1
|
Cerreta AJ, McEntire MS. Hypothalamic and Pituitary Physiology in Birds and Reptiles. Vet Clin North Am Exot Anim Pract 2025; 28:51-68. [PMID: 39414478 DOI: 10.1016/j.cvex.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Across all vertebrates, the anatomy of the hypothalamus and mechanisms underlying its development are highly conserved, whereas the pituitary is highly specialized structurally with considerable differences amongst classes. In birds and reptiles, the hypothalamus controls the pituitary gland through nerve impulses and the secretion of neurohormones, resulting in several hypothalamic-pituitary axes: the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-adrenal axis, and the hypothalamic-pituitary-gonadal axis. This article provides a foundational knowledge on the physiologic function of the hypothalamus and pituitary in birds and reptiles, and their effects on behavior, homeostasis, and disease.
Collapse
Affiliation(s)
- Anthony J Cerreta
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, 1200 South DuSable Lake Shore Drive, Chicago, IL 60605, USA; Veterinary Services, San Diego Zoo Wildlife Alliance, 15500 San Pasqual Valley Road, Escondido, CA 92027, USA.
| | - Michael S McEntire
- Animal Health Center, SeaWorld San Antonio, 10500 SeaWorld Drive, San Antonio, TX 78251, USA; Department of Veterinary and Clinical Sciences, Utah State University, College of Veterinary Medicine, 5605 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
2
|
Weimer S, Fraley GS, Orlowski S, Karcher D, Archer G, Pierzchała-Koziec K, Scanes CG. Editorial: Environmental impacts in domestic birds: towards homeostasis, efficiency and well-being. Front Physiol 2023; 14:1281632. [PMID: 37727658 PMCID: PMC10505724 DOI: 10.3389/fphys.2023.1281632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Affiliation(s)
- Shawna Weimer
- Center for Food Animal Wellbeing, University of Arkansas, Fayetteville, AR, United States
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Gregory S. Fraley
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sara Orlowski
- Center of Excellence in Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Darrin Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Gregory Archer
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | | | - Colin G. Scanes
- Biological Science, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
3
|
Metwalli AH, Pross A, Desfilis E, Abellán A, Medina L. Mapping of corticotropin-releasing factor, receptors, and binding protein mRNA in the chicken telencephalon throughout development. J Comp Neurol 2023. [PMID: 37393534 DOI: 10.1002/cne.25517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
Understanding the neural mechanisms that regulate the stress response is critical to know how animals adapt to a changing world and is one of the key factors to be considered for improving animal welfare. Corticotropin-releasing factor (CRF) is crucial for regulating physiological and endocrine responses, triggering the activation of the sympathetic nervous system and the hypothalamo-pituitary-adrenal axis (HPA) during stress. In mammals, several telencephalic areas, such as the amygdala and the hippocampus, regulate the autonomic system and the HPA responses. These centers include subpopulations of CRF containing neurons that, by way of CRF receptors, play modulatory roles in the emotional and cognitive aspects of stress. CRF binding protein also plays a role, buffering extracellular CRF and regulating its availability. CRF role in activation of the HPA is evolutionary conserved in vertebrates, highlighting the relevance of this system to help animals cope with adversity. However, knowledge on CRF systems in the avian telencephalon is very limited, and no information exists on detailed expression of CRF receptors and binding protein. Knowing that the stress response changes with age, with important variations during the first week posthatching, the aim of this study was to analyze mRNA expression of CRF, CRF receptors 1 and 2, and CRF binding protein in chicken telencephalon throughout embryonic and early posthatching development, using in situ hybridization. Our results demonstrate an early expression of CRF and its receptors in pallial areas regulating sensory processing, sensorimotor integration and cognition, and a late expression in subpallial areas regulating the stress response. However, CRF buffering system develops earlier in the subpallium than in the pallium. These results help to understand the mechanisms underlying the negative effects of noise and light during prehatching stages in chicken, and suggest that stress regulation becomes more sophisticated with age.
Collapse
Affiliation(s)
- Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
4
|
Chowdhury VS. L-Citrulline: A novel hypothermic amino acid promoting thermotolerance in heat-exposed chickens. Anim Sci J 2023; 94:e13826. [PMID: 36938778 DOI: 10.1111/asj.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
With global warming becoming of increasing concern, poultry farms are experiencing a concomitant increase in heat stress. Chickens are very sensitive to high ambient temperature (HT), so the development of novel nutrients that will help deal with the challenge posed by heat stress is vital. We revealed that L-citrulline (L-Cit) can reduce body temperature in chickens. Orally administered L-Cit solution has been found to provide heat tolerance in chickens and to result in reduced food intake. Heat exposure and oral administration of L-Cit led to increased levels of plasma insulin, whereas heat stress led to a decline in plasma thyroxine. Dietary administration of L-Cit was also shown to be effective to reduce heat stress in broiler chickens. Moreover, L-Cit was found to be metabolized in the liver within 1 h of its administration, and in L-Cit-treated broiler chicks, the Cit-Arginine cycle and the Krebs cycle were found to be active. L-Cit has not yet been approved for inclusion in the poultry diet, so it is important to find alternative sources of L-Cit. Taken together, these findings suggest that L-Cit may serve as an important novel nutrient with the ability to produce heat tolerance in chickens under HT.
Collapse
Affiliation(s)
- Vishwajit S Chowdhury
- Division for Experimental Natural Science, Faculty of Arts and Science, Department of Animal and Marine Bioresource Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Kadhim HJ, Kuenzel WJ. Interaction between the hypothalamo-pituitary-adrenal and thyroid axes during immobilization stress. Front Physiol 2022; 13:972171. [PMID: 36330212 PMCID: PMC9623009 DOI: 10.3389/fphys.2022.972171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/06/2022] [Indexed: 12/21/2024] Open
Abstract
The location of corticotropin-releasing hormone receptor 2 (CRH-R2) on thyrotropes within the avian anterior pituitary (APit) and its activation by different stressors indicate a possible communication between hypothalamo-pituitary-adrenal (HPA) and thyroid (HPT) axes. Therefore, an experiment was designed to 1) compare the timing of major components of the HPT axis to those of the HPA axis; 2) address whether stressors activating the HPA axis may simultaneously upregulate components of the HPT axis. Blood, brain, and APit were sampled from chicks prior to stress (control) and 15, 30, 60, 90, and 120 min following immobilization (IM) stress. The nucleus of the hippocampal commissure (NHpC) and paraventricular nucleus (PVN) were cryo-dissected from brains for RT-qPCR. Gene expression of thyrotropin-releasing hormone (TRH) and its receptors (TRH-R1 and TRH-R3), urocortin3 (UCN3), deiodinase 2 (D2), and the second type of corticotropin-releasing hormone (CRH2) within the NHpC and PVN was measured. Additionally, gene expression of TRH receptors, thyroid stimulating hormone subunit beta (TSHβ), and D2 was determined in the APit and corticosterone assayed in blood. In brains, a significant upregulation in examined genes occurred at different times of IM. Specifically, UCN3 and CRH2 which have a high affinity to CRH-R2 showed a rapid increase in their mRNA levels that were accompanied by an early upregulation of TRHR1 in the NHpC. In the APit, a significant increase in gene expression of TSHβ and TRH receptors was observed. Therefore, results supported concurrent activation of major brain and APit genes associated with the HPA and HPT axes following IM. The initial neural gene expression originating within the NHpC resulted in the increase of TSHβ mRNA in the APit. Specifically, the rapid upregulation of UCN3 in the NHpC appeared responsible for the early activation of TSHβ in the APit. While sustaining TSHβ activation appeared to be due to both CRH2 and TRH. Therefore, data indicate that CRH-producing neurons and corticotropes as well as CRH- and TRH-producing neurons and thyrotropes are activated to produce the necessary energy required to maintain homeostasis in birds undergoing stress. Overall, data support the inclusion of the NHpC in the classical avian HPA axis and for the first time show the concurrent activation of the HPA axis and components of the HPT axis following a psychogenic stressor.
Collapse
Affiliation(s)
- Hakeem J. Kadhim
- Veterinary Medicine College, University of Thi-Qar, Nasiriyah, Iraq
| | - Wayne J. Kuenzel
- Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
6
|
Ouchi Y, Chowdhury VS, Cockrem JF, Bungo T. Thermal Conditioning Can Improve Thermoregulation of Young Chicks During Exposure to Low Temperatures. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.919416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The risk of climate change is increasing year by year and changing environmental temperatures will increasingly have effects on productivity in the poultry industry. Thermal conditioning is a method of improving thermotolerance and productivity in chickens (Gallus gallus domesticus) that experience high ambient temperatures. Thermal conditioning involves exposure of chickens to high temperatures at an early age. This conditioning treatment can affect tolerance to other type of stress. However, the effect of thermal conditioning on tolerance of low temperatures has not been investigated. Therefore, in this study we investigated the effect of thermal conditioning in chickens on thermoregulation during exposure to low temperatures. Three day-old female broiler chicks were exposed to high ambient temperatures (40°C for 12 h) as a thermal conditioning treatment. A control group of chicks was kept at 30°C. At 7 days-old, both groups of chicks were exposed to low temperatures (16 ± 0.5°C) for 3 h. Thermal conditioning treatment reduced the decrease in rectal temperature during cold exposure that occurred in control chicks. In addition, hypothalamic mRNA expression of brain derived neurotrophic factor, thyrotropin-releasing hormone and arginine vasotocin genes was higher in thermal conditioning treated chicks than control chicks. The mRNA expression of avian uncoupling protein in the liver was also higher in thermal conditioning chicks. These results suggest that thermal conditioning treatment can improve thermoregulatory mechanisms of chicks under low temperature environments.
Collapse
|
7
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
8
|
Ruuskanen S, Hsu BY, Nord A. Endocrinology of thermoregulation in birds in a changing climate. Mol Cell Endocrinol 2021; 519:111088. [PMID: 33227349 DOI: 10.1016/j.mce.2020.111088] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The ability to maintain a (relatively) stable body temperature in a wide range of thermal environments by use of endogenous heat production is a unique feature of endotherms such as birds. Endothermy is acquired and regulated via various endocrine and molecular pathways, and ultimately allows wide aerial, aquatic, and terrestrial distribution in variable environments. However, due to our changing climate, birds are faced with potential new challenges for thermoregulation, such as more frequent extreme weather events, lower predictability of climate, and increasing mean temperature. We provide an overview on thermoregulation in birds and its endocrine and molecular mechanisms, pinpointing gaps in current knowledge and recent developments, focusing especially on non-model species to understand the generality of, and variation in, mechanisms. We highlight plasticity of thermoregulation and underlying endocrine regulation, because thorough understanding of plasticity is key to predicting responses to changing environmental conditions. To this end, we discuss how changing climate is likely to affect avian thermoregulation and associated endocrine traits, and how the interplay between these physiological processes may play a role in facilitating or constraining adaptation to a changing climate. We conclude that while the general patterns of endocrine regulation of thermogenesis are quite well understood, at least in poultry, the molecular and endocrine mechanisms that regulate, e.g. mitochondrial function and plasticity of thermoregulation over different time scales (from transgenerational to daily variation), need to be unveiled. Plasticity may ameliorate climate change effects on thermoregulation to some extent, but the increased frequency of extreme weather events, and associated changes in resource availability, may be beyond the scope and/or speed for plastic responses. This could lead to selection for more tolerant phenotypes, if the underlying physiological traits harbour genetic and individual variation for selection to act on - a key question for future research.
Collapse
Affiliation(s)
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Finland
| | - Andreas Nord
- Lund University, Department of Biology, Section for Evolutionary Ecology, Ecology Building, Sölvegatan 37, SE-22362, Lund, Sweden
| |
Collapse
|
9
|
Bu G, Fan J, Yang M, Lv C, Lin Y, Li J, Meng F, Du X, Zeng X, Zhang J, Li J, Wang Y. Identification of a Novel Functional Corticotropin-Releasing Hormone (CRH2) in Chickens and Its Roles in Stimulating Pituitary TSHβ Expression and ACTH Secretion. Front Endocrinol (Lausanne) 2019; 10:595. [PMID: 31555213 PMCID: PMC6727040 DOI: 10.3389/fendo.2019.00595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing hormone (CRH), together with its structurally and functionally related neuropeptides, constitute the CRH family and play critical roles in multiple physiological processes. Recently, a novel member of this family, namely CRH2, was identified in vertebrates, however, its functionality and physiological roles remain an open question. In this study, using chicken (c-) as the animal model, we characterized the expression and functionality of CRH2 and investigated its roles in anterior pituitary. Our results showed that (1) cCRH2 cDNA is predicted to encode a 40-aa mature peptide, which shares a higher amino acid sequence identity to cCRH (63%) than to other CRH family peptides (23-38%); (2) Using pGL3-CRE-luciferase reporter system, we demonstrated that cCRH2 is ~15 fold more potent in activating cCRH receptor 2 (CRHR2) than cCRHR1 when expressed in CHO cells, indicating that cCRH2 is bioactive and its action is mainly mediated by CRHR2; (3) Quantitative real-time PCR revealed that cCRH2 is widely expressed in chicken tissues including the hypothalamus and anterior pituitary, and its transcription is likely controlled by promoters near exon 1, which display strong promoter activity in cultured DF-1 and HEK293 cells; (4) In cultured chick pituitary cells, cCRH2 potently stimulates TSHβ expression and shows a lower potency in inducing ACTH secretion, indicating that pituitary/hypothalamic CRH2 can regulate pituitary functions. Collectively, our data provides the first piece of evidence to suggest that CRH2 play roles similar, but non-identical, to those of CRH, such as its differential actions on pituitary, and this helps to elucidate the roles of CRH2 in vertebrates.
Collapse
Affiliation(s)
- Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Fan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Can Lv
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Lin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Jinxuan Li
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an, China
- Xianyin Zeng
| | - Jiannan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yajun Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Yajun Wang
| |
Collapse
|
10
|
Ávila-Mendoza J, Carranza M, Villalobos P, Olvera A, Orozco A, Luna M, Arámburo C. Differential responses of the somatotropic and thyroid axes to environmental temperature changes in the green iguana. Gen Comp Endocrinol 2016; 230-231:76-86. [PMID: 27044512 DOI: 10.1016/j.ygcen.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 11/26/2022]
Abstract
Growth hormone (GH), together with thyroid hormones (TH), regulates growth and development, and has critical effects on vertebrate metabolism. In ectotherms, these physiological processes are strongly influenced by environmental temperature. In reptiles, however, little is known about the direct influences of this factor on the somatotropic and thyroid axes. Therefore, the aim of this study was to describe the effects of both acute (48h) and chronic (2weeks) exposure to sub-optimal temperatures (25 and 18°C) upon somatotropic and thyroid axis function of the green iguana, in comparison to the control temperature (30-35°C). We found a significant increase in GH release (2.0-fold at 25°C and 1.9-fold at 18°C) and GH mRNA expression (up to 3.7-fold), mainly under chronic exposure conditions. The serum concentration of insulin-like growth factor-I (IGF-I) was significantly greater after chronic exposure (18.5±2.3 at 25°C; 15.92±3.4 at 18°C; vs. 9.3±1.21ng/ml at 35°C), while hepatic IGF-I mRNA expression increased up to 6.8-fold. Somatotropic axis may be regulated, under acute conditions, by thyrotropin-releasing hormone (TRH) that significantly increased its hypothalamic concentration (1.45 times) and mRNA expression (0.9-fold above control), respectively; and somatostatin (mRNA expression increased 1.0-1.2 times above control); and under chronic treatment, by pituitary adenylate cyclase-activating peptide (PACAP mRNA expression was increased from 0.4 to 0.6 times). Also, it was shown that, under control conditions, injection of TRH stimulated a significant increase in circulating GH. On the other hand, while there was a significant rise in the hypothalamic content of TRH and its mRNA expression, this hormone did not appear to influence the thyroid axis activity, which showed a severe diminution in all conditions of cold exposure, as indicated by the decreases in thyrotropin (TSH) mRNA expression (up to one-eight of the control), serum T4 (from 11.6±1.09 to 5.3±0.58ng/ml, after 2weeks at 18°C) and T3 (from 0.87±0.09 to 0.05±0.01ng/ml, under chronic conditions at 25°C), and Type-2 deiodinase (D2) activity (from 992.5±224 to 213.6±26.4fmolI(125)T4/mgh). The reduction in thyroid activity correlates with the down-regulation of metabolism as suggested by the decrease in the serum glucose and free fatty acid levels. These changes apparently were independent of a possible stress response, at least under acute exposure to both temperatures and in chronic treatment to 25°C, since serum corticosterone had no significant changes in these conditions, while at chronic 18°C exposure, a slight increase (0.38 times above control) was found. Thus, these data suggest that the reptilian somatotropic and thyroid axes have differential responses to cold exposure, and that GH and TRH may play important roles associated to adaptation mechanisms that support temperature acclimation in the green iguana.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Patricia Villalobos
- Laboratorio de Fisiología Evolutiva, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Aurora Olvera
- Laboratorio de Fisiología Evolutiva, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Aurea Orozco
- Laboratorio de Fisiología Evolutiva, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Maricela Luna
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Laboratorio de Bioquímica de Hormonas, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
11
|
Técher R, Houde M, Verreault J. Associations between organohalogen concentrations and transcription of thyroid-related genes in a highly contaminated gull population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:289-298. [PMID: 26747993 DOI: 10.1016/j.scitotenv.2015.12.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
A number of studies have reported altered circulating thyroid hormone levels in birds exposed either in controlled settings or in their natural habitat to ubiquitous organohalogen compounds including organochlorines (OCs) and polybrominated diphenyl ether (PBDE) flame retardants. However, limited attention has been paid to underlying homeostatic mechanisms in wild birds such as changes in the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis. The objective of the present study was to investigate the relationships between hepatic concentrations of major organohalogens (PBDEs and OCs), and circulating thyroid hormone (free and total thyroxine (T4) and triiodothyronine (T3)) levels and transcription of 14 thyroid-related genes in three tissues (thyroid, brain, and liver) of an urban-adapted bird exposed to high organohalogen concentrations in the Montreal area (QC, Canada), the ring-billed gull (Larus delawarensis). Positive correlations were found between liver concentrations of several polychlorinated biphenyls (PCBs), PBDEs as well as chlordanes and total plasma T4 levels. Hepatic concentrations of several PBDEs were negatively correlated with mRNA levels of deiodinase type 3, thyroid peroxidase, and thyroid hormone receptor β (TRβ) in the thyroid gland. Liver PCB (deca-CB) correlated positively with mRNA levels of sodium-iodide symporter and TRα. In brain, concentrations of most PBDEs were positively correlated with mRNA levels of organic anion transporter protein 1C1 and transthyretin, while PCBs positively correlated with expression of TRα and TRβ as well as deiodinase type 2. These multiple correlative linkages suggest that organohalogens operate through several mechanisms (direct or compensatory) involving gene transcription, thus potentially perturbing the HPT axis of this highly organohalogen-contaminated ring-billed gull population.
Collapse
Affiliation(s)
- Romy Técher
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| | - Magali Houde
- Environment Canada, St. Lawrence Centre, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada.
| |
Collapse
|
12
|
Mohácsik P, Füzesi T, Doleschall M, Szilvásy-Szabó A, Vancamp P, Hadadi É, Darras VM, Fekete C, Gereben B. Increased Thyroid Hormone Activation Accompanies the Formation of Thyroid Hormone-Dependent Negative Feedback in Developing Chicken Hypothalamus. Endocrinology 2016; 157:1211-21. [PMID: 26779746 DOI: 10.1210/en.2015-1496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypothalamic-pituitary-thyroid axis is governed by hypophysiotropic TRH-synthesizing neurons located in the hypothalamic paraventricular nucleus under control of the negative feedback of thyroid hormones. The mechanisms underlying the ontogeny of this phenomenon are poorly understood. We aimed to determine the onset of thyroid hormone-mediated hypothalamic-negative feedback and studied how local hypothalamic metabolism of thyroid hormones could contribute to this process in developing chicken. In situ hybridization revealed that whereas exogenous T4 did not induce a statistically significant inhibition of TRH expression in the paraventricular nucleus at embryonic day (E)19, T4 treatment was effective at 2 days after hatching (P2). In contrast, TRH expression responded to T3 treatment in both age groups. TSHβ mRNA expression in the pituitary responded to T4 in a similar age-dependent manner. Type 2 deiodinase (D2) was expressed from E13 in tanycytes of the mediobasal hypothalamus, and its activity increased between E15 and P2 both in the mediobasal hypothalamus and in tanycyte-lacking hypothalamic regions. Nkx2.1 was coexpressed with D2 in E13 and P2 tanycytes and transcription of the cdio2 gene responded to Nkx2.1 in U87 glioma cells, indicating its potential role in the developmental regulation of D2 activity. The T3-degrading D3 enzyme was also detected in tanycytes, but its level was not markedly changed before and after the period of negative feedback acquisition. These findings suggest that increasing the D2-mediated T3 generation during E18-P2 could provide the sufficient local T3 concentration required for the onset of T3-dependent negative feedback in the developing chicken hypothalamus.
Collapse
Affiliation(s)
- P Mohácsik
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - T Füzesi
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - M Doleschall
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - A Szilvásy-Szabó
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - P Vancamp
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - É Hadadi
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - V M Darras
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - C Fekete
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - B Gereben
- Department of Endocrine Neurobiology (P.M., T.F., M.D., A.S.S., É.H., C.F., B.G.), Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary; János Szentágothai PhD School of Neurosciences (P.M., A.S.S.), Semmelweis University, H-1085 Budapest, Hungary; Laboratory of Comparative Endocrinology (P.V., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, KU Leuven, B-3001 Leuven, Belgium; and Department of Medicine (C.F.), Division of Endocrinology, Diabetes, and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| |
Collapse
|
13
|
Mo C, Cai G, Huang L, Deng Q, Lin D, Cui L, Wang Y, Li J. Corticotropin-releasing hormone (CRH) stimulates cocaine- and amphetamine-regulated transcript gene (CART1) expression through CRH type 1 receptor (CRHR1) in chicken anterior pituitary. Mol Cell Endocrinol 2015; 417:166-77. [PMID: 26363222 DOI: 10.1016/j.mce.2015.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 11/22/2022]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptide(s) is generally viewed as neuropeptide(s) and can control food intake in vertebrates, however, our recent study revealed that CART1 peptide is predominantly expressed in chicken anterior pituitary, suggesting that cCART1 peptide is a novel pituitary hormone in chickens and its expression is likely controlled by hypothalamic factor(s). To test this hypothesis, in this study, we examined the spatial expression of CART1 in chicken anterior pituitary and investigated the effect of hypothalamic corticotropin-releasing hormone (CRH) on pituitary cCART1 expression. The results showed that: 1) CART1 is expressed in both caudal and cephalic lobes of chicken anterior pituitary, revealed by quantitative real-time PCR (qPCR), western blot and immuno-histochemical staining; 2) CRH potently stimulates cCART1 mRNA expression in cultured chick pituitary cells, as examined by qPCR, and this effect is blocked by CP154526 (and not K41498), an antagonist specific for chicken CRH type I receptor (cCRHR1), suggesting that cCRHR1 expressed on corticotrophs mediates this action; 3) the stimulatory effect of CRH on pituitary cCART1 expression is inhibited by pharmacological drugs targeting the intracellular AC/cAMP/PKA, PLC/IP3/Ca(2+), and MEK/ERK signaling pathways. This finding, together with the functional coupling of these signaling pathways to cCRHR1 expressed in CHO cells demonstrated by luciferase reporter assay systems, indicates that these intracellular signaling pathways coupled to cCRHR1 can mediate CRH action. Collectively, our present study offers the first substantial evidence that hypothalamic CRH can stimulate pituitary CART1 expression via activation of CRHR1 in a vertebrate species.
Collapse
Affiliation(s)
- Chunheng Mo
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Guoqing Cai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Long Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Qiuyang Deng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Dongliang Lin
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Lin Cui
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
14
|
Huang G, He C, Meng F, Li J, Zhang J, Wang Y. Glucagon-like peptide (GCGL) is a novel potential TSH-releasing factor (TRF) in Chickens: I) Evidence for its potent and specific action on stimulating TSH mRNA expression and secretion in the pituitary. Endocrinology 2014; 155:4568-80. [PMID: 25076122 DOI: 10.1210/en.2014-1331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our recent study proposed that the novel glucagon-like peptide (GCGL), encoded by a glucagon-like gene identified in chickens and other lower vertebrates, is likely a hypophysiotropic factor in nonmammalian vertebrates. To test this hypothesis, in this study, we investigated the GCGL action on chicken pituitaries. The results showed that: 1) GCGL, but not TRH, potently and specifically stimulates TSH secretion in intact pituitaries incubated in vitro or in cultured pituitary cells monitored by Western blotting or a cell-based luciferase reporter assay; 2) GCGL (0.1nM-10nM) dose dependently induces the mRNA expression of TSHβ but not 5 other hormone genes in cultured pituitary cells examined by quantitative real-time RT-PCR, an action likely mediated by intracellular adenylate cyclase/cAMP/protein kinase A and phospholipase C/inositol 1,4,5-trisphosphate/Ca(2+) signaling pathways coupled to GCGL receptor (GCGLR); 3) GCGLR mRNA is mainly localized in pituitary cephalic lobe demonstrated by in situ hybridization, where TSH-cells reside, further supporting a direct action of GCGL on thyrotrophs. The potent and specific action of GCGL on pituitary TSH expression and secretion, together with the partial accordance shown among the temporal expression profiles of GCGL in the hypothalamus and GCGLR and TSHβ in the pituitary, provides the first collective evidence that hypothalamic GCGL is most likely to be a novel TSH-releasing factor functioning in chickens. The discovery of this novel potential TSH-releasing factor (GCGL) in a nonmammalian vertebrate species, ie, chickens, would facilitate our comprehensive understanding of the hypothalamic control of pituitary-thyroid axis across vertebrates.
Collapse
Affiliation(s)
- Guian Huang
- Key Laboratory of Bioresources and Ecoenvironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Ahmed AA, Ma W, Ni Y, Wang S, Zhao R. Corticosterone in ovo modifies aggressive behaviors and reproductive performances through alterations of the hypothalamic-pituitary-gonadal axis in the chicken. Anim Reprod Sci 2014; 146:193-201. [DOI: 10.1016/j.anireprosci.2014.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 02/07/2023]
|
16
|
Grommen SV, Geysens S, Darras VM, De Groef B. Chicken folliculo-stellate cells express thyrotropin receptor mRNA. Domest Anim Endocrinol 2009; 37:236-42. [PMID: 19683409 DOI: 10.1016/j.domaniend.2009.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/11/2009] [Accepted: 06/26/2009] [Indexed: 11/19/2022]
Abstract
We investigated the presence of thyrotropin receptor (TSHR) mRNA in chicken pituitary and brain, and quantified the changes in its expression during the last week of embryonic development. We found that in the pituitary gland, TSHR mRNA co-localizes with folliculo-stellate cells but not with thyrotropic cells, suggesting the existence of a paracrine ultra-short thyrotropin feedback loop. TSHR mRNA was also present throughout the diencephalon and various other brain regions, which implies a more general function for thyrotropin in the avian brain. During late embryogenesis, when the activity of the hypothalamo-pituitary-thyroidal axis increases markedly, a significant rise in TSHR mRNA expression was observed in pituitary, which may signify an important change in pituitary ultra-short thyrotropin feedback regulation around the period of hatching.
Collapse
Affiliation(s)
- S V Grommen
- Department of Biology, Catholic University of Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
17
|
Galas L, Raoult E, Tonon MC, Okada R, Jenks BG, Castaño JP, Kikuyama S, Malagon M, Roubos EW, Vaudry H. TRH acts as a multifunctional hypophysiotropic factor in vertebrates. Gen Comp Endocrinol 2009; 164:40-50. [PMID: 19435597 DOI: 10.1016/j.ygcen.2009.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 11/17/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is the first hypothalamic hypophysiotropic neuropeptide whose sequence has been chemically characterized. The primary structure of TRH (pGlu-His-Pro-NH(2)) has been fully conserved across the vertebrate phylum. TRH is generated from a large precursor protein that contains multiple repeats of the TRH progenitor tetrapeptide Gln-His-Pro-Gly. In all tetrapods, TRH-expressing neurons located in the hypothalamus project towards the external zone of the median eminence while in teleosts they directly innervate the pars distalis of the pituitary. In addition, in frogs and teleosts, a bundle of TRH-containing fibers terminate in the neurointermediate lobe of the pituitary gland. Although TRH was originally named for its ability to trigger the release of thyroid-stimulating hormone (TSH) in mammals, it later became apparent that it exerts multiple, species-dependent hypophysiotropic activities. Thus, in fish TRH stimulates growth hormone (GH) and prolactin (PRL) release but does not affect TSH secretion. In amphibians, TRH is a marginal stimulator of TSH release in adult frogs, not in tadpoles, and a major releasing factor for GH and PRL. In birds, TRH triggers TSH and GH secretion. In mammals, TRH stimulates TSH, GH and PRL release. In fish and amphibians, TRH is also a very potent stimulator of alpha-melanocyte-stimulating hormone release. Because the intermediate lobe of the pituitary of amphibians is composed by a single type of hormone-producing cells, the melanotrope cells, it is a suitable model in which to investigate the mechanism of action of TRH at the cellular and molecular level. The occurrence of large amounts of TRH in the frog skin and high concentrations of TRH in frog plasma suggests that, in amphibians, skin-derived TRH may exert hypophysiotropic functions.
Collapse
Affiliation(s)
- Ludovic Galas
- Regional Platform for Cell Imaging (PRIMACEN), European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maternal low-protein diet programmes offspring growth in association with alterations in yolk leptin deposition and gene expression in yolk-sac membrane, hypothalamus and muscle of developing Langshan chicken embryos. Br J Nutr 2009; 102:848-57. [PMID: 19267947 DOI: 10.1017/s0007114509276434] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was aimed to investigate the mechanism underlying the influence of maternal low-protein (LP) diet on offspring growth in the chicken. One hundred and twenty Chinese inbred Langshan breeder hens were allocated randomly into two groups fed diets containing low (10%, LP) or normal (15%) crude protein levels. Low dietary protein did not affect the body weight of hens, but significantly decreased the laying rate and egg weight. The yolk leptin content was significantly lower in eggs laid by LP hens, while no differences were detected for yolk contents of corticosterone, tri-iodothyronine (T3) or thyroxine. Despite significantly lower hatch weight, the LP offspring demonstrated obviously higher serum T3 concentration, which is in accordance with the faster post-hatch growth rate achieving significantly heavier body weight and pectoralis major muscle weight 4 weeks post-hatching. Expression of 20-hydroxysteroid dehydrogenase (20-HSD) mRNA in the yolk-sac membrane was significantly down-regulated at embryonic day 14, whereas that of transthyretin and leptin receptor (LepR) was not altered. Moreover, hypothalamic expression of 20-HSD, glucocorticoid receptors, thyrotropin-releasing hormone and LepR mRNA was significantly up-regulated in the LP group compared with their control counterparts. In the pectoralis major muscle, significantly higher expression of insulin-like growth factor (IGF)-I and IGF-I receptor mRNA was observed in LP embryos. The present study provides evidence that maternal LP diet programmes post-hatch growth of the offspring. The associated alterations in yolk leptin deposition as well as in yolk-sac membrane, fetal hypothalamus and muscle gene expression may be involved in mediating such programming effect in the chicken.
Collapse
|
19
|
Chapter 6 Regulation And Contribution Of The Corticotropic, Melanotropic And Thyrotropic Axes To The Stress Response In Fishes. FISH PHYSIOLOGY 2009. [DOI: 10.1016/s1546-5098(09)28006-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
De Groef B, Grommen SVH, Darras VM. The chicken embryo as a model for developmental endocrinology: development of the thyrotropic, corticotropic, and somatotropic axes. Mol Cell Endocrinol 2008; 293:17-24. [PMID: 18619516 DOI: 10.1016/j.mce.2008.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 06/11/2008] [Indexed: 10/22/2022]
Abstract
The ease of in vivo experimental manipulation is one of the main factors that have made the chicken embryo an important animal model in developmental research, including developmental endocrinology. This review focuses on the development of the thyrotropic, corticotropic and somatotropic axes in the chicken, emphasizing the central role of the pituitary gland in these endocrine systems. Functional maturation of the endocrine axes entails the cellular differentiation and acquisition of cell function and responsiveness of the different glands involved, as well as the establishment of top-down and bottom-up anatomical and functional communication between the control levels. Extensive cross-talk between the above-mentioned axes accounts for the marked endocrine changes observed during the last third of embryonic development. In a final paragraph we shortly discuss how genomic resources and new transgenesis techniques can increase the power of the chicken embryo model in developmental endocrinology research.
Collapse
|
21
|
Filippa V, Mohamed F. Immunohistochemical and Morphometric Study of Pituitary Pars Distalis Thyrotrophs of Male Viscacha (Lagostomus maximus maximus): Seasonal Variations and Effect of Melatonin and Castration. Anat Rec (Hoboken) 2008; 291:400-9. [DOI: 10.1002/ar.20671] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Tona K, Onagbesan O, Bruggeman V, De Smit L, Figueiredo D, Decuypere E. Non-ventilation during early incubation in combination with dexamethasone administration during late incubation: 1. Effects on physiological hormone levels, incubation duration and hatching events. Domest Anim Endocrinol 2007; 33:32-46. [PMID: 16697137 DOI: 10.1016/j.domaniend.2006.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 04/06/2006] [Accepted: 04/11/2006] [Indexed: 10/24/2022]
Abstract
This study investigated the effect of non-ventilation of the incubator during the first 10 days of incubation and its combination with dexamethasone administration at day 16 or 18 of incubation on hatching parameters and embryo and post-hatch chick juvenile physiology. A total of 2400 hatching eggs produced by Cobb broiler breeders were used for the study. Blood samples were collected at day 18 of incubation, at internal pipping stage (IP), at the end of hatch (day-old chick) and at 7-day-post-hatch for T(3), T(4) and corticosterone levels determination. From 448 to 506 h of incubation, the eggs were checked individually in the hatcher every 2h for pipping and hatching. The results indicate that non-ventilation during the first 10-day shortened incubation duration up to IP, external pipping (EP) and hatch, had no effect on hatchability and led to higher T(3) levels at IP but lower corticosterone levels at 7-day-post-hatch. The injection of dexamethasone at days 16 and 18 of incubation affected hatching and blood parameters in both the ventilated and non-ventilated embryos differentially and the effect was dependent on the age of the embryo. Dexamethasone increased T(3) levels and T(3)/T(4) ratios but the effect was greater with early non-ventilation of eggs. Dexamethasone decreased hatchability but the effect was greater when injected at day 16 and especially in ventilated embryos. The effects of incubation protocols and dexamethasone treatments during incubation were still apparent in the hatched chicks until 7 days of age. The changes in T(3), T(4) and corticosterone levels observed in response to the early incubation conditions and late dexamethasone treatments in this study suggest that incubator ventilation or non-ventilation may influence the hypothalamic-pituitary-adrenal axis (HPA) regulation of stress levels (in terms of plasma corticosterone levels) and thyroid function in the embryo with impact on incubation duration, hatching events and early post-hatch life of the chick. Our results also suggest that some stages of development are more sensitive to dexamethasone administration as effects can be influenced by early incubation protocols.
Collapse
Affiliation(s)
- K Tona
- Department of Animal Production, School of Agriculture, University of Lome, Togo
| | | | | | | | | | | |
Collapse
|
23
|
Aoki Y, Ono H, Yasuo S, Masuda T, Yoshimura T, Ebihara S, Iigo M, Yanagisawa T. Molecular Evolution of Prepro-Thyrotropin-Releasing Hormone in the Chicken (Gallus gallus) and Its Expression in the Brain. Zoolog Sci 2007; 24:686-92. [PMID: 17824776 DOI: 10.2108/zsj.24.686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/28/2007] [Indexed: 11/17/2022]
Abstract
A cDNA encoding prepro-thyrotropin-relaesing hormone (ppTRH) in chicken (Gallus gallus) was isolated and the sites of expression in the brain were determined. The chicken ppTRH cDNA encodes 260 amino acids, including four TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). It is interesting to note that chicken ppTRH harbors four TRH progenitor-like sequences. According to the hydropathy profile of chicken ppTRH, not only the TRH progenitor sequences but also the TRH progenitor-like sequences are localized in hydrophilic regions. The TRH progenitor-like sequences might be related to structural conservation in the evolution of ppTRH, although they cannot be processed into TRH due to the mutation of several amino acids. According to the alignment of the deduced amino-acid sequences of known vertebrate ppTRHs and the molecular phylogenetic tree we constructed, we speculate on the molecular evolution of ppTRH in vertebrates. In situ hybridization demonstrated experession of the ppTRH gene in the nucleus preopticus periventricularis, nucleus preopticus medialis, regio lateralis hypothalami, paraventricular nucleus, nucleus periventricularis hypothalami, and nucleus ventromedialis hypothalami in the chicken brain.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reprint of "Avian thyroid development and adaptive plasticity" [Gen. Comp. Endocrinol. 147, 93-101]. Gen Comp Endocrinol 2006; 148:290-8. [PMID: 16938499 DOI: 10.1016/j.ygcen.2006.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/18/2022]
Abstract
Precocial and altricial modes of avian development are characterized by different degrees of maturation and physiological capabilities at hatching. In precocial birds, thyroid function and its control are well developed during the latter part of incubation and hatchlings exhibit metabolic responses to cooling and relatively mature sensory and locomotor capabilities. In altricial birds, thyroid function shows little maturation until after hatch as also is the case for thermoregulatory, sensory, and motor functions. This review describes the patterns of precocial and altricial thyroid development, their hypothalamic-pituitary control, extrathyroidal control of hormone activation and deactivation, and target tissue effects during development. Our knowledge is greatest for precocial galliform birds although the organismal picture of thyroid development has been investigated in several altricial avian species.
Collapse
|
25
|
McNabb FMA. Avian thyroid development and adaptive plasticity. Gen Comp Endocrinol 2006; 147:93-101. [PMID: 16457824 DOI: 10.1016/j.ygcen.2005.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 11/26/2022]
Abstract
Precocial and altricial modes of avian development are characterized by different degrees of maturation and physiological capabilities at hatching. In precocial birds, thyroid function and its control are well developed during the latter part of incubation and hatchlings exhibit metabolic responses to cooling and relatively mature sensory and locomotor capabilities. In altricial birds, thyroid function shows little maturation until after hatch as also is the case for thermoregulatory, sensory, and motor functions. This review describes the patterns of precocial and altricial thyroid development, their hypothalamic-pituitary control, extrathyroidal control of hormone activation and deactivation, and target tissue effects during development. Our knowledge is greatest for precocial galliform birds although the organismal picture of thyroid development has been investigated in several altricial avian species.
Collapse
Affiliation(s)
- F M Anne McNabb
- Department of Biological Sciences, Virginia Tech, Blacksburg, 24061-0406, USA.
| |
Collapse
|