1
|
Basini G, Grasselli F. Gonadotropins, local factors and a variety of adipokines contribute to regulate swine granulosa cell function. Domest Anim Endocrinol 2025; 91:106918. [PMID: 39837027 DOI: 10.1016/j.domaniend.2025.106918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
This paper reviews the role of endocrine regulators in swine ovarian cell functions, highlighting the intricate hormonal interactions that drive reproductive and metabolic processes. The pig represents a valuable model for human biology due to physiological and anatomical similarities. Understanding the endocrine mechanisms in swine can provide insights about human reproductive health and metabolic disorders. The present review describes some key hormones involved, including gonadotropins, sex steroids, and adipokines, and their impacts on ovarian folliculogenesis and steroidogenesis. Emphasis is placed on the crosstalk between the ovary and adipose tissue, which is critical for maintaining reproductive and metabolic homeostasis.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
2
|
Basini G, Bertini S, Bussolati S, Zappavigna F, Berni M, Scaltriti E, Ramoni R, Grolli S, Quintavalla F, Grasselli F. The porcine corpus luteum as a model for studying the effects of nanoplastics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104503. [PMID: 39025424 DOI: 10.1016/j.etap.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Nanoplastics (NPs) affect fertility. We evaluated the effects of NPs treatment on luteal and endothelial cells. We examined crucial markers of growth and redox status. NPs treatment did not induce changes in ATP levels in luteal cells, while it increased (p< 0.05) their proliferation. In endothelial cells, no change in proliferation was detected, while an increase (p<0.05) in ATP levels was observed. The increase of reactive oxygen species, superoxide anion (p<0.05) and nitric oxide (p<0.001) was detected in both cell types, which also showed changes in superoxide dismutase enzyme activity as well as an increase of non-enzymatic antioxidant power (p<0.05). A decrease (p<0.05) in progesterone production as well as an increase of vascular endothelial growth factor A levels were detected (p<0.05). In addition, a dose-dependent accumulation of NPs in endothelial cells was shown, that likely occurred through adhesion and internalization. Results underline potential risk of NPs for corpus luteum functionality.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Simone Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Francesca Zappavigna
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, Parma 43126, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, Parma 43126, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Fausto Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
3
|
Kopij G, Kiezun M, Dobrzyn K, Zaobidna E, Zarzecka B, Rak A, Kaminski T, Kaminska B, Smolinska N. Visfatin Affects the Transcriptome of Porcine Luteal Cells during Early Pregnancy. Int J Mol Sci 2024; 25:2339. [PMID: 38397019 PMCID: PMC10889815 DOI: 10.3390/ijms25042339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Visfatin/NAMPT (VIS), the hormone exerting a pleiotropic effect, is also perceived as an important factor in the regulation of reproductive processes and pregnancy maintenance. Previous studies confirmed its involvement in the control of porcine pituitary and ovary function. In this study, we hypothesized that VIS may affect the global transcriptome of luteal cells and thus regulate the functioning of the ovaries. Illumina's NovaSeq 6000 RNA sequencing was performed to investigate the differentially expressed genes (DEGs) and long non-coding RNAs (DELs) as well as the occurrence of differential alternative splicing events (DASs) in the porcine luteal cells exposed to VIS (100 ng/mL) during the implantation period. The obtained results revealed 170 DEGs (99 up- and 71 downregulated) assigned to 45 functional annotations. Moreover, we revealed 40 DELs, of which 3 were known and 37 were described for the first time. We identified 169 DASs events. The obtained results confirmed a significant effect of VIS on the transcriptome and spliceosome of luteal cells, including the genes involved in the processes crucial for successful implantation and pregnancy maintenance as angiogenesis, steroidogenesis, inflammation, cell development, migration, and proliferation.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Barbara Kaminska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland; (G.K.); (M.K.); (K.D.); (E.Z.); (B.Z.); (T.K.); (B.K.)
| |
Collapse
|
4
|
Kumar V, Doshi G. Revolutionizing Infertility Management through Novel Peptide-based Targets. Curr Protein Pept Sci 2024; 25:738-752. [PMID: 38778605 DOI: 10.2174/0113892037304433240430144106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Around 48 million couples and 186 million people worldwide have infertility; of these, approximately 85% have an identifiable cause, the most common being ovulatory dysfunctions, male infertility, polycystic ovary syndrome, and tubule disease. The remaining 15% have infertility for unknown reasons, including lifestyle and environmental factors. The regulation of the hypothalamic- pituitary-adrenal axis (HPA) is crucial for the secretion of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH), which are essential for female reproductive functions. GnRH is the primary reproductive axis regulator. The pattern of GnRH, FSH, and LH release is determined by its pulsatile secretion, which in turn controls endocrine function and gamete maturation in the gonads. Peptides called Kisspeptin (KP), Neurokinin-B (NKB), and Orexin influence both positive and negative feedback modulation of GnRH, FSH, and LH secretion in reproduction. This review article mainly focuses on the historical perspective, isoform, and signaling pathways of KP, NKB, and Orexin novel peptide-based targets including clinical and preclinical studies and having a promising effect in the management of infertility.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| |
Collapse
|
5
|
Sardar VM, Gupta M, Korde JP, Bahiram KB, Bonde SW. Orexin system in buffalo ovarian follicles and effect of orexin on oestradiol production. Reprod Domest Anim 2023. [PMID: 36881512 DOI: 10.1111/rda.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Orexin is a ligand for orexin receptors OX1R and OX2R; it is a neuropeptide with pleiotropic functions, including regulation of reproduction. The current study was carried out to investigate the mRNA expression of the prepro-orexin gene (PPO) and orexin receptors (OX1R and OX2R) in ovarian follicles during different stages of their development in the ovary of water buffalo (Bubalus bubalis) and to determine the role of orexin on oestradiol production. Ovarian follicles were classified into four groups based on size and oestradiol (E2 ) level in the follicular fluid (FF) as follows: (i) small or F1, (ii) medium or F2, (iii) large or F3, and (iv) dominant/pre-ovulatory follicle or F4. In follicles, the mRNA expression of PPO and OX1R was greater in F3 and F4 follicles in granulosa cells (GC) and theca interna (TI) cells. OX2R expression did not vary among the different follicular stages in GC. Orexin-A and orexin receptors were localized in the cytoplasm of GC and TI, and intensity was higher in F3 and F4 follicles. In addition, we cultured GC and treated them at 0.1, 1.0, and 10 ng/mL orexin-A alone or in the presence of FSH (30 ng/mL) or IGF-I (10 ng/mL) for 48 h. There was a significant (p < .05) increase in oestradiol (E2 ) secretion and cytochrome P0450 family 19 subfamily A member 1 (CYP19A1) expression from GC at 1.0 and 10.0 ng/mL orexin-A in the presence of 30 ng/mL follicle-stimulating hormone (FSH) or 10 ng/mL insulin-like growth factor-I (IGF-I). In conclusion, the present study provided evidence that the orexin system is expressed in buffalo ovarian follicles, and orexin-A in the presence of FSH and IGF-I has a stimulatory effect on oestradiol secretion from the GC of water buffalo.
Collapse
Affiliation(s)
- Vikas M Sardar
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, India
| | - Mahesh Gupta
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, India
| | - Jayant P Korde
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, India
| | - Krushna B Bahiram
- Department of Veterinary Physiology, Nagpur Veterinary College, Nagpur, India
| | - Sachin W Bonde
- Department of Veterinary Biochemistry, Nagpur Veterinary College, Nagpur, India
| |
Collapse
|
6
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
7
|
Grasselli F, Bussolati S, Grolli S, Di Lecce R, Dall’Aglio C, Basini G. Effects of Orexin B on Swine Granulosa and Endothelial Cells. Animals (Basel) 2021; 11:ani11061812. [PMID: 34204547 PMCID: PMC8235033 DOI: 10.3390/ani11061812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The follicle is the ovarian functional unit. It is mainly composed of granulosa cells and angiogenesis is crucial to guarantee its development till ovulation. Carrying on our previous studies on the orexin system in the ovary, we presently demonstrate a potential role of orexin B in the control of granulosa cells’ oxidative stress and of the angiogenesis event. Abstract In addition to the well-known central modulatory role of orexins, we recently demonstrated a peripheral involvement in swine granulosa cells for orexin A and in adipose tissue for orexin B (OXB). The aim of present research was to verify immunolocalization of OXB and its potential role in modulating the main features of swine granulosa cells. In particular, we explored the effects on granulosa cell proliferation (through the incorporation of bromodeoxyuridine), cell metabolic activity (as indirect evaluation by the assessment of ATP), steroidogenic activity (by immunoenzymatic examination) and redox status (evaluating the production of superoxide anion by means of the WST test, production of nitric oxide through the use of the Griess test and the non-enzymatic reducing power by FRAP test). Our data point out that OXB does not modify granulosa cell growth, steroidogenesis and superoxide anion generation. On the contrary, the peptide stimulates (p < 0.05) nitric oxide output and non-enzymatic reducing power. Since new vessel growth is crucial for ovarian follicle development, a further aim of this study was to explore the expression of prepro-orexin and the effects of OXB on swine aortic endothelial cells. We found that the peptide is ineffective in modulating cell growth, while it inhibits redox status parameters. In addition, we demonstrated a stimulatory effect on angiogenesis evaluated in fibrin gel angiogenesis assay. Taken together, OXB appears to be potentially involved in the modulation of redox status in granulosa and endothelial cells and we could argue an involvement of the peptide in the follicular angiogenic events.
Collapse
Affiliation(s)
- Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Rosanna Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
| | - Cecilia Dall’Aglio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
| | - Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy; (F.G.); (S.B.); (S.G.); (R.D.L.)
- Correspondence: ; Tel.: +39-521-032-775
| |
Collapse
|
8
|
Basini G, Bussolati S, Grolli S, Ragionieri L, Di Lecce R, Grasselli F. Orexin B inhibits viability and differentiation of stromal cells from swine adipose tissue. Domest Anim Endocrinol 2021; 75:106594. [PMID: 33291037 DOI: 10.1016/j.domaniend.2020.106594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/14/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022]
Abstract
Adipose tissue is recognized as a fundamental endocrine organ. Nowadays, we are also aware that it contains the highest number of stromal cells (ASCs) per unit of volume. These cells can differentiate between different phenotypes among which the adipocytes. The aim of this work was to verify whether orexin B, crucial mediator of the energy balance, modifies the differentiation of cultured ASCs. We used the pig as a model. Our data demonstrate that swine ASCs express prepro-orexin. Orexin B treatment inhibits ASCs proliferation (P < 0.05) and adipogenic differentiation (P < 0.05). Data collected could be interesting both in animal production field because consumers require lean meat, and in human medicine study about obesity because pig can be considered a valuable animal model for translational studies.
Collapse
Affiliation(s)
- G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio, 10, 43126 Parma, Italy
| |
Collapse
|
9
|
Basini G, Bussolati S, Bertini S, Quintavalla F, Grasselli F. Evaluation of Triclosan Effects on Cultured Swine Luteal Cells. Animals (Basel) 2021; 11:ani11030606. [PMID: 33668891 PMCID: PMC7996528 DOI: 10.3390/ani11030606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary A great concern has been raised against many chemicals, both natural and man-made, that can mimic or interfere with the hormones. Among these, using swine ovarian cells, we were aimed to explore the potential effect of triclosan, an antimicrobial agent widely used in cosmetics and home products. Our results demonstrate that triclosan disrupts cellular function, in particular interfering with hormone production and proliferation, thus suggesting a critical evaluation of its effects. Abstract Triclosan is a chlorinated phenolic, used in many personal and home care products for its powerful antimicrobial effect. Several studies have shown triclosan toxicity and the American Food and Drug Administration (FDA) in 2016 has limited its use. It has been recently included in endocrine-disrupting chemicals (EDCs), a list of chemicals known for their ability to interfere with hormonal signaling with particular critical effects on reproduction both in animals and humans. In order to deepen the knowledge in this specific field, the present study was undertaken to explore the effect of different concentrations of triclosan (1, 10, and 50 µM) on cultured luteal cells, isolated from swine ovaries, evaluating effects on growth Bromodeoxyuridine (BrDU) incorporation and Adenosine TriPhosphate (ATP) production, steroidogenesis (progesterone secretion) and redox status (superoxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity). A biphasic effect was exerted by triclosan on P4 production. In fact, the highest concentration inhibited, while the others stimulated P4 production (p < 0.05). Triclosan significantly inhibited cell proliferation, metabolic activity, and enzymatic scavenger activity (p < 0.05). On the contrary, nitric oxide production was significantly increased by triclosan (p < 0.01), while superoxide anion generation and non-enzymatic scavenging activity were unaffected.
Collapse
|
10
|
Transcriptome profiling of different developmental stages of corpus luteum during the estrous cycle in pigs. Genomics 2020; 113:366-379. [PMID: 33309770 DOI: 10.1016/j.ygeno.2020.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
To better understand the molecular basis of corpus luteum (CL) development and function RNA-Seq was utilized to identify differentially expressed genes (DEGs) in porcine CL during different physiological stages of the estrous cycle viz. early (EL), mid (ML), late (LL) and regressed (R) luteal. Stage wise comparisons obtained 717 (EL vs. ML), 568 (EL vs. LL), 527 (EL vs. R), 786 (ML vs. LL), 474 (ML vs. R) and 534 (LL vs. R) DEGs with log2(FC) ≥1 and p < 0.05. The process of angiogenesis, steroidogenesis, signal transduction, translation, cell proliferation and tissue remodelling were significantly (p < 0.05) enriched in EL, ML and LL stages, where as apoptosis was most active in regressed stage. Pathway analysis revealed that most annotated genes were associated with lipid metabolism, translation, immune and endocrine system pathways depicting intra-luteal control of diverse CL function. The network analysis identified genes AR, FOS, CDKN1A, which were likely the novel hub genes regulating CL physiology.
Collapse
|
11
|
Pacentra A, Grasselli F, Bussolati S, Grolli S, Di Lecce R, Cantoni AM, Basini G. The effect of pathogen-associated molecular patterns on the swine granulosa cells. Theriogenology 2020; 145:207-216. [DOI: 10.1016/j.theriogenology.2019.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
|
12
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Paolucci M, Basini G. Potential physiological involvement of nesfatin-1 in regulating swine granulosa cell functions. Reprod Fertil Dev 2020; 32:274-283. [DOI: 10.1071/rd19134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Nesfatin-1 has recently been indicated as a pleiotropic molecule that is primarily involved in the metabolic regulation of reproductive functions acting at hypothalamic level. The aim of this study was to explore the local action of nesfatin-1 in swine ovarian follicles. Nucleobindin 2 (NUCB2) was verified using real-time quantitative polymerase chain reaction in swine granulosa cells from different sized follicles and nesfatin-1 was localised by immunohistochemistry in sections of the whole porcine ovary. The effects of different concentrations of nesfatin-1 on cell growth, steroidogenesis and the redox status of granulosa cells were determined invitro. In addition, the effects of nesfatin-1 were evaluated in an angiogenesis bioassay because vessel growth is essential for ovarian follicle function. Immunohistochemistry revealed intense positivity for nesfatin-1 in swine granulosa cells in follicles at all developmental stages. Expression of the gene encoding the precursor protein NUCB2 was higher in granulosa cells from large rather than from medium and small follicles. Further, nesfatin-1 stimulated cell proliferation and progesterone production and interfered with redox status by modifying nitric oxide production and non-enzyme scavenging activity in granulosa cells from large follicles. Moreover, nesfatin-1 exhibited a stimulatory effect on angiogenesis. This study demonstrates, for the first time, that nesfatin-1 is physiologically present in the swine ovarian follicle, where it may impair granulosa cell functions.
Collapse
|
13
|
Kirsz K, Szczęsna M, Bocheńska A, Pietsch-Fulbiszewska A, Sowińska N, Kabała N, Zięba DA. Effects of central orexin A on gonadotropins and progesterone secretion in ewes during the luteal phase of the estrous cycle and during anestrus. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ragionieri L, Ravanetti F, Di Lecce R, Botti M, Ciccimarra R, Bussolati S, Basini G, Gazza F, Cacchioli A. Immunolocalization of Orexin A and its receptors in the different structures of the porcine ovary. Ann Anat 2018; 218:214-226. [PMID: 29738835 DOI: 10.1016/j.aanat.2018.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
Abstract
Orexins are neuropeptides with pleiotropic functions, involved in the coordination of multiple versatile physiological processes, in particular related to food intake and several aspects of the reproductive process. Their actions are carried out through the bond with the related Orexin 1 (OXR1) and Orexin 2 (OXR2) G-protein-coupled receptors. Studies on the expression of the orexinergic system in the female genital organs are scarce and limited to preovulatory gametogenic follicles and corpora lutea isolated from the rest of the ovary. As the description of only these structures is insufficient to provide a complete picture of the organ, the present study is aimed to give a panoramic view of all the ovarian structures and cells expressing Orexin A (OXA) and its receptors in their original localization. Double labeling immunofluorescent methods, applied on frozen sections of the whole organ in both follicular and luteal phase, were used to highlight the particular distribution and colocalization of the proteins. For a better recognition of cellular morphology and a better distinction between gametogenic (healthy) and atretic follicles, also a single labeling immunolocalization of OXA on formalin fixed paraffin embedded tissues and a TUNEL staining were performed. The results indicate that OXA and its two receptors subtypes are expressed in all the different structures composing the swine ovary, albeit in different ways, in both phases of the ovarian cycle. In general, OXA and OXR2 appear diffusely distributed within "health", proliferating and steroid producing cells, while has granular appearance, being presumably associated to cytoplasmic vesicles, in degenerating cells, independently if apoptotic or not. The immunoreactivity for OXR1, instead, is often associated with the nuclear envelope but it is also detectable, to a lesser extent, diffusely distributed in the cytoplasm of growing or steroid producing cells. When cells undertake the path leading to degeneration, also OXR1 immunoreactivity assumes a granular appearance in the cytoplasm and is colocalized with OXA and OXR2. Different roles for the two receptors in the same cell and a different regulation of their expression remain to be investigated. Their comprehension could help studies of follicle development in pig, as part of in vitro oocyte maturation and fertilization programs in livestock.
Collapse
Affiliation(s)
- Luisa Ragionieri
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy.
| | - Francesca Ravanetti
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Rosanna Di Lecce
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Maddalena Botti
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Robert Ciccimarra
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Simona Bussolati
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Giuseppina Basini
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Ferdinando Gazza
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| | - Antonio Cacchioli
- Dept. of Veterinary Science, University of Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|