1
|
Chirinos-Arias MC, Spampinato CP. Spontaneous and salt stress-induced molecular instability in the progeny of MSH7 deficient Arabidopsis thaliana plants. DNA Repair (Amst) 2025; 145:103801. [PMID: 39700649 DOI: 10.1016/j.dnarep.2024.103801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/12/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
The MSH7 protein is a binding partner of MSH2 forming the MutSγ complex. This complex contributes to the plant mismatch repair (MMR) system by recognizing DNA base-base mismatches. Here, we evaluated the impact of MSH7 on genetic diversity of the tenth generation (G10) of wild type and MSH7 deficient Arabidopsis thaliana plants before and after two days exposure to 100 mM NaCl. Genetic diversity was assessed using inter simple sequence repeats (ISSR) and high-resolution melting (HRM) analyses. ISSR analyses revealed a 6.7 % or 5.8 % average polymorphism in the G10 of wild type before and after a short-term salt stress, respectively, and a 64.4 % or 72.1 % average polymorphism in the G10 of msh7 mutant plants before and after salt treatment, respectively. Interestingly, several ISSR markers showed different polymorphism patterns after salt stress compared with the control before treatment. We next compared the percentage of the G10 of wild type and msh7 seedlings with polymorphic bands. Statistically significant differences between genotypes but not due to the salt treatment were observed. In addition, co-amplification at lower temperature-PCR followed by HRM analysis was performed. Of the five assayed HRM loci, two loci allowed the discrimination of fragment alleles between genotypes and two loci, between conditions. We conclude that MSH7 deficient A. thaliana mutants accumulated mutations over 10 generations, and that two days of salt stress caused a further increase in new mutations, thus enhancing genetic diversity that may favor new traits associated with stress tolerance, fitness, and adaptation.
Collapse
Affiliation(s)
- Michelle C Chirinos-Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
2
|
Quiroz D, Oya S, Lopez-Mateos D, Zhao K, Pierce A, Ortega L, Ali A, Carbonell-Bejerano P, Yarov-Yarovoy V, Suzuki S, Hayashi G, Osakabe A, Monroe G. H3K4me1 recruits DNA repair proteins in plants. THE PLANT CELL 2024; 36:2410-2426. [PMID: 38531669 PMCID: PMC11132887 DOI: 10.1093/plcell/koae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/28/2024]
Abstract
DNA repair proteins can be recruited by their histone reader domains to specific epigenomic features, with consequences on intragenomic mutation rate variation. Here, we investigated H3K4me1-associated hypomutation in plants. We first examined 2 proteins which, in plants, contain Tudor histone reader domains: PRECOCIOUS DISSOCIATION OF SISTERS 5 (PDS5C), involved in homology-directed repair, and MUTS HOMOLOG 6 (MSH6), a mismatch repair protein. The MSH6 Tudor domain of Arabidopsis (Arabidopsis thaliana) binds to H3K4me1 as previously demonstrated for PDS5C, which localizes to H3K4me1-rich gene bodies and essential genes. Mutations revealed by ultradeep sequencing of wild-type and msh6 knockout lines in Arabidopsis show that functional MSH6 is critical for the reduced rate of single-base substitution (SBS) mutations in gene bodies and H3K4me1-rich regions. We explored the breadth of these mechanisms among plants by examining a large rice (Oryza sativa) mutation data set. H3K4me1-associated hypomutation is conserved in rice as are the H3K4me1-binding residues of MSH6 and PDS5C Tudor domains. Recruitment of DNA repair proteins by H3K4me1 in plants reveals convergent, but distinct, epigenome-recruited DNA repair mechanisms from those well described in humans. The emergent model of H3K4me1-recruited repair in plants is consistent with evolutionary theory regarding mutation modifier systems and offers mechanistic insight into intragenomic mutation rate variation in plants.
Collapse
Affiliation(s)
- Daniela Quiroz
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
| | - Satoyo Oya
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Kehan Zhao
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Alice Pierce
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Lissandro Ortega
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | - Alissza Ali
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, USA
- Biophysics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sae Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-0814, Japan
| | - Akihisa Osakabe
- Laboratory of Genetics, Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Grey Monroe
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics, University of California Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Gonzalez V, Figueroa NR, Spampinato CP. Plant-specific environmental and developmental signals regulate the mismatch repair protein MSH6 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112050. [PMID: 38401766 DOI: 10.1016/j.plantsci.2024.112050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The DNA mismatch repair (MMR) is a postreplicative system that guarantees genomic stability by correcting mispaired and unpaired nucleotides. In eukaryotic nuclei, MMR is initiated by the binding of heterodimeric MutS homologue (MSH) complexes to the DNA error or lesion. Among these proteins, MSH2-MSH6 is the most abundant heterodimer. Even though the MMR mechanism and proteins are highly conserved throughout evolution, physiological differences between species can lead to different regulatory features. Here, we investigated how light, sugar, and/or hormones modulate Arabidopsis thaliana MSH6 expression pattern. We first characterized the promoter region of MSH6. Phylogenetic shadowing revealed three highly conserved regions. These regions were analyzed by the generation of deletion constructs of the MSH6 full-length promoter fused to the β-glucuronidase (GUS) gene. Combined, our in silico and genetic analyses revealed that a 121-bp promoter fragment was necessary for MSH6 expression and contained potential cis-acting elements involved in light- and hormone-responsive gene expression. Accordingly, light exposure or sugar treatment of four-day old A. thaliana seedlings triggered an upregulation of MSH6 in shoot and root apical meristems. Appropriately, MSH6 was also induced by the stem cell inducer WUSCHEL. Further, the stimulatory effect of light was dependent on the presence of phyA. In addition, treatment of seedlings with auxin or cytokinin also caused an upregulation of MSH6 under darkness. Consistent with auxin signals, MSH6 expression was suppressed in the GATA23 RNAi line compared with the wild type. Our results provide evidence that endogenous factors and environmental signals controlling plant growth and development regulate the MSH6 protein in A. thaliana.
Collapse
Affiliation(s)
- Valentina Gonzalez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Nicolás R Figueroa
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
4
|
Xu P, Huang S, Zhai X, Fan Y, Li X, Yang H, Cao Y, Fan G. N6-methyladenosine modification changes during the recovery processes for Paulownia witches' broom disease under the methyl methanesulfonate treatment. PLANT DIRECT 2023; 7:e508. [PMID: 37426893 PMCID: PMC10325887 DOI: 10.1002/pld3.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/05/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Phytoplasmas induce diseases in more than 1000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N 6-methyladenosine (m6A) is the most common internal modification of the eukaryotic Messenger RNA (mRNA). As one of the species susceptible to phytoplasma infection, the pathogenesis and mechanism of Paulownia has been extensively studied by scholars, but the m6A transcriptome map of Paulownia fortunei (P. fortunei) has not been reported. Therefore, this study aimed to explore the effect of phytoplasma infection on m6A modification of P. fortunei and obtained the whole transcriptome m6A map in P. fortunei by m6A-seq. The m6A-seq results of Paulownia witches' broom (PaWB) disease and healthy samples indicate that PaWB infection increased the degree of m6A modification of P. fortunei. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. Moreover, the functions of PaWB-related genes were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with methyl methanesulfonate, and m6A modification was found in m6A-seq results. Moreover, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) verified that the alternative splicing of these two genes was associated with m6A modification. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the process of PaWB. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenic mechanism of PaWB caused by phytoplasma invasion.
Collapse
Affiliation(s)
- Pingluo Xu
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Shunmou Huang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaoqiao Zhai
- Key Laboratory of Forest Germplasm Resources Protection and Improved Variety Selection in Henan ProvinceHenan Province Academy of ForestryZhengzhouP. R. China
| | - Yujie Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaofan Li
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Haibo Yang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Yabing Cao
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Guoqiang Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| |
Collapse
|
5
|
Ramos RS, Spampinato CP. Deficiency of the Arabidopsis mismatch repair MSH6 attenuates Pseudomonas syringae invasion. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111713. [PMID: 37068662 DOI: 10.1016/j.plantsci.2023.111713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
The MutS homolog 6 (MSH6) is a nuclear DNA mismatch repair (MMR) gene that encodes the MSH6 protein. MSH6 interacts with MSH2 to form the MutSα heterodimer. MutSα corrects DNA mismatches and unpaired nucleotides arising during DNA replication, deamination of 5-methylcytosine, and recombination between non-identical DNA sequences. In addition to correcting DNA biosynthetic errors, MutSα also recognizes chemically damaged DNA bases. Here, we show that inactivation of MSH6 affects the basal susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv tomato DC3000. The msh6 T-DNA insertional mutant exhibited a reduced susceptibility to the bacterial invasion. This heightened basal resistance of msh6 mutants appears to be dependent on an increased stomatal closure, an accumulation of H2O2 and double-strand breaks (DSBs) and a constitutive expression of pathogenesis-related (NPR1 and PR1) and DNA damage response (RAD51D and SOG1) genes. Complementation of this mutant with the MSH6 wild type allele under the control of its own promoter resulted in reversal of the basal bacterial resistance phenotype and the stomatal closure back to wild type levels. Taken together, these results demonstrate that inactivation of MSH6 increases Arabidopsis basal susceptibility to the bacterial pathogen and suggests a link between DNA repair and stress signaling in plants.
Collapse
Affiliation(s)
- Rocío S Ramos
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
6
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
7
|
Chirinos-Arias MC, Spampinato CP. Role of the mismatch repair protein MSH7 in Arabidopsis adaptation to acute salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:280-290. [PMID: 34823145 DOI: 10.1016/j.plaphy.2021.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
DNA mismatch repair (MMR) is a highly conserved pathway in evolution responsible for maintaining genomic stability. MMR is initiated when MutS proteins recognize and repair single base-base mismatches and small loops of unpaired nucleotides as well as certain types of DNA damage. Arabidopsis thaliana and other plants contain MutS protein homologs (MSH) found in other eukaryotic organisms and a unique MSH7 polypeptide. In this study, we first evaluated transient expression profiles of ten-days old pAtMSH7:GUS transgenic seedlings at different recovery times after an acute treatment for 48 hs with100 mM NaCl. GUS histochemical staining indicated that MSH7 expression is repressed by salt exposure but recovers progressively. Then, ten-days old mutants harboring two independent msh7 alleles were exposed for 48 hs with100 mM NaCl and different traits were measured over recovery time. Salt treated msh7 seedlings were defective in G2/M arrest. As a result, msh7 seedlings showed a reduced salt inhibitory effect as evidenced by a decreased reduction of rosette and leaf areas, stomatal density, total leaf number, silique length and seed number per silique. These findings suggest that disruption of MSH7 activity could be a promising approach for plant adaptive responses to salinity stress.
Collapse
Affiliation(s)
- Michelle C Chirinos-Arias
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Claudia P Spampinato
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|