1
|
Tiwari V, Buvarp E, Borbolis F, Puligilla C, Croteau D, Palikaras K, Bohr V. Loss of DNA glycosylases improves health and cognitive function in a C. elegans model of human tauopathy. Nucleic Acids Res 2024; 52:10965-10985. [PMID: 39149885 PMCID: PMC11472166 DOI: 10.1093/nar/gkae705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder representing a major burden on families and society. Some of the main pathological hallmarks of AD are the accumulation of amyloid plaques (Aβ) and tau neurofibrillary tangles. However, it is still unclear how Aβ and tau aggregates promote specific phenotypic outcomes and lead to excessive oxidative DNA damage, neuronal cell death and eventually to loss of memory. Here we utilized a Caenorhabditis elegans (C. elegans) model of human tauopathy to investigate the role of DNA glycosylases in disease development and progression. Transgenic nematodes expressing a pro-aggregate form of tau displayed altered mitochondrial content, decreased lifespan, and cognitive dysfunction. Genetic ablation of either of the two DNA glycosylases found in C. elegans, NTH-1 and UNG-1, improved mitochondrial function, lifespan, and memory impairment. NTH-1 depletion resulted in a dramatic increase of differentially expressed genes, which was not apparent in UNG-1 deficient nematodes. Our findings clearly show that in addition to its enzymatic activity, NTH-1 has non-canonical functions highlighting its modulation as a potential therapeutic intervention to tackle tau-mediated pathology.
Collapse
Affiliation(s)
- Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Elisabeth Buvarp
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
| | - Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chandrakala Puligilla
- Section for Telomere Maintenance, LGG, National Institute on Aging, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Computational Biology & Genomics Core, LGG, NIA, Baltimore, MD 21224, USA
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, Baltimore, MD 21224, USA
- Center for Healthy Aging, University of Copenhagen, 2200 N, Denmark
| |
Collapse
|
2
|
Naranjo-Galindo FJ, Ai R, Fang EF, Nilsen HL, SenGupta T. C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration. FRONTIERS IN AGING 2022; 3:916118. [PMID: 35821838 PMCID: PMC9261396 DOI: 10.3389/fragi.2022.916118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022]
Abstract
Since its introduction as a genetic model organism, Caenorhabditis elegans has yielded insights into the causes of aging. In addition, it has provided a molecular understanding of mechanisms of neurodegeneration, one of the devastating effects of aging. However, C. elegans has been less popular as an animal model to investigate DNA repair and genomic instability, which is a major hallmark of aging and also a cause of many rare neurological disorders. This article provides an overview of DNA repair pathways in C. elegans and the impact of DNA repair on aging hallmarks, such as mitochondrial dysfunction, telomere maintenance, and autophagy. In addition, we discuss how the combination of biological characteristics, new technical tools, and the potential of following precise phenotypic assays through a natural life-course make C. elegans an ideal model organism to study how DNA repair impact neurodegeneration in models of common age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco José Naranjo-Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
3
|
SenGupta T, Palikaras K, Esbensen YQ, Konstantinidis G, Galindo FJN, Achanta K, Kassahun H, Stavgiannoudaki I, Bohr VA, Akbari M, Gaare J, Tzoulis C, Tavernarakis N, Nilsen H. Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Rep 2021; 36:109668. [PMID: 34496255 PMCID: PMC8441048 DOI: 10.1016/j.celrep.2021.109668] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 01/24/2023] Open
Abstract
Aging, genomic stress, and mitochondrial dysfunction are risk factors for neurodegenerative pathologies, such as Parkinson disease (PD). Although genomic instability is associated with aging and mitochondrial impairment, the underlying mechanisms are poorly understood. Here, we show that base excision repair generates genomic stress, promoting age-related neurodegeneration in a Caenorhabditis elegans PD model. A physiological level of NTH-1 DNA glycosylase mediates mitochondrial and nuclear genomic instability, which promote degeneration of dopaminergic neurons in older nematodes. Conversely, NTH-1 deficiency protects against α-synuclein-induced neurotoxicity, maintaining neuronal function with age. This apparent paradox is caused by modulation of mitochondrial transcription in NTH-1-deficient cells, and this modulation activates LMD-3, JNK-1, and SKN-1 and induces mitohormesis. The dependance of neuroprotection on mitochondrial transcription highlights the integration of BER and transcription regulation during physiological aging. Finally, whole-exome sequencing of genomic DNA from patients with idiopathic PD suggests that base excision repair might modulate susceptibility to PD in humans. Incomplete base excision repair is a source of genomic stress during aging The NTH-1 DNA glycosylase is a key mediator of age-dependent genomic instability Compromised NTH-1 activity promotes neuroprotection in PD nematodes NTH-1 deficiency triggers LMD-3/JNK-1/SKN-1-dependent mitohormetic response
Collapse
Affiliation(s)
- Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece; Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ying Q Esbensen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Georgios Konstantinidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece
| | - Francisco Jose Naranjo Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Kavya Achanta
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henok Kassahun
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200 Copenhagen, Denmark; DNA Repair Section, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD, USA
| | - Mansour Akbari
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Johannes Gaare
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Hellas, Greece; Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 70013 Crete, Greece.
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
4
|
King SD, Gray CF, Song L, Mittler R, Padilla PA. The mitochondrial localized CISD-3.1/CISD-3.2 proteins are required to maintain normal germline structure and function in Caenorhabditis elegans. PLoS One 2021; 16:e0245174. [PMID: 33544710 PMCID: PMC7864470 DOI: 10.1371/journal.pone.0245174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Reproductive organs and developing tissues have high energy demands that require metabolic functions primarily supported by mitochondria function. The highly conserved CISD/NEET iron-sulfur (Fe-S) protein family regulates iron and reactive oxygen homeostasis, both of which are important for mitochondrial function. Disruption of iron and reactive oxygen homeostasis typically leads to detrimental effects. In humans, CISD dysfunction is associated with human health issues including Wolfram syndrome 2. Using C. elegans, we previously determined that the cisd-1, cisd-3.1 and cisd-3.2 have an overlapping role in the regulation of physiological germline apoptosis through the canonical programmed cell death pathway. Here, we isolated the cisd-3.2(pnIs68) mutant that resulted in physiological and fitness defects including germline abnormalities that are associated with abnormal stem cell niche and disrupted formation of bivalent chromosomes. The cisd-3.2(pnIs68) mutation led to complete disruption of the cisd-3.2 gene expression and a decrease in expression of genetically intact cisd-1 and cisd-3.1 genes suggesting an indirect impact of the cisd-3.2(pnIs68) allele. The CISD-3.2 and CISD-3.1 proteins localize to the mitochondria in many tissues throughout development. The cisd-3.2(pnIs68) mutant displays phenotypes associated with mitochondrial dysfunction, including disruption of the mitochondrial network within the germline. These results further support the idea that the CISD protein family is required for mitochondrial function that supports important functions in animals including overall fitness and germline viability.
Collapse
Affiliation(s)
- Skylar D. King
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center University of Missouri, Columbia, MO, United States of America
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, Columbia, MO, United States of America
| | - Chipo F. Gray
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| | - Luhua Song
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center University of Missouri, Columbia, MO, United States of America
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, Columbia, MO, United States of America
| | - Pamela A. Padilla
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
- * E-mail:
| |
Collapse
|
5
|
Elsakrmy N, Zhang-Akiyama QM, Ramotar D. The Base Excision Repair Pathway in the Nematode Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:598860. [PMID: 33344454 PMCID: PMC7744777 DOI: 10.3389/fcell.2020.598860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Exogenous and endogenous damage to the DNA is inevitable. Several DNA repair pathways including base excision, nucleotide excision, mismatch, homologous and non-homologous recombinations are conserved across all organisms to faithfully maintain the integrity of the genome. The base excision repair (BER) pathway functions to repair single-base DNA lesions and during the process creates the premutagenic apurinic/apyrimidinic (AP) sites. In this review, we discuss the components of the BER pathway in the nematode Caenorhabditis elegans and delineate the different phenotypes caused by the deletion or the knockdown of the respective DNA repair gene, as well as the implications. To date, two DNA glycosylases have been identified in C. elegans, the monofunctional uracil DNA glycosylase-1 (UNG-1) and the bifunctional endonuclease III-1 (NTH-1) with associated AP lyase activity. In addition, the animal possesses two AP endonucleases belonging to the exonuclease-3 and endonuclease IV families and in C. elegans these enzymes are called EXO-3 and APN-1, respectively. In mammalian cells, the DNA polymerase, Pol beta, that is required to reinsert the correct bases for DNA repair synthesis is not found in the genome of C. elegans and the evidence indicates that this role could be substituted by DNA polymerase theta (POLQ), which is known to perform a function in the microhomology-mediated end-joining pathway in human cells. The phenotypes observed by the C. elegans mutant strains of the BER pathway raised many challenging questions including the possibility that the DNA glycosylases may have broader functional roles, as discuss in this review.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| |
Collapse
|
6
|
Huang J, Wu Z, Zhang X. Short-Term Mild Temperature-Stress-Induced Alterations in the C. elegans Phosphoproteome. Int J Mol Sci 2020; 21:ijms21176409. [PMID: 32899194 PMCID: PMC7504583 DOI: 10.3390/ijms21176409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Exposure to mild early-life stresses can slow down aging, and protein phosphorylation might be an essential regulator in this process. However, the mechanisms of phosphorylation-based signaling networks during mild early-life stress remain elusive. Herein, we systematically analyzed the phosphoproteomes of Caenorhabditis elegans, which were treated with three mild temperatures (15 °C, 20 °C, and 25 °C) in two different short-term groups (10 min and 60 min). By utilizing an iTRAQ-based quantitative phosphoproteomic approach, 18,187 phosphosites from 3330 phosphoproteins were detected in this study. Volcano plots illustrated that the phosphorylation abundance of 374 proteins and 347 proteins, were significantly changed at 15 °C and 25 °C, respectively. Gene ontology, KEGG pathway and protein-protein interaction network analyses revealed that these phosphoproteins were primarily associated with metabolism, translation, development, and lifespan determination. A motif analysis of kinase substrates suggested that MAPK, CK, and CAMK were most likely involved in the adaption processes. Moreover, 16 and 14 aging-regulated proteins were found to undergo phosphorylation modifications under the mild stresses of 15 °C and 25 °C, respectively, indicating that these proteins might be important for maintaining long-term health. Further lifespan experiments confirmed that the candidate phosphoproteins, e.g., EGL-27 and XNP-1 modulated longevity at 15 °C, 20 °C, and 25 °C, and they showed increased tolerance to thermal and oxidative stresses. In conclusion, our findings offered data that supports understanding of the phosphorylation mechanisms involved in mild early-life stresses in C. elegans. Data are available via ProteomeXchange with identifier PXD021081.
Collapse
Affiliation(s)
- Jichang Huang
- Correspondence: (J.H.); (X.Z.); Tel.: +86-021-3124-6575 (X.Z.)
| | | | - Xumin Zhang
- Correspondence: (J.H.); (X.Z.); Tel.: +86-021-3124-6575 (X.Z.)
| |
Collapse
|
7
|
Fang EF, Hou Y, Lautrup S, Jensen MB, Yang B, SenGupta T, Caponio D, Khezri R, Demarest TG, Aman Y, Figueroa D, Morevati M, Lee HJ, Kato H, Kassahun H, Lee JH, Filippelli D, Okur MN, Mangerich A, Croteau DL, Maezawa Y, Lyssiotis CA, Tao J, Yokote K, Rusten TE, Mattson MP, Jasper H, Nilsen H, Bohr VA. NAD + augmentation restores mitophagy and limits accelerated aging in Werner syndrome. Nat Commun 2019; 10:5284. [PMID: 31754102 PMCID: PMC6872719 DOI: 10.1038/s41467-019-13172-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
Metabolic dysfunction is a primary feature of Werner syndrome (WS), a human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. WS patients exhibit severe metabolic phenotypes, but the underlying mechanisms are not understood, and whether the metabolic deficit can be targeted for therapeutic intervention has not been determined. Here we report impaired mitophagy and depletion of NAD+, a fundamental ubiquitous molecule, in WS patient samples and WS invertebrate models. WRN regulates transcription of a key NAD+ biosynthetic enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1). NAD+ repletion restores NAD+ metabolic profiles and improves mitochondrial quality through DCT-1 and ULK-1-dependent mitophagy. At the organismal level, NAD+ repletion remarkably extends lifespan and delays accelerated aging, including stem cell dysfunction, in Caenorhabditis elegans and Drosophila melanogaster models of WS. Our findings suggest that accelerated aging in WS is mediated by impaired mitochondrial function and mitophagy, and that bolstering cellular NAD+ levels counteracts WS phenotypes.
Collapse
Affiliation(s)
- Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway.
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | | | - Beimeng Yang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Rojyar Khezri
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - David Figueroa
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Marya Morevati
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hisaya Kato
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Henok Kassahun
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah Filippelli
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Mustafa Nazir Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Yoshiro Maezawa
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jun Tao
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, 510080, Guangzhou, China
| | - Koutaro Yokote
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Tor Erik Rusten
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379, Oslo, Norway
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
8
|
Torgovnick A, Schiavi A, Shaik A, Kassahun H, Maglioni S, Rea SL, Johnson TE, Reinhardt HC, Honnen S, Schumacher B, Nilsen H, Ventura N. BRCA1 and BARD1 mediate apoptotic resistance but not longevity upon mitochondrial stress in Caenorhabditis elegans. EMBO Rep 2018; 19:embr.201845856. [PMID: 30366941 DOI: 10.15252/embr.201845856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
Interventions that promote healthy aging are typically associated with increased stress resistance. Paradoxically, reducing the activity of core biological processes such as mitochondrial or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress. In this study, we investigated the relation between the extended Caenorhabditis elegans lifespan elicited by reduction in mitochondrial functionality and resistance to genotoxic stress. We find that reducing mitochondrial activity during development confers germline resistance to DNA damage-induced cell cycle arrest and apoptosis in a cell-non-autonomous manner. We identified the C. elegans homologs of the BRCA1/BARD1 tumor suppressor genes, brc-1/brd-1, as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. Unexpectedly, while reduced mitochondrial activity only in the soma was not sufficient to promote longevity, its reduction only in the germline or in germline-less strains still prolonged lifespan. Thus, in animals with partial reduction in mitochondrial functionality, the mechanisms activated during development to safeguard the germline against genotoxic stress are uncoupled from those required for somatic robustness and animal longevity.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Clinic I of Internal Medicine, Center for Integrated Oncology, Center for Molecular Medicine and the CECAD Research Center, University of Cologne, Cologne, Germany.,Medical Faculty, Institute for Genome Stability in Aging and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Alfonso Schiavi
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Anjumara Shaik
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Henok Kassahun
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus University, Akershus, Norway
| | - Silvia Maglioni
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Shane L Rea
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Thomas E Johnson
- Institute for Behavioral Genetics & Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Hans C Reinhardt
- Clinic I of Internal Medicine, Center for Integrated Oncology, Center for Molecular Medicine and the CECAD Research Center, University of Cologne, Cologne, Germany
| | - Sebastian Honnen
- Medical Faculty, Institute of Toxicology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Björn Schumacher
- Medical Faculty, Institute for Genome Stability in Aging and Disease, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway.,Akershus University, Akershus, Norway
| | - Natascia Ventura
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|