1
|
Islam MZ, Shen X, Pardue S, Kevil CG, Shackelford RE. The ataxia-telangiectasia mutated gene product regulates the cellular acid-labile sulfide fraction. DNA Repair (Amst) 2022; 116:103344. [PMID: 35696854 PMCID: PMC11118069 DOI: 10.1016/j.dnarep.2022.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
Abstract
The ataxia-telangiectasia mutated (ATM) protein regulates cell cycle checkpoints, the cellular redox state, and double-stranded DNA break repair. ATM loss causes the disorder ataxia-telangiectasia (A-T), distinguished by ataxia, telangiectasias, dysregulated cellular redox and iron responses, and an increased cancer risk. We examined the sulfur pool in A-T cells, with and without an ATM expression vector. While free and bound sulfide levels were not changed with ATM expression, the acid-labile sulfide faction was significantly increased. ATM expression also increased cysteine desulfurase (NFS1), NFU1 iron-sulfur cluster scaffold homolog protein, and several mitochondrial complex I proteins' expression. Additionally, ATM expression suppressed cystathionine β-synthase and cystathionine γ-synthase protein expression, cystathionine γ-synthase enzymatic activity, and increased the reduced to oxidized glutathione ratio. This last observation is interesting, as dysregulated glutathione is implicated in A-T pathology. As ATM expression increases the expression of proteins central in initiating 2Fe-2S and 4Fe-4S cluster formation (NFS1 and NFU1, respectively), and the acid-labile sulfide faction is composed of sulfur incorporated into Fe-S clusters, our data indicates that ATM regulates aspects of Fe-S cluster biosynthesis, the transsulfuration pathway, and glutathione redox cycling. Thus, our data may explain some of the redox- and iron-related pathologies seen in A-T.
Collapse
Affiliation(s)
- Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Xinggui Shen
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Sibile Pardue
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Christopher G Kevil
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States
| | - Rodney E Shackelford
- Department of Pathology & Translational Pathobiology, LSU Health Sciences Center Shreveport, Shreveport, LA 71130, United States.
| |
Collapse
|
2
|
Discovery of Therapeutics Targeting Oxidative Stress in Autosomal Recessive Cerebellar Ataxia: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15060764. [PMID: 35745683 PMCID: PMC9228961 DOI: 10.3390/ph15060764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of rare neurodegenerative inherited disorders. The resulting motor incoordination and progressive functional disabilities lead to reduced lifespan. There is currently no cure for ARCAs, likely attributed to the lack of understanding of the multifaceted roles of antioxidant defense and the underlying mechanisms. This systematic review aims to evaluate the extant literature on the current developments of therapeutic strategies that target oxidative stress for the management of ARCAs. We searched PubMed, Web of Science, and Science Direct Scopus for relevant peer-reviewed articles published from 1 January 2016 onwards. A total of 28 preclinical studies fulfilled the eligibility criteria for inclusion in this systematic review. We first evaluated the altered cellular processes, abnormal signaling cascades, and disrupted protein quality control underlying the pathogenesis of ARCA. We then examined the current potential therapeutic strategies for ARCAs, including aromatic, organic and pharmacological compounds, gene therapy, natural products, and nanotechnology, as well as their associated antioxidant pathways and modes of action. We then discussed their potential as antioxidant therapeutics for ARCAs, with the long-term view toward their possible translation to clinical practice. In conclusion, our current understanding is that these antioxidant therapies show promise in improving or halting the progression of ARCAs. Tailoring the therapies to specific disease stages could greatly facilitate the management of ARCAs.
Collapse
|
3
|
Levi H, Bar E, Cohen-Adiv S, Sweitat S, Kanner S, Galron R, Mitiagin Y, Barzilai A. Dysfunction of cerebellar microglia in Ataxia-telangiectasia. Glia 2021; 70:536-557. [PMID: 34854502 DOI: 10.1002/glia.24122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Ataxia-telangiectasia (A-T) is a multisystem autosomal recessive disease caused by mutations in the ATM gene and characterized by cerebellar atrophy, progressive ataxia, immunodeficiency, male and female sterility, radiosensitivity, cancer predisposition, growth retardation, insulin-resistant diabetes, and premature aging. ATM phosphorylates more than 1500 target proteins, which are involved in cell cycle control, DNA repair, apoptosis, modulation of chromatin structure, and other cytoplasmic as well as mitochondrial processes. In our quest to better understand the mechanisms by which ATM deficiency causes cerebellar degeneration, we hypothesized that specific vulnerabilities of cerebellar microglia underlie the etiology of A-T. Our hypothesis is based on the recent finding that dysfunction of glial cells affect a variety of process leading to impaired neuronal functionality (Song et al., 2019). Whereas astrocytes and neurons descend from the neural tube, microglia originate from the hematopoietic system, invade the brain at early embryonic stage, and become the innate immune cells of the central nervous system and important participants in development of synaptic plasticity. Here we demonstrate that microglia derived from Atm-/- mouse cerebellum display accelerated cell migration and are severely impaired in phagocytosis, secretion of neurotrophic factors, and mitochondrial activity, suggestive of apoptotic processes. Interestingly, no microglial impairment was detected in Atm-deficient cerebral cortex, and Atm deficiency had less impact on astroglia than microglia. Collectively, our findings validate the roles of glial cells in cerebellar attrition in A-T.
Collapse
Affiliation(s)
- Hadar Levi
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ela Bar
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stav Cohen-Adiv
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Suzan Sweitat
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Mitiagin
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
5
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
6
|
Shiloh Y. The cerebellar degeneration in ataxia-telangiectasia: A case for genome instability. DNA Repair (Amst) 2020; 95:102950. [PMID: 32871349 DOI: 10.1016/j.dnarep.2020.102950] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023]
Abstract
Research on the molecular pathology of genome instability disorders has advanced our understanding of the complex mechanisms that safeguard genome stability and cellular homeostasis at large. Once the culprit genes and their protein products are identified, an ongoing dialogue develops between the research lab and the clinic in an effort to link specific disease symptoms to the functions of the proteins that are missing in the patients. Ataxi A-T elangiectasia (A-T) is a prominent example of this process. A-T's hallmarks are progressive cerebellar degeneration, immunodeficiency, chronic lung disease, cancer predisposition, endocrine abnormalities, segmental premature aging, chromosomal instability and radiation sensitivity. The disease is caused by absence of the powerful protein kinase, ATM, best known as the mobilizer of the broad signaling network induced by double-strand breaks (DSBs) in the DNA. In parallel, ATM also functions in the maintenance of the cellular redox balance, mitochondrial function and turnover and many other metabolic circuits. An ongoing discussion in the A-T field revolves around the question of which ATM function is the one whose absence is responsible for the most debilitating aspect of A-T - the cerebellar degeneration. This review suggests that it is the absence of a comprehensive role of ATM in responding to ongoing DNA damage induced mainly by endogenous agents. It is the ensuing deterioration and eventual loss of cerebellar Purkinje cells, which are very vulnerable to ATM absence due to a unique combination of physiological features, which kindles the cerebellar decay in A-T.
Collapse
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Genetics, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University Medical School, Tel Aviv, 69978, Israel.
| |
Collapse
|
7
|
Chen PH, Tseng WHS, Chi JT. The Intersection of DNA Damage Response and Ferroptosis-A Rationale for Combination Therapeutics. BIOLOGY 2020; 9:E187. [PMID: 32718025 PMCID: PMC7464484 DOI: 10.3390/biology9080187] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/17/2022]
Abstract
Ferroptosis is a novel form of iron-dependent cell death characterized by lipid peroxidation. While the importance and disease relevance of ferroptosis are gaining recognition, much remains unknown about its interaction with other biological processes and pathways. Recently, several studies have identified intricate and complicated interplay between ferroptosis, ionizing radiation (IR), ATM (ataxia-telangiectasia mutated)/ATR (ATM and Rad3-related), and tumor suppressor p53, which signifies the participation of the DNA damage response (DDR) in iron-related cell death. DDR is an evolutionarily conserved response triggered by various DNA insults to attenuate proliferation, enable DNA repairs, and dispose of cells with damaged DNA to maintain genome integrity. Deficiency in proper DDR in many genetic disorders or tumors also highlights the importance of this pathway. In this review, we will focus on the biological crosstalk between DDR and ferroptosis, which is mediated mostly via noncanonical mechanisms. For clinical applications, we also discuss the potential of combining ionizing radiation and ferroptosis-inducers for synergistic effects. At last, various ATM/ATR inhibitors under clinical development may protect ferroptosis and treat many ferroptosis-related diseases to prevent cell death, delay disease progression, and improve clinical outcomes.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Watson Hua-Sheng Tseng
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA; (P.-H.C.); (W.H.-S.T.)
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
8
|
Lu N, Neoh CL, Ruan Z, Zhao L, Ying L, Zhang X, Chen S, Xu L. Essential Thrombocythaemia with Concomitant Waldenström Macroglobulinaemia: Case Report and Literature Review. Onco Targets Ther 2020; 13:3431-3435. [PMID: 32425546 PMCID: PMC7186880 DOI: 10.2147/ott.s245950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 11/28/2022] Open
Abstract
Essential thrombocythaemia (ET) and Waldenström macroglobulinaemia (WM) are two distinct disorders. Studies have reported several cases of myeloproliferative neoplasms (MPNs) with concomitant plasma cell dyscrasia. However, there were no reported cases of ET with concomitant WM to date. Here, we present a 55-year-old Chinese man with thrombocytosis and raised immunoglobulin level. Further investigations led to a diagnosis of ET and coexistent WM. Next-generation sequencing (NGS) of his bone marrow identified 3 mutated genes: JAK2 V617F, MYD88 L265P, and ATM F1036L. After being treated with pegylated interferon and low-dose aspirin, his platelet count normalized and immunoglobulin M (IgM) level reduced. To the best of our knowledge, this is the first reported case of dual pathology ET with WM.
Collapse
Affiliation(s)
- Nina Lu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Chin Loon Neoh
- Department of Hematology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Zhengying Ruan
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Lei Zhao
- Department of Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Limei Ying
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Xiaochang Zhang
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Sai Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, People's Republic of China
| |
Collapse
|
9
|
Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J Neurosci 2019; 39:6378-6394. [PMID: 31189575 DOI: 10.1523/jneurosci.0774-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023] Open
Abstract
ATM (ataxia-telangiectasia mutated) is a PI3K-like kinase best known for its role in the DNA damage response (DDR), especially after double-strand breaks. Mutations in the ATM gene result in a condition known as ataxia-telangiectasia (A-T) that is characterized by cancer predisposition, radiosensitivity, neurodegeneration, sterility, and acquired immune deficiency. We show here that the innate immune system is not spared in A-T. ATM-deficient microglia adopt an active phenotype that includes the overproduction of proinflammatory cytokines that are toxic to cultured neurons and likely contribute to A-T neurodegeneration. Causatively, ATM dysfunction results in the accumulation of DNA in the cytoplasm of microglia as well as a variety of other cell types. In microglia, cytoplasmic DNA primes an antiviral response via the DNA sensor, STING (stimulator of interferon genes). The importance of this response pathway is supported by our finding that inhibition of STING blocks the overproduction of neurotoxic cytokines. Cytosolic DNA also activates the AIM2 (absent in melanoma 2) containing inflammasome and induces proteolytic processing of cytokine precursors such as pro-IL-1β. Our study furthers our understanding of neurodegeneration in A-T and highlights the role of cytosolic DNA in the innate immune response.SIGNIFICANCE STATEMENT Conventionally, the immune deficiencies found in ataxia-telangiectasia (A-T) patients are viewed as defects of the B and T cells of the acquired immune system. In this study, we demonstrate the microglia of the innate immune system are also affected and uncover the mechanism by which this occurs. Loss of ATM (ataxia-telangiectasia mutated) activity leads to a slowing of DNA repair and an accumulation of cytoplasmic fragments of genomic DNA. This ectopic DNA induces the antivirus response, which triggers the production of neurotoxic cytokines. This expands our understanding of the neurodegeneration found in A-T and offers potentially new therapeutic options.
Collapse
|
10
|
Ding X, He Y, Hao Q, Chen S, Yang M, Leng SX, Yue J, Dong B. The association of single nucleotide polymorphism rs189037C>T in ATM gene with coronary artery disease in Chinese Han populations: A case control study. Medicine (Baltimore) 2018; 97:e9747. [PMID: 29369221 PMCID: PMC5794405 DOI: 10.1097/md.0000000000009747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Accumulated evidence has indicated that ataxia telangiectasia mutated (ATM) is closely related to atherosclerosis and cardiovascular diseases. So we aimed to examine potential association between a gene variant [single nucleotide polymorphisms (SNPs), i.e., rs189037C>T] in the promoter of ATM gene and coronary artery disease (CAD) in Chinese Han populations.In this hospital-based case-control study, a total of 1308 participants were divided into CAD group (652 patients) and control group (656 subjects) after performing coronary angiography. The SNP rs189037 was genotyped by using polymerase chain reaction-restriction fragment length polymorphism.The distribution of rs189037 genotypes and alleles showed a significant difference between CAD and control subjects (genotypes: P = .032; alleles: P = .028). The percentage of the TT genotype is much higher in control group than that in CAD group (22.0% vs 16.3%, P = .009). After adjustment of the major confounding factors, such difference remained significant (OR = 0.62, 95% CI = 0.43-0.89, P = .010). After analyzing data from different groups divided by genders and smoking status respectively, we found that the protective effect of TT genotype on CAD was significant in males (P = .007) and smokers (P = .031). The difference remained statistically significant after multivariate adjustment (adjusted in males: OR = 0.60, 95% CI = 0.38-0.93, P = .022; adjusted in smokers: OR = 0.47, 95% CI = 0.27-0.81, P = .006).Our study suggests that ATM rs189037 polymorphism is associated with CAD in Chinese Han populations. The TT genotype of rs189037 seems to be associated with a lower risk of CAD and a protective genetic marker of CAD, especially in males and smokers.
Collapse
Affiliation(s)
- Xiang Ding
- The Center of Gerontology and Geriatrics
- National Clinical Research Center of Geriatrics
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiukui Hao
- The Center of Gerontology and Geriatrics
| | | | - Ming Yang
- The Center of Gerontology and Geriatrics
| | - Sean X. Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jirong Yue
- The Center of Gerontology and Geriatrics
| | - Birong Dong
- The Center of Gerontology and Geriatrics
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu, Sichuan Province, China
| |
Collapse
|
11
|
Pietrucha B, Heropolitanska-Pliszka E, Maciejczyk M, Car H, Sawicka-Powierza J, Motkowski R, Karpinska J, Hryniewicka M, Zalewska A, Pac M, Wolska-Kusnierz B, Bernatowska E, Mikoluc B. Comparison of Selected Parameters of Redox Homeostasis in Patients with Ataxia-Telangiectasia and Nijmegen Breakage Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6745840. [PMID: 29456787 PMCID: PMC5804414 DOI: 10.1155/2017/6745840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/21/2017] [Accepted: 12/03/2017] [Indexed: 11/18/2022]
Abstract
This study compared the antioxidant status and major lipophilic antioxidants in patients with ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS). Total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and concentrations of coenzyme Q10 (CoQ10) and vitamins A and E were estimated in the plasma of 22 patients with AT, 12 children with NBS, and the healthy controls. In AT patients, TAS (median 261.7 μmol/L) was statistically lower but TOS (496.8 μmol/L) was significantly elevated in comparison with the healthy group (312.7 μmol/L and 311.2 μmol/L, resp.). Tocopherol (0.8 μg/mL) and CoQ10 (0.1 μg/mL) were reduced in AT patients versus control (1.4 μg/mL and 0.3 μg/mL, resp.). NBS patients also displayed statistically lower TAS levels (290.3 μmol/L), while TOS (404.8 μmol/L) was comparable to the controls. We found that in NBS patients retinol concentration (0.1 μg/mL) was highly elevated and CoQ10 (0.1 μg/mL) was significantly lower in comparison with those in the healthy group. Our study confirms disturbances in redox homeostasis in AT and NBS patients and indicates a need for diagnosing oxidative stress in those cases as a potential disease biomarker. Decreased CoQ10 concentration found in NBS and AT indicates a need for possible supplementation.
Collapse
Affiliation(s)
- Barbara Pietrucha
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Mateusz Maciejczyk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Poland
| | | | - Radosław Motkowski
- Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Poland
| | - Joanna Karpinska
- Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Pac
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Beata Wolska-Kusnierz
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Ewa Bernatowska
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Bozena Mikoluc
- Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Poland
| |
Collapse
|
12
|
Paulino TL, Rafael MN, Hix S, Shigueoka DC, Ajzen SA, Kochi C, Suano-Souza FI, da Silva R, Costa-Carvalho BT, Sarni ROS. Is age a risk factor for liver disease and metabolic alterations in ataxia Telangiectasia patients? Orphanet J Rare Dis 2017; 12:136. [PMID: 28778179 PMCID: PMC5545012 DOI: 10.1186/s13023-017-0689-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia (A-T) is a neurodegenerative disease that leads to mitochondrial dysfunction and oxidative stress. Insulin resistance (IR), type 2 diabetes and the risk for development of cardiovascular disease was recently associated as an extended phenotype of the disease. We aimed to assess IR; liver involvement; carotid intima-media thickness (cIMT) and metabolic alterations associated to cardiovascular risk in A-T patients, and relate them with age. RESULTS Glucose metabolism alterations were found in 54.6% of the patients. Hepatic steatosis was diagnosed in 11/17 (64.7%) A-T patients. AST/ALT ratio > 1 was observed in 10/17 (58.8%). A strong positive correlation was observed between insulin sum concentrations with ALT (r = 0.782, p < 0.004) and age (r = 0.818, p = 0.002). Dyslipidemia was observed in 55.5% of the patients. The apolipoprotein (Apo-B)/ApoA-I ratio (r = 0.619; p < 0.01), LDL/HDL-c (r = 0.490; p < 0.05) and the Apo-B levels (r = 0.545; p < 0.05) were positively correlated to cIMT. CONCLUSIONS Metabolic disorders implicated in cardiovascular and liver diseases are frequently observed in adolescent A-T patients and those tend to get worse as they become older. Therefore, nutritional intervention and the use of drugs may be necessary.
Collapse
Affiliation(s)
- Talita Lemos Paulino
- Department of Pediatrics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua dos Otonis, n° 725, Vila Clementino, São Paulo, SP, CEP 04025-002, Brazil
| | - Marina Neto Rafael
- Department of Pediatrics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua dos Otonis, n° 725, Vila Clementino, São Paulo, SP, CEP 04025-002, Brazil
| | - Sonia Hix
- Department of Morphology and Physiology, Faculdade de Medicina do ABC, ABC Foundation (FMABC), Santo André, SP, Brazil
| | - David Carlos Shigueoka
- Department of Diagnostic Imaging, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Sergio Aron Ajzen
- Department of Diagnostic Imaging, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Cristiane Kochi
- Santa Casa de Sao Paulo School of Medical Sciences (FCMSCSP), São Paulo, SP, Brazil
| | - Fabíola Isabel Suano-Souza
- Department of Pediatrics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua dos Otonis, n° 725, Vila Clementino, São Paulo, SP, CEP 04025-002, Brazil.
| | - Rosangela da Silva
- School of Nutrition, Federal University of Alfenas (UNIFAL, Alfenas, MG, Brazil
| | - Beatriz T Costa-Carvalho
- Department of Pediatrics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua dos Otonis, n° 725, Vila Clementino, São Paulo, SP, CEP 04025-002, Brazil
| | - Roseli O S Sarni
- Department of Pediatrics, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), Rua dos Otonis, n° 725, Vila Clementino, São Paulo, SP, CEP 04025-002, Brazil
| |
Collapse
|
13
|
Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Res Rev 2017; 33:76-88. [PMID: 27181190 DOI: 10.1016/j.arr.2016.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
A-T is a prototype genome instability syndrome and a multifaceted disease. A-T leads to neurodegeneration - primarily cerebellar atrophy, immunodeficiency, oculocutaneous telangiectasia (dilated blood vessels), vestigial thymus and gonads, endocrine abnormalities, cancer predisposition and varying sensitivity to DNA damaging agents, particularly those that induce DNA double-strand breaks. With the recent increase in life expectancy of A-T patients, the premature ageing component of this disease is gaining greater awareness. The complex A-T phenotype reflects the ever growing number of functions assigned to the protein encoded by the responsible gene - the homeostatic protein kinase, ATM. The quest to thoroughly understand the complex A-T phenotype may reveal yet elusive ATM functions.
Collapse
|
14
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
15
|
Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome. Redox Biol 2016; 11:375-383. [PMID: 28063379 PMCID: PMC5219618 DOI: 10.1016/j.redox.2016.12.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/27/2016] [Indexed: 12/31/2022] Open
Abstract
Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T), Bloom syndrome (BS) and Nijmegen breakage syndrome (NBS) are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4), oxidised low-density lipoprotein (ox-LDL) or Poly (ADP-ribose) polymerases (PARP). Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS), and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.
Collapse
|
16
|
Ribezzo F, Shiloh Y, Schumacher B. Systemic DNA damage responses in aging and diseases. Semin Cancer Biol 2016; 37-38:26-35. [PMID: 26773346 PMCID: PMC4886830 DOI: 10.1016/j.semcancer.2015.12.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/28/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023]
Abstract
The genome is constantly attacked by a variety of genotoxic insults. The causal role for DNA damage in aging and cancer is exemplified by genetic defects in DNA repair that underlie a broad spectrum of acute and chronic human disorders that are characterized by developmental abnormalities, premature aging, and cancer predisposition. The disease symptoms are typically tissue-specific with uncertain genotype-phenotype correlation. The cellular DNA damage response (DDR) has been extensively investigated ever since yeast geneticists discovered DNA damage checkpoint mechanisms, several decades ago. In recent years, it has become apparent that not only cell-autonomous but also systemic DNA damage responses determine the outcome of genome instability in organisms. Understanding the mechanisms of non-cell-autonomous DNA damage responses will provide important new insights into the role of genome instability in human aging and a host of diseases including cancer and might better explain the complex phenotypes caused by genome instability.
Collapse
Affiliation(s)
- Flavia Ribezzo
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Haddouche M, Meziane W, Hadjidj Z, Mesli N, Aribi M. Clinical association of baseline levels of conjugated dienes in low-density lipoprotein and nitric oxide with aggressive B-cell non-Hodgkin lymphoma and their relationship with immunoglobulins and Th1-to-Th2 ratio. J Blood Med 2016; 7:111-9. [PMID: 27330333 PMCID: PMC4898418 DOI: 10.2147/jbm.s103967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective The aim of this study was to highlight the clinical association of baseline levels of conjugated dienes in low-density lipoprotein (LDL-BCD) and nitric oxide (NO) with immunoglobulins (Igs) and T helper (Th)1/Th2 ratio in patients with newly diagnosed B-cell non-Hodgkin lymphoma (NHL). Patients and methods Thirty-two newly diagnosed patients with aggressive B-cell NHL and 25 age-, sex-, and body-mass-index-matched healthy controls were randomly selected for a cross-sectional case–control study conducted at the Hematology Department of Tlemcen Medical Centre University (northwest of Algeria). Results Circulating levels of LDL-BCD and NO and those of IgA and IgM were significantly higher in patients than in controls. The levels of Th1/Th2 ratio and plasma total antioxidant capacity were significantly lower in patients compared with controls, while malondialdehyde and protein carbonyl levels were significantly higher in patients. B-cell NHL was significantly associated with high levels of LDL-BCD from 25th to 75th percentile (25th percentile: relative risk [RR] =2.26, 95% confidence interval [CI] 1.42–3.59, P=0.014; 50th percentile: RR =2.84, 95% CI 1.72–4.68, P<0.001; 75th percentile: RR =5.43, 95% CI 2.58–11.42, P<0.001). Similarly, the disease was significantly associated with high levels of NO production from 25th to 75th percentile (25th percentile: RR =2.07, 95% CI 1.25–3.44, P=0.024; 50th percentile: RR =2.78, 95% CI 1.63–4.72, P<0.001; 75th percentile: RR =4.68, 95% CI 2.21–9.91, P<0.001). Moreover, LDL-BCD levels were positively and significantly correlated with interferon (IFN)-γ, whereas NO levels were inversely and significantly correlated with IFN-γ and Th1/Th2 ratio. Conclusion LDL-BCD and NO production seem to be associated with aggressive B-cell NHL and alteration of Th1/Th2 ratio. Our results have to be examined using ex vivo mechanistic studies leading to further investigations of these parameters, with an interest in the link between Epstein–Barr virus infection and NO and immunoglobulins.
Collapse
Affiliation(s)
- Mustapha Haddouche
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Algeria; Department of Biology, University of Tlemcen, Algeria
| | - Warda Meziane
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Algeria; Department of Biology, University of Tlemcen, Algeria
| | - Zeyneb Hadjidj
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Algeria; Department of Biology, University of Tlemcen, Algeria
| | - Naima Mesli
- Hematology Department, Tlemcen Medical Centre University, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Algeria; Department of Biology, University of Tlemcen, Algeria
| |
Collapse
|
18
|
Koyani CN, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, Windischhofer W, Sattler W, Malle E. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol 2016; 104:29-41. [PMID: 26801686 PMCID: PMC4782222 DOI: 10.1016/j.bcp.2016.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022]
Abstract
Despite considerable efforts to improve treatment modalities for osteosarcoma (OS), patient survival remains poor mainly due to pro-survival pathways in OS cells. Among others, prostaglandins (PGs) are the potent regulators of bone homoeostasis and OS pathophysiology. Therefore, the present study aimed to elucidate the impact of 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, a stable PGD2 degradation product) on cell death/cell survival pathways in p53-deficient MG-63 OS cells. Our findings show that 15d-PGJ2 induces generation of reactive oxygen species that promote p38 MAPK activation and subsequent Akt phosphorylation. This pathway induced nuclear expression of Nrf2 and Egr1, and increased transcription of haem oxygenase-1 (HO-1) and the catalytic subunit of glutamate cysteine ligase (GCLc), catalysing the first step in GSH synthesis. Silencing of Nrf2, Egr1 and HO-1 significantly elevated 15d-PGJ2-mediated reduction of cellular metabolic activity. Activation of cell survival genes including HO-1 and GCLc inhibited 15d-PGJ2-induced cleavage of pro-caspase-3 and PARP. Annexin V/propidium iodide staining showed an increase in early/late apoptotic cells in response to 15d-PGJ2. The observed 15d-PGJ2-mediated signalling events are independent of PGD2 receptors (DP1 and DP2) and PPARγ. In addition, the electrophilic carbon atom C9 is a prerequisite for the observed activity of 15d-PGJ2. The present data show that the intracellular redox imbalance acted as a node and triggered both death and survival pathways in response to 15d-PGJ2. Pharmacological or genetic interference of the pro-survival pathway, the p38 MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis, sensitizes MG-63 cells towards 15d-PGJ2-mediated apoptosis.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Kerstin Kitz
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Evelyn Huber
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Christopher Trummer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
19
|
Campbell A, Krupp B, Bushman J, Noble M, Pröschel C, Mayer-Pröschel M. A novel mouse model for ataxia-telangiectasia with a N-terminal mutation displays a behavioral defect and a low incidence of lymphoma but no increased oxidative burden. Hum Mol Genet 2015; 24:6331-49. [PMID: 26310626 DOI: 10.1093/hmg/ddv342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/17/2015] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare multi-system disorder caused by mutations in the ATM gene. Significant heterogeneity exists in the underlying genetic mutations and clinical phenotypes. A number of mouse models have been generated that harbor mutations in the distal region of the gene, and a recent study suggests the presence of residual ATM protein in the brain of one such model. These mice recapitulate many of the characteristics of A-T seen in humans, with the notable exception of neurodegeneration. In order to study how an N-terminal mutation affects the disease phenotype, we generated an inducible Atm mutant mouse model (Atm(tm1Mmpl/tm1Mmpl), referred to as A-T [M]) predicted to express only the first 62 amino acids of Atm. Cells derived from A-T [M] mutant mice exhibited reduced cellular proliferation and an altered DNA damage response, but surprisingly, showed no evidence of an oxidative imbalance. Examination of the A-T [M] animals revealed an altered immunophenotype consistent with A-T. In contrast to mice harboring C-terminal Atm mutations that disproportionately develop thymic lymphomas, A-T [M] mice developed lymphoma at a similar rate as human A-T patients. Morphological analyses of A-T [M] cerebella revealed no substantial cellular defects, similar to other models of A-T, although mice display behavioral defects consistent with cerebellar dysfunction. Overall, these results suggest that loss of Atm is not necessarily associated with an oxidized phenotype as has been previously proposed and that loss of ATM protein is not sufficient to induce cerebellar degeneration in mice.
Collapse
Affiliation(s)
- Andrew Campbell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA, Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA and
| | - Brittany Krupp
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Jared Bushman
- Division of Pharmaceutical Sciences, University of Wyoming School of Pharmacy, 1000 East University Ave., Dept. 3375, Laramie, WY 82071, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Box 633, Rochester, NY 14642, USA,
| |
Collapse
|
20
|
Espach Y, Lochner A, Strijdom H, Huisamen B. ATM Protein Kinase Signaling, Type 2 Diabetes and Cardiovascular Disease. Cardiovasc Drugs Ther 2015; 29:51-8. [DOI: 10.1007/s10557-015-6571-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Myeloperoxidase oxidized LDL interferes with endothelial cell motility through miR-22 and heme oxygenase 1 induction: possible involvement in reendothelialization of vascular injuries. Mediators Inflamm 2014; 2014:134635. [PMID: 25530680 PMCID: PMC4233670 DOI: 10.1155/2014/134635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/09/2014] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular disease linked to atherosclerosis is the leading cause of death worldwide. Atherosclerosis is mainly linked to dysfunction in vascular endothelial cells and subendothelial accumulation of oxidized forms of LDL. In the present study, we investigated the role of myeloperoxidase oxidized LDL (Mox-LDL) in endothelial cell dysfunction. We studied the effect of proinflammatory Mox-LDL treatment on endothelial cell motility, a parameter essential for normal vascular processes such as angiogenesis and blood vessel repair. This is particularly important in the context of an atheroma plaque, where vascular wall integrity is affected and interference with its repair could contribute to progression of the disease. We investigated in vitro the effect of Mox-LDL on endothelial cells angiogenic properties and we also studied the signalling pathways that could be affected by analysing Mox-LDL effect on the expression of angiogenesis-related genes. We report that Mox-LDL inhibits endothelial cell motility and tubulogenesis through an increase in miR-22 and heme oxygenase 1 expression. Our in vitro data indicate that Mox-LDL interferes with parameters associated with angiogenesis. They suggest that high LDL levels in patients would impair their endothelial cell capacity to cope with a damaged endothelium contributing negatively to the progression of the atheroma plaque.
Collapse
|
22
|
Shiloh Y. ATM: expanding roles as a chief guardian of genome stability. Exp Cell Res 2014; 329:154-61. [PMID: 25218947 DOI: 10.1016/j.yexcr.2014.09.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
23
|
Cremona CA, Behrens A. ATM signalling and cancer. Oncogene 2014; 33:3351-60. [PMID: 23851492 DOI: 10.1038/onc.2013.275] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/12/2022]
Abstract
ATM, the protein kinase mutated in the rare human disease ataxia telangiectasia (A-T), has been the focus of intense scrutiny over the past two decades. Initially this was because of the unusual radiosensitive phenotype of cells from A-T patients, and latterly because investigating ATM signalling has yielded valuable insights into the DNA damage response, redox signalling and cancer. With the recent explosion in genomic data, ATM alterations have been revealed both in the germline as a predisposing factor for cancer and as somatic changes in tumours themselves. Here we review these findings, as well as advances in the understanding of ATM signalling mechanisms in cancer and ATM inhibition as a strategy for cancer treatment.
Collapse
Affiliation(s)
- C A Cremona
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| | - A Behrens
- Mammalian Genetics Lab, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
24
|
Matsuda Y, Sanpei A, Wakai T, Kubota M, Osawa M, Hirose Y, Sakata J, Kobayashi T, Fujimaki S, Takamura M, Yamagiwa S, Yano M, Ohkoshi S, Aoyagi Y. Hepatitis B virus X stimulates redox signaling through activation of ataxia telangiectasia mutated kinase. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:2032-2043. [PMID: 24966912 PMCID: PMC4069949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
Hepatitis B virus X (HBX) protein plays a crucial role in carcinogenesis, but its mechanism is unclear. The involvement of ataxia telangiectasia mutated (ATM) kinase in the enhanced redox system was investigated by examining the phosphorylation level of ATM in HBX gene-transfected cells and in transgenic mice following redox system manipulation by treatment with hydrogen peroxide (H2O2) or antioxidant. Western blotting and immunostaining showed that phospho-ATM was significantly increased by HBX both in vitro (3.2-fold; p<0.05) and in vivo (4-fold; p<0.05), and this effect was abrogated by antioxidant treatment. The level of PKC-δ in HBX-expressing cells was increased 3.5-fold compared to controls. Nuclear localized NF-E2-related factor 2 (Nrf2) was increased in HBX-expressing cells exposed to H2O2, but remained at lower levels after the treatment with rottlerin, KU55933, or caffeine. The levels of anti-oxidant molecules were increased in HBX expressing cells and in transgenic mice, indicating that HBX stimulates the Nrf2-mediated redox system. The levels of intracellular reactive oxygen species (ROS) were significantly increased in HBX-expressing cells treated with hydrogen peroxide in the presence of ATM inhibitor KU55933 or caffeine. Treatment of HBX-expressing cells with KU55933 or caffeine before the exposure to H2O2 increased the ratio of cell apoptosis to 33±4% (p<0.05) and 22±4% (p<0.05), respectively. Collectively, HBX stimulates the ATM-mediated PKC-δ/Nrf2 pathway, and maintains the enhanced activity of the redox system. Therefore, manipulating ATM kinase activity might be a useful strategy for treating HBX-induced carcinogenesis.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Ayumi Sanpei
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Masayuki Kubota
- Division of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Mami Osawa
- Division of Pediatric Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Jun Sakata
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Shun Fujimaki
- Department of Medical Technology, Niigata University Graduate School of Health Sciences2-746 Asahimachi-dori, Chuo-Ku, Niigata 951-8518, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Satoshi Yamagiwa
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Masahiko Yano
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Shogo Ohkoshi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences1-757, Asahimachi-dori, Chuo-Ku, Niigata 951-8122, Japan
| |
Collapse
|
25
|
Koyani CN, Windischhofer W, Rossmann C, Jin G, Kickmaier S, Heinzel FR, Groschner K, Alavian-Ghavanini A, Sattler W, Malle E. 15-deoxy-Δ¹²,¹⁴-PGJ₂ promotes inflammation and apoptosis in cardiomyocytes via the DP2/MAPK/TNFα axis. Int J Cardiol 2014; 173:472-80. [PMID: 24698234 PMCID: PMC4008937 DOI: 10.1016/j.ijcard.2014.03.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/14/2014] [Accepted: 03/12/2014] [Indexed: 12/17/2022]
Abstract
Background Prostaglandins (PGs), lipid autacoids derived from arachidonic acid, play a pivotal role during inflammation. PGD2 synthase is abundantly expressed in heart tissue and PGD2 has recently been found to induce cardiomyocyte apoptosis. PGD2 is an unstable prostanoid metabolite; therefore the objective of the present study was to elucidate whether its final dehydration product, 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, present at high levels in ischemic myocardium) might cause cardiomyocyte damage. Methods and results Using specific (ant)agonists we show that 15d-PGJ2 induced formation of intracellular reactive oxygen species (ROS) and phosphorylation of p38 and p42/44 MAPKs via the PGD2 receptor DP2 (but not DP1 or PPARγ) in the murine atrial cardiomyocyte HL-1 cell line. Activation of the DP2-ROS-MAPK axis by 15d-PGJ2 enhanced transcription and translation of TNFα and induced apoptosis in HL-1 cardiomyocytes. Silencing of TNFα significantly attenuated the extrinsic (caspase-8) and intrinsic apoptotic pathways (bax and caspase-9), caspase-3 activation and downstream PARP cleavage and γH2AX activation. The apoptotic machinery was unaffected by intracellular calcium, transcription factor NF-κB and its downstream target p53. Of note, 9,10-dihydro-15d-PGJ2 (lacking the electrophilic carbon atom in the cyclopentenone ring) did not activate cellular responses. Selected experiments performed in primary murine cardiomyocytes confirmed data obtained in HL-1 cells namely that the intrinsic and extrinsic apoptotic cascades are activated via DP2/MAPK/TNFα signaling. Conclusions We conclude that the reactive α,β-unsaturated carbonyl group of 15d-PGJ2 is responsible for the pronounced upregulation of TNFα promoting cardiomyocyte apoptosis. We propose that inhibition of DP2 receptors could provide a possibility to modulate 15d-PGJ2-induced myocardial injury.
Collapse
Affiliation(s)
- Chintan N Koyani
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Research Unit of Osteological Research and Analytical Mass Spectrometry, Medical University of Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ge Jin
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Austria; Cardiology Department, Medical University of Wenzhou, Wenzhou, China
| | - Sandra Kickmaier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Frank R Heinzel
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University of Graz, Austria
| | - Ali Alavian-Ghavanini
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Austria.
| |
Collapse
|
26
|
I(f) blocking potency of ivabradine is preserved under elevated endotoxin levels in human atrial myocytes. J Mol Cell Cardiol 2014; 72:64-73. [PMID: 24583250 PMCID: PMC4046244 DOI: 10.1016/j.yjmcc.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/23/2014] [Accepted: 02/14/2014] [Indexed: 11/21/2022]
Abstract
Lower heart rate is associated with better survival in patients with multiple organ dysfunction syndrome (MODS), a disease mostly caused by sepsis. The benefits of heart rate reduction by ivabradine during MODS are currently being investigated in the MODIfY clinical trial. Ivabradine is a selective inhibitor of the pacemaker current If and since If is impaired by lipopolysaccharide (LPS, endotoxin), a trigger of sepsis, we aimed to explore If blocking potency of ivabradine under elevated endotoxin levels in human atrial cardiomyocytes. Treatment of myocytes with S-LPS (containing the lipid A moiety, a core oligosaccharide and an O-polysaccharide chain) but not R595 (an O-chain lacking LPS-form) caused If inhibition under acute and chronic septic conditions. The specific interaction of S-LPS but not R595 to pacemaker channels HCN2 and HCN4 proves the necessity of O-chain for S-LPS–HCN interaction. The efficacy of ivabradine to block If was reduced under septic conditions, an observation that correlated with lower intracellular ivabradine concentrations in S-LPS- but not R595-treated cardiomyocytes. Computational analysis using a sinoatrial pacemaker cell model revealed that despite a reduction of If under septic conditions, ivabradine further decelerated pacemaking activity. This novel finding, i.e. If inhibition by ivabradine under elevated endotoxin levels in vitro, may provide a molecular understanding for the efficacy of this drug on heart rate reduction under septic conditions in vivo, e.g. the MODIfY clinical trial. S-LPS impairs If via interaction of its O-chain to HCN channels. Efficacy of ivabradine for If blockage is reduced under elevated endotoxin levels. S-LPS reduces intracellular ivabradine concentrations. Ivabradine is efficient to decelerate sinoatrial pacemaking activity under septic conditions in silico.
Collapse
|
27
|
Shigetomi H, Higashiura Y, Kajihara H, Kobayashi H. A potential link of oxidative stress and cell cycle regulation for development of endometriosis. Gynecol Endocrinol 2012; 28:897-902. [PMID: 22591187 DOI: 10.3109/09513590.2012.683071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The roles of molecular alteration such as genomic instability and cell survival are debated aspects of the pathogenesis of endometriosis. To review the contemporary literature on potential factors and their signaling pathways that support prolonged survival of endometriotic cells. METHODS This article reviews the English-language literature for molecular, pathogenetic, and pathophysiological studies on endometriosis. This review is focused on the association of hepatocyte nuclear factor (HNF)-1β with endometriosis. RESULTS The iron-induced oxidative stress plays a fundamental role for the pathogenesis of endometriosis. Oxidative stress, secondary to influx of iron during retrograde menstruation, modifies lipids and proteins, leading to cell and DNA damage. Recent studies demonstrated HNF-1β overexpression in endometriotic foci. HNF-1β increases the survival of endometriotic cells under iron-induced oxidative stress conditions possibly through the activation of forkhead box (FOX) transcription factors and/or endometriosis-specific expression of microRNAs. Endometriotic cells expressing HNF-1β also display cell cycle checkpoint pathways required to survive DNA damaging events. CONCLUSIONS HNF-1β in endometriosis might be a factor that controls the cell cycle and DNA damage checkpoints.
Collapse
Affiliation(s)
- Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | |
Collapse
|
28
|
Khaidakov M, Mitra S, Wang X, Ding Z, Bora N, Lyzogubov V, Romeo F, Schichman SA, Mehta JL. Large impact of low concentration oxidized LDL on angiogenic potential of human endothelial cells: a microarray study. PLoS One 2012; 7:e47421. [PMID: 23115646 PMCID: PMC3480370 DOI: 10.1371/journal.pone.0047421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/14/2012] [Indexed: 11/22/2022] Open
Abstract
Oxidized LDL (ox-LDL) is a key factor in atherogenesis. It is taken up by endothelial cells primarily by ox-LDL receptor-1 (LOX-1). To elucidate transcriptional responses, we performed microarray analysis on human coronary artery endothelial cells (HCAECs) exposed to small physiologic concentration of ox-LDL- 5 µg/ml for 2 and 12 hours. At 12 hours, cultures treated with ox-LDL exhibited broad shifts in transcriptional activity involving almost 1500 genes (>1.5 fold difference, p<0.05). Resulting transcriptome was enriched for genes associated with cell adhesion (p<0.002), angiogenesis (p<0.0002) and migration (p<0.006). Quantitative PCR analysis revealed that LOX-1 expression in HCAECs is at least an order of magnitude greater than the expression of other major ox-LDL specific receptors CD36 and MSR1. In keeping with the data on LOX-1 expression, pre-treatment of HCAECs with LOX-1 neutralizing antibody resulted in across-the-board inhibition of cellular response to ox-LDL. Ox-LDL upregulated a number of pro-angiogenic genes including multiple receptors, ligands and transcription factors and altered the expression of a number of genes implicated in both stimulation and inhibition of apoptosis. From a functional standpoint, physiologic concentrations of ox-LDL stimulated tube formation and inhibited susceptibility to apoptosis in HCAECs. In addition, ox-LDL exposure resulted in upregulation of miR-1974, miR-1978 and miR-21 accompanied with significant over-presentation of their target genes in the downregulated portion of ox-LDL transcriptome. Our observations indicate that ox-LDL at physiologic concentrations induces broad transcriptional responses which are mediated by LOX-1, and are, in part, shaped by ox-LDL-dependent miRNAs. We also suggest that angiogenic effects of ox-LDL are partially based on upregulation of several receptors that render cells hypersensitive to angiogenic stimuli.
Collapse
Affiliation(s)
- Magomed Khaidakov
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (MK); (JLM)
| | - Sona Mitra
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Xianwei Wang
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Zufeng Ding
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Nalini Bora
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Valery Lyzogubov
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Francesco Romeo
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Dipartimento di Medicina Interna, Università di Roma Tor Vergata, Roma, Italy
| | - Steven A. Schichman
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jawahar L. Mehta
- Central Arkansas Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail: (MK); (JLM)
| |
Collapse
|