is not well understood. Here, we show that phosphorylation of Mre11 at SQ/TQ motifs by PIKKs (PI3 Kinase-related Kinases) induces MRN (Mre11-Rad50-Nbs1) complex dissociation from chromatin by reducing Mre11 affinity for DNA. Whereas phosphorylation of Mre11 at these residues is not required for DSB-induced ATM (Ataxia-Telangiectasia mutated) activation, abrogation of Mre11 dephosphorylation impairs ATM signaling. Our study provides a functional characterization of the DNA damage-induced Mre11 phosphorylation, and suggests that MRN inactivation participates in the down-regulation of damage signaling during checkpoint recovery following DSB repair.
Collapse
Affiliation(s)
- Michela Di Virgilio
- Institute for Cancer Genetics, Department of Genetics and Development, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | | | |
Collapse
|
14
|
Mukherjee S, LaFave MC, Sekelsky J. DNA damage responses in Drosophila nbs mutants with reduced or altered NBS function. DNA Repair (Amst) 2009; 8:803-12. [PMID: 19395318 PMCID: PMC2702778 DOI: 10.1016/j.dnarep.2009.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/22/2022]
Abstract
The MRN complex, composed of MRE11, RAD50 and NBS, plays important roles in responding to DNA double-strand breaks (DSBs). In metazoans, functional studies of genes encoding these proteins have been challenging because complete loss-of-function mutations are lethal at the organismal level and because NBS has multiple functions in DNA damage responses. To study functions of Drosophila NBS in DNA damage responses, we used a separation-of-function mutation that causes loss of the forkhead-associated (FHA) domain. Loss of the FHA domain resulted in hypersensitivity to ionizing radiation and defects in gap repair by homologous recombination, but had only a small effect on the DNA damage checkpoint response and did not impair DSB repair by end joining. We also found that heterozygosity for an nbs null mutation caused reduced gap repair and loss of the checkpoint response to low-dose irradiation. These findings shed light on possible sources of the cancer predisposition found in human carriers of NBN mutations.
Collapse
Affiliation(s)
- Sushmita Mukherjee
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Matthew C. LaFave
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
15
|
Desjardins S, Beauparlant JC, Labrie Y, Ouellette G, Durocher F. Variations in the NBN/NBS1 gene and the risk of breast cancer in non-BRCA1/2 French Canadian families with high risk of breast cancer. BMC Cancer 2009; 9:181. [PMID: 19523210 PMCID: PMC2702391 DOI: 10.1186/1471-2407-9-181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 06/12/2009] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The Nijmegen Breakage Syndrome is a chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency, and increased frequency of cancers. Familial studies on relatives of these patients indicated that they also appear to be at increased risk of cancer. METHODS In a candidate gene study aiming at identifying genetic determinants of breast cancer susceptibility, we undertook the full sequencing of the NBN gene in our cohort of 97 high-risk non-BRCA1 and -BRCA2 breast cancer families, along with 74 healthy unrelated controls, also from the French Canadian population. In silico programs (ESEfinder, NNSplice, Splice Site Finder and MatInspector) were used to assess the putative impact of the variants identified. The effect of the promoter variant was further studied by luciferase gene reporter assay in MCF-7, HEK293, HeLa and LNCaP cell lines. RESULTS Twenty-four variants were identified in our case series and their frequency was further evaluated in healthy controls. The potentially deleterious p.Ile171Val variant was observed in one case only. The p.Arg215Trp variant, suggested to impair NBN binding to histone gamma-H2AX, was observed in one breast cancer case and one healthy control. A promoter variant c.-242-110delAGTA displayed a significant variation in frequency between both sample sets. Luciferase reporter gene assay of the promoter construct bearing this variant did not suggest a variation of expression in the MCF-7 breast cancer cell line, but indicated a reduction of luciferase expression in both the HEK293 and LNCaP cell lines. CONCLUSION Our analysis of NBN sequence variations indicated that potential NBN alterations are present, albeit at a low frequency, in our cohort of high-risk breast cancer cases. Further analyses will be needed to fully ascertain the exact impact of those variants on breast cancer susceptibility, in particular for variants located in NBN promoter region.
Collapse
Affiliation(s)
- Sylvie Desjardins
- Cancer Genomics Laboratory, Oncology and Molecular Endocrinology Research Centre, Centre Hospitalier Universitaire de Québec and Laval University, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Lu M, Lu J, Yang X, Yang M, Tan H, Yun B, Shi L. Association between the NBS1 E185Q polymorphism and cancer risk: a meta-analysis. BMC Cancer 2009; 9:124. [PMID: 19393077 PMCID: PMC2680905 DOI: 10.1186/1471-2407-9-124] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/24/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND NBS1 is a key DNA repair protein in the homologous recombination repair pathway and a signal modifier in the intra-S phase checkpoint that plays important roles in maintaining genomic stability. The NBS1 8360G>C (Glu185Gln) is one of the most commonly studied polymorphisms of the gene for their association with risk of cancers, but the results are conflicting. METHODS We performed a meta-analysis using 16 eligible case-control studies (including 17 data sets) with a total of 9,734 patients and 10,325 controls to summarize the data on the association between the NBS1 8360G>C (E185Q) polymorphism and cancer risk. RESULTS Compared with the common 8360GG genotype, the carriers of variant genotypes (i.e., 8360 GC/CC) had a 1.06-fold elevated risk of cancer (95% CI = 1.00-1.12, P = 0.05) in a dominant genetic model as estimated in a fixed effect model. However, the association was not found in an additive genetic model (CC vs GG) (odds ratio, OR = 0.98, 95% CI = 0.85-1.13, P = 0.78) nor in a recessive genetic model (CC vs GC +GG) (OR = 0.94, 95% CI = 0.82-1.07, P = 0.36). The effect of the 8360G>C (E185Q) polymorphism was further evaluated in stratification analysis. It was demonstrated that the increased risk of cancer associated with 8360G>C variant genotypes was more pronounced in the Caucasians (OR = 1.07, 95% CI = 1.01-1.14, P = 0.03). CONCLUSION Our meta-analysis suggests that the NBS1 E185Q variant genotypes (8360 GC/CC) might be associated with an increased risk of cancer, especially in Caucasians.
Collapse
Affiliation(s)
- Meixia Lu
- Department of Epidemiology and Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jiachun Lu
- The Institute for Chemical Carcinogenesis, Guangzhou Medical College, Guangzhou 510182, PR China
| | - Xiaobo Yang
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Miao Yang
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hao Tan
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bai Yun
- Institute of Occupational Medicine and The MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Luyuan Shi
- Department of Epidemiology and Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| |
Collapse
|
17
|
Scuric Z, Chan CY, Hafer K, Schiestl RH. Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells. Radiat Res 2009; 171:454-63. [PMID: 19397446 PMCID: PMC2709764 DOI: 10.1667/rr1329.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA double-strand breaks repaired through nonhomologous end joining require no extended sequence homology as a template for the repair. A subset of end-joining events, termed microhomology-mediated end joining, occur between a few base pairs of homology, and such pathways have been implicated in different human cancers and genetic diseases. Here we investigated the effect of exposure of yeast and mammalian cells to ionizing radiation on the frequency and mechanism of rejoining of transfected unirradiated linear plasmid DNA. Cells were exposed to gamma radiation prior to plasmid transfection; subsequently the rejoined plasmids were recovered and the junction sequences were analyzed. In irradiated yeast cells, 68% of recovered plasmids contained microhomologies, compared to only 30% from unirradiated cells. Among them 57% of events used>or=4 bp of microhomology compared to only 11% from unirradiated cells. In irradiated mammalian cells, 54% of plasmids used>or=4 bp of microhomology compared to none from unirradiated cells. We conclude that exposure of yeast and mammalian cells to radiation prior to plasmid transfection enhances the frequency of microhomology-mediated end-joining events in trans. If such events occur within genomic locations, they may be involved in the generation of large deletions and other chromosomal aberrations that occur in cancer cells.
Collapse
Affiliation(s)
- Zorica Scuric
- David Geffen School of Medicine at UCLA, Department of Pathology, Los Angeles, California, USA
| | | | | | | |
Collapse
|
18
|
Riches LC, Lynch AM, Gooderham NJ. Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 2008; 23:331-9. [PMID: 18644834 DOI: 10.1093/mutage/gen039] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Physical and chemical agents that induce DNA double-strand breaks (DSBs) are among the most potent mutagens. The mammalian cell response to DSB comprises a highly co-ordinated, yet complex network of proteins that have been categorized as sensors, signal transducers, mediators and effectors of damage and repair. While this provides an accessible classification system, review of the literature indicates that many proteins satisfy the criteria of more than one category, pointing towards a series of highly co-operative pathways with overlapping function. In summary, the MRE11-NBS1-RAD50 complex is necessary for achieving optimal activation of ataxia-telangiectasia-mutated (ATM) kinase, which catalyses a phosphorylation-mediated signal transduction cascade. Among the subset of proteins phosphorylated by ATM are histone H2AX (H2AX), mediator of damage checkpoint protein 1, nibrin (NBS1), P53-binding protein 1 and breast cancer protein 1, all of which subsequently redistribute into DSB-containing sub-nuclear compartments. Post-translational modification of DSB responding proteins achieves a rapid and reversible change in protein behaviour and mediates damage-specific interactions, hence imparting a high degree of vigilance to the cell. This review highlights events fundamental in maintaining genetic integrity with emphasis on early stages of the DSB response.
Collapse
Affiliation(s)
- Lucy C Riches
- Department of Biomolecular Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
19
|
Iijima K, Ohara M, Seki R, Tauchi H. Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage. JOURNAL OF RADIATION RESEARCH 2008; 49:451-64. [PMID: 18772547 DOI: 10.1269/jrr.08065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling.
Collapse
Affiliation(s)
- Kenta Iijima
- Department of Environmental Sciences, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki, Japan
| | | | | | | |
Collapse
|
20
|
Sagan D, Mörtl S, Müller I, Eckardt-Schupp F, Eichholtz-Wirth H. Enhanced CD95-mediated apoptosis contributes to radiation hypersensitivity of NBS lymphoblasts. Apoptosis 2008; 12:753-67. [PMID: 17219051 DOI: 10.1007/s10495-006-0021-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The molecular causes for enhanced radiosensitivity of Nijmegen Breakage Syndrome cells are unclear, especially as repair of DNA damage is hardly impeded in these cells. We clearly demonstrate that radiation hypersensitivity is accompanied by enhanced gamma-radiation-induced apoptosis in NBS1 deficient lymphoblastoid cell lines. Differences in the apoptotic behavior of NBS1 (-/-) and NBS1 (+/-) cells are not due to an altered p53 stabilization or phosphorylation in NBS1 (-/-) cells. gamma-radiation-induced caspase-8 activity is increased and visualization of CD95 clustering by laser scanning microscopy shows a significant higher activation of the death receptor in NBS1 (-/-) cells. Further investigation of the molecular mechanisms reveals a role for reactive oxygen species-triggered activation of CD95. These results demonstrate that NBS1 suppresses the CD95 death receptor-dependent apoptotic pathway after gamma-irradiation and evidence is given that this is achieved by regulation of the PI3-K/AKT survival pathway.
Collapse
Affiliation(s)
- Daniel Sagan
- Institute of Radiobiology, GSF-National Research Center for Environment and Health, 85758 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Gatz SA, Keimling M, Baumann C, Dörk T, Debatin KM, Fulda S, Wiesmüller L. Resveratrol modulates DNA double-strand break repair pathways in an ATM/ATR-p53- and -Nbs1-dependent manner. Carcinogenesis 2008; 29:519-27. [PMID: 18174244 DOI: 10.1093/carcin/bgm283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Resveratrol (RV) inhibits tumour initiation, promotion and progression which has mainly been explained by its properties in cell cycle control and apoptosis induction. So far, ambiguous observations have been published regarding its influence on genomic stability. To study RV's effects on DNA double-strand break (DSB) repair, we applied the established enhanced green fluorescent protein (EGFP)- and I-SceI-based assay system on RV-treated lymphoblastoid cell lines (LCLs). We show that RV inhibits both, homologous recombination (HR) and non-homologous end joining (NHEJ) independently of its known growth and death regulatory functions. Using (i) the isogenic cell lines TK6 and WTK1, which differ in their p53 status, (ii) LCLs from patients with ataxia telangiectasia, (iii) shRNA-mediated p53 knockdown and (iv) chemical inhibition of ATM/ATR by caffeine, we established an ATM-p53-dependent pathway of HR inhibition by RV. Additional use of LCLs from Nijmegen breakage syndrome patients furthermore provided evidence for an ATM/ATR-Nbs1-dependent inhibition of microhomology-mediated NHEJ after RV treatment. We propose that activation of ATM and/or ATR is a central effect of RV. Repression of error-prone recombination subpathways could at least partially explain the chemopreventive effects of this natural plant constituent in animal cancer models.
Collapse
Affiliation(s)
- Susanne Andrea Gatz
- Children's Hospital of the University of Ulm, Eythstrasse 24, D-89075 Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Rink L, Slupianek A, Stoklosa T, Nieborowska-Skorska M, Urbanska K, Seferynska I, Reiss K, Skorski T. Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells. Blood 2007; 110:651-60. [PMID: 17431132 PMCID: PMC1924483 DOI: 10.1182/blood-2006-08-042630] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 01/27/2007] [Indexed: 02/06/2023] Open
Abstract
Nbs1, a member of the Mre11-RAD50-Nbs1 complex, is phosphorylated by ATM, the product of the ataxia-telangiectasia mutated gene and a member of the phosphatidylinositol 3-kinase-related family of serine-threonine kinases, in response to DNA double-strand breaks (DSBs) to regulate DNA damage checkpoints. Here we show that BCR/ABL stimulated Nbs1 expression by induction of c-Myc-dependent transactivation and protection from caspase-dependent degradation. BCR/ABL-related fusion tyrosine kinases (FTKs) such as TEL/JAK2, TEL/PDGFbetaR, TEL/ABL, TEL/TRKC, BCR/FGFR1, and NPM/ALK as well as interleukin 3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) also stimulated Nbs1 expression. Enhanced ATM kinase-dependent phosphorylation of Nbs1 on serine 343 (S343) in response to genotoxic treatment was detected in leukemia cells expressing BCR/ABL and other FTKs in comparison to normal counterparts stimulated with IL-3, GM-CSF, and SCF. Expression of Nbs1-S343A mutant disrupted the intra-S-phase checkpoint, decreased homologous recombinational repair (HRR) activity, down-regulated XIAP expression, and sensitized BCR/ABL-positive cells to cytotoxic drugs. Interestingly, inhibition of Nbs1 phosphorylation by S343A mutant enhanced the antileukemia effect of the combination of imatinib and genotoxic agent.
Collapse
Affiliation(s)
- Lori Rink
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Donahue SL, Tabah AA, Schmitz K, Aaron A, Campbell C. Defective signal joint recombination in fanconi anemia fibroblasts reveals a role for Rad50 in V(D)J recombination. J Mol Biol 2007; 370:449-58. [PMID: 17524422 PMCID: PMC2727996 DOI: 10.1016/j.jmb.2007.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
V(D)J recombination of immunoglobulin loci is dependent on the immune cell-specific Rag1 and Rag2 proteins as well as a number of ubiquitously expressed cellular DNA repair proteins that catalyze non-homologous end-joining of DNA double-strand breaks. The evolutionarily conserved Rad50/Mre11/Nibrin protein complex has a role in DNA double-strand break-repair, suggesting that these proteins, too, may participate in V(D)J recombination. Recent findings demonstrating that Rad50 function is defective in cells from patients afflicted with Fanconi anemia provide a possible mechanistic explanation for previous findings that lymphoblasts derived from these patients exhibit subtle defects in V(D)J recombination of extrachromosomal plasmid molecules. Here, we describe a series of findings that provide convincing evidence for a role of the Rad50 protein complex in V(D)J recombination. We found that the fidelity of V(D)J signal joint recombination in fibroblasts from patients afflicted with Fanconi anemia was reduced by nearly tenfold, compared to that observed in fibroblasts from normal donors. Second, we observed that antibody-mediated inhibition of the Rad50, Mre11, or Nibrin proteins reduced the fidelity of signal joint recombination significantly in wild-type cells. The latter finding was somewhat unexpected, because signal joint rejoining in cells from patients with Nijmegen breakage syndrome, which results from mutations in the Nibrin gene, occurs with normal fidelity. However, introduction of anti-Nibrin antibodies into these cells reduced the fidelity of signal joint recombination dramatically. These data reveal for the first time a role for the Rad50 complex in V(D)J recombination, and demonstrate that the protein product of the disease-causing allele responsible for Nijmegen breakage syndrome encodes a protein with residual DNA double-strand break repair activity.
Collapse
Affiliation(s)
| | | | - Kyle Schmitz
- From the Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455
| | - Ashley Aaron
- From the Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455
| | - Colin Campbell
- From the Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455
| |
Collapse
|
24
|
Ohnishi K, Scuric Z, Yau D, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T. Heat-induced phosphorylation of NBS1 in human skin fibroblast cells. J Cell Biochem 2007; 99:1642-50. [PMID: 16823774 DOI: 10.1002/jcb.20995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
NBS1 is known to be involved in DNA damage-induced cellular responses after exposure to ionizing radiation (IR). Phosphorylation of NBS1 contributes to cell-cycle checkpoints. The aim of this study was to determine whether heat exposure induces or stimulates cellular responses mediated by the phosphorylation of NBS1 in human skin fibroblast cell lines. The results of immunofluorescent staining and Western blot analysis showed that NBS1 proteins are phosphorylated after exposure to heat in the nucleus of a normal skin fibroblast cell line (82-6 cells). This suggests that the NBS1-mediated signal transduction could be induced by heat. We further examined whether a deficiency in the NBS1 protein modifies heat sensitivity in human skin fibroblast cell lines. A skin fibroblast cell line (Gmtert), derived from a Nijmegen breakage syndrome (NBS) patient containing mutant NBS1, showed higher sensitivity to heat than the same cell line transfected with the wild-type copy of the NBS1 gene. We also showed that transfection of a DNA cassette expressing small interference RNA (siRNA) targeted to NBS1 into 82-6 cells enhanced cell sensitivity to heat. These results suggest that NBS1 is involved in cellular responses to DNA damage which is induced by heat exposure as well as by radiation exposure in human skin fibroblast cells.
Collapse
Affiliation(s)
- Ken Ohnishi
- Department of Biology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kondratenko I, Paschenko O, Polyakov A, Bologov A. Nijmegen Breakage Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:61-7. [PMID: 17712992 DOI: 10.1007/978-0-387-72005-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disease, characterized by microcephaly, growth retardation, immunodeficiency, chromosome instability, radiation sensitivity, and a strong predisposition to lymphoid malignancy. The gene responsible for the development of this syndrome (NBS1) was mapped on chromosome 8q21. The product of this gene--nibrin--is a protein with 95 kDa molecular weight (p95). The same mutation in the NBS1 gene (deletion 657del5) was detected in most of the evaluated patients. In this chapter, we describe the analysis of the literature and our results on clinical and immunological features and genetic evaluation of 21 NBS patients.
Collapse
Affiliation(s)
- Irina Kondratenko
- Russian Clinical Children's Hospital, Institute for Clinical Genetics, Moscow, Russia.
| | | | | | | |
Collapse
|
26
|
Yang YG, Saidi A, Frappart PO, Min W, Barrucand C, Dumon-Jones V, Michelon J, Herceg Z, Wang ZQ. Conditional deletion of Nbs1 in murine cells reveals its role in branching repair pathways of DNA double-strand breaks. EMBO J 2006; 25:5527-38. [PMID: 17082765 PMCID: PMC1679756 DOI: 10.1038/sj.emboj.7601411] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 10/06/2006] [Indexed: 12/22/2022] Open
Abstract
NBS1 forms a complex with MRE11 and RAD50 (MRN) that is proposed to act on the upstream of two repair pathways of DNA double-strand break (DSB), homologous repair (HR) and non-homologous end joining (NHEJ). However, the function of Nbs1 in these processes has not fully been elucidated in mammals due to the lethal phenotype of cells and mice lacking Nbs1. Here, we have constructed mouse Nbs1-null embryonic fibroblasts and embryonic stem cells, through the Cre-loxP and sequential gene targeting techniques. We show that cells lacking Nbs1 display reduced HR of the single DSB in chromosomally integrated substrate, affecting both homology-directed repair (HDR) and single-stranded annealing pathways, and, surprisingly, increased NHEJ-mediated sequence deletion. Moreover, focus formation at DSBs and chromatin recruitment of the Nbs1 partners Rad50 and Mre11 as well as Rad51 and Brca1 are attenuated in these cells, whereas the NHEJ molecule Ku70 binding to chromatin is not affected. These data provide a novel insight into the function of MRN in the branching of DSB repair pathways.
Collapse
Affiliation(s)
- Yun-Gui Yang
- International Agency for Research on Cancer, Lyon, France
| | - Amal Saidi
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | - Wookee Min
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
| | | | | | | | - Zdenko Herceg
- International Agency for Research on Cancer, Lyon, France
| | - Zhao-Qi Wang
- International Agency for Research on Cancer, Lyon, France
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Jena, Germany
- Leibniz Institute for Age Research – Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany. Tel.: +49 3641 656415; Fax: +49 3641 656413; E-mail:
| |
Collapse
|