1
|
Del Prete C, Gaspari G, Kosior MA, Merlo B, Iacono E, Longobardi C, Martino NA, Dell'Aquila ME, Damiano S, Cocchia N, Gasparrini B, Lange-Consiglio A. Effects of Wharton's jelly mesenchymal stromal/stem cells-derived conditioned medium and platelet-rich plasma on in vitro induced equine endometrial inflammation. Theriogenology 2025; 241:117423. [PMID: 40198937 DOI: 10.1016/j.theriogenology.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
Over the years, regenerative therapies have emerged as promising alternatives for persistent breeding-induced endometritis. In vitro studies testing the effects of these therapies on equine endometrial cells are still scarce. This study aimed to evaluate in vitro the effect of Wharton's jelly (WJ) mesenchymal stromal/stem cell (MSCs)-derived conditioned medium (WJ-CM) and platelet-rich plasma (PRP) on equine endometrial cells, with or without lipopolysaccharide (LPS)-induced inflammation. The WJ-CM was obtained after 24 h of starvation in Ringer's lactate of WJ-MSCs and PRP was prepared using the double centrifugation. Endometrial epithelial cells obtained from 3 diestrus mare uteri at slaughterhouse were treated for 24 h according to six experimental groups: DMEM standard complete medium (CTRL); 10 ng/mL LPS (LPS); 10 % WJ-CM (CM); 5 % PRP (PRP); 10 ng/mL LPS and 10 % WJ-CM (LPS + CM); 10 ng/mL LPS and 5 % PRP (LPS + PRP). After 6, 12, and 24 h, endometrial cells were evaluated for viability (apoptosis and necrosis), mitochondrial activity and reactive oxygen species (ROS) generation. PGE-2 and IL-10 concentrations in spent medium were measured. The WJ-CM alone did not affect endometrial cell viability and prevented the detrimental effect of LPS on endometrial cells; it suppressed the production of PGE-2. PRP had a deleterious effect on endometrial cell viability, induced the secretion of PGE-2, as well as increased mitochondrial activity and ROS production. Endometrial benefits of the WJ-CM treatment are evident even after an LPS challenge, while unexpectedly PRP showed a deleterious effect.
Collapse
Affiliation(s)
- Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giulia Gaspari
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, Lodi, 20133, Milano, Italy
| | - Michal Andrzej Kosior
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Barbara Merlo
- Department of Veterinary Medical Sciences DIMEVET, Università di Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences DIMEVET, Università di Bologna, Italy
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, Lodi, 20133, Milano, Italy
| |
Collapse
|
2
|
Teixeira-Soares CM, Viana AG, Carvalho RPR, Barros E, Ramirez-Lopez C, Moura AA, Machado-Neves M. Unraveling the uterine fluid proteome of mares diagnosed with post-breeding and infectious endometritis. J Reprod Immunol 2025; 167:104401. [PMID: 39616824 DOI: 10.1016/j.jri.2024.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 01/27/2025]
Abstract
Endometritis is the leading cause of subfertility in mares and a significant challenge to equine reproduction. Unraveling uterine fluid proteome may promote advancements in the knowledge of endometritis etiopathogeneses and its diagnosis and therapeutic practices. Therefore, we aimed to characterize and compare the protein profile of the uterine fluid from healthy mares and animals diagnosed with endometritis. Mangalarga Marchador breed mares from Muriaé - Brazil were divided into control, infectious endometritis, and post-breeding endometritis groups (n = 8/ group). Uterine fluid was collected via low-volume lavage and subjected to protein identification and relative abundance counting. From the 549 proteins detected, 279 were in the uterine fluid of mares from the three experimental groups. Thirteen proteins expressed mostly in healthy mares were associated with endometrial remodeling and early embryonic development. Albumin and uteroglobin presented higher relative abundance in healthy mares and animals with infectious endometritis. Infectious endometritis exhibited proteins related to innate immune and inflammatory responses, including annexin and glutathione S-transferase, and the highest abundance of lipocalins. Fifty-five proteins detected in mares with post-breeding endometritis showed signaling pathways and biological processes related to the innate immune response. These animals also presented the highest abundance of PIGR proteins, which promote IgA transport from plasma into the endometrial mucosa. In conclusion, our results revealed distinct protein profiles from the uterine fluid of mares with infections and post-breeding endometritis. These findings provided valuable insights into the molecular alterations during the establishment and progression of endometritis, contributing to further identification of potential biomarkers.
Collapse
Affiliation(s)
- Carlos Mattos Teixeira-Soares
- Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Arabela Guedes Viana
- Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Renner Philipe Rodrigues Carvalho
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Centro de Ciências Biológicas, Universidade Federal de Viçosa. Viçosa, Brazil
| | - Camilo Ramirez-Lopez
- Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Arlindo A Moura
- Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Mariana Machado-Neves
- Programa de Pós-graduação em Medicina Veterinária, Departamento de Medicina Veterinária, Universidade Federal de Viçosa, Viçosa, Brazil; Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
3
|
Sun Y, Cai J, Zhang Y, Bao S. A high concentration of neutrophil extracellular traps is observed in humans and mice suffering from endometriosis. J Reprod Immunol 2025; 167:104414. [PMID: 39657366 DOI: 10.1016/j.jri.2024.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
We wished to ascertain if there is an association between neutrophil extracellular traps and endometriosis (EMS). We collected the lesional tissues and normal endometrium of 30 patients suffering from endometriosis. Samples were also taken from healthy controls. Blood from the peripheral circulation was collected to isolate serum and neutrophils. A mouse model of endometriosis was also created. Expression of citrullinated histone and the myeloperoxidase level in tissue were measured by immunofluorescence staining and western blotting. The myeloperoxidase level in peripheral blood serum was measured by enzyme-linked immunosorbent assay. Staining (Trypan Blue) and flow cytometry were used to measure the apoptosis of neutrophils in peripheral blood. BALB/C mice were modeled by allotransplantation, and the experimental parameters noted above quantified. The myeloperoxidase content in the peripheral blood of patients with endometriosis was increased compared with that in healthy controls. Flow cytometry showed that the percent apoptosis of neutrophils in patients with endometriosis was lower than that in healthy controls. Expression of citrullinated histone was higher in the endometriosis group in humans and mice compared with respective controls according to immunofluorescence staining and western blotting. Our data suggest that a high concentration of neutrophil extracellular traps was observed in humans and mice suffering from endometriosis.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Gynecology and Obstetrics Mudanjiang Medical University Affliated Honggi Hospital, No.5 Tongxiang Road, Aimin District, Mudanjiang,Heilongjiang 157011, China
| | - Junhong Cai
- Medical Laboratory Center, Hainan General Hospital, Haikou 570102, China
| | - Yanan Zhang
- Department of Gynecology and Obstetrics Mudanjiang Medical University Affliated Honggi Hospital, No.5 Tongxiang Road, Aimin District, Mudanjiang,Heilongjiang 157011, China
| | - Shan Bao
- Department of Gynaecology and Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.
| |
Collapse
|
4
|
Wong YS, Mançanares AC, Navarrete F, Poblete P, Mendez-Pérez L, Cabezas J, Riadi G, Rodríguez-Alvarez L, Castro FO. Extracellular vesicles secreted by equine adipose mesenchymal stem cells preconditioned with transforming growth factor β-1 are enriched in anti-fibrotic miRNAs and inhibit the expression of fibrotic genes in an in vitro system of endometrial stromal cells fibrosis. Vet Q 2024; 44:1-11. [PMID: 39086189 PMCID: PMC11295685 DOI: 10.1080/01652176.2024.2384906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/27/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
Mare endometrosis is a major reproductive problem associated with low fertility and is characterized by persistent inflammation, TGFβ-1 signaling, and consequently, extracellular matrix deposition, which compromises endometrial glands. Mesenchymal stem cell-based products (MSCs), such as extracellular vesicles (EVs), have gained attention due to the regulatory effects exerted by their miRNA cargo. Here, we evaluated the impact of preconditioning equine adipose mesenchymal stem cells with TGFβ-1 for short or long periods on the anti-fibrotic properties of secreted extracellular vesicles. MSCs were isolated from six healthy horses and exposed to TGFβ-1 for 4, 24, and 0 h. The expression of anti-fibrotic and pro-fibrotic miRNAs and mRNAs in treated cells and miRNAs in the cargo of secreted extracellular vesicles was measured. The resulting EVs were added for 48 h to endometrial stromal cells previously induced to a fibrotic status. The expression of anti-fibrotic and pro-fibrotic genes and miRNAs was evaluated in said cells using qPCR and next-generation sequencing. Preconditioning MSCs with TGFβ-1 for 4 h enriched the anti-fibrotic miRNAs (mir29c, mir145, and mir200) in cells and EVs. Conversely, preconditioning the cells for 24 h leads to a pro-fibrotic phenotype overexpressing mir192 and mir433. This finding might have implications for developing an EV-based protocol to treat endometrial fibrosis in mares.
Collapse
Affiliation(s)
- Yat Sen Wong
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Ana Carolina Mançanares
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Pamela Poblete
- Ph.D. Program on Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lídice Mendez-Pérez
- Ph.D. Program on Veterinary Sciences, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Joel Cabezas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Gonzalo Riadi
- Center for Bioinformatics Simulation and Modeling (CBSM), Universidad de Talca, Talca, Chile
| | | | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
5
|
Byron M, Lection J, Foster RA, Chenier T, Wagner B, Diel de Amorim M. Prostaglandin-related genes are differentially expressed in equine endometrium with different biopsy grade, degrees of inflammation, and fibrosis. Theriogenology 2024; 227:151-156. [PMID: 39089078 DOI: 10.1016/j.theriogenology.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Prostaglandins have many roles in the equine reproductive tract, including but not limited to luteolysis, luteal support, ovulation, transport through the uterine tube, uterine contraction, embryonic mobility, inflammation, and fibrosis. Altered secretion of inflammatory proteins are likely to disrupt the balance of endometrial function and could impair fertility. Our overall goal was to measure the expression of several prostaglandin- and inflammation-related genes in mares with different degrees of endometrial histological changes. Our hypothesis was that mares with neutrophilic and lymphocytic plasmocytic inflammation, fibrosis, or different biopsy grades would have altered concentrations of prostaglandin E2 (PGE2) and F2α (PGF2α), as well as altered expression of inflammation- and prostaglandin-related genes, compared to mares with minimal to no histological changes on biopsy evaluation. Forty-five endometrial biopsies from estrous mares were assessed by a reproductive pathologist for the degree of neutrophilic inflammation, lymphocytic and plasmocytic inflammation, and fibrosis, and a biopsy grade was assigned based on the Kenney-Doig system. A low-volume uterine lavage was collected from a subset of twenty-six mares prior to biopsy collection and was used to measure PGE2 and PGF2α concentrations via ELISA. Total RNA was extracted from biopsies and mRNA expression was evaluated for twenty-five genes of interest. A restricted maximum likelihood linear model was used to compare differences of mRNA expression, with a statistical significance set at P < 0.05. There was no difference in the abundance of PGE2 or PGF2α between any of the variables tested. Mares with endometrial biopsy grade I had lower expression of NF-kB, PTGS1 and HPGD compared to grade IIA or IIB (P < 0.05). Mares with neutrophilic inflammation had decreased expression of NF-kB, PTGS1, PTGER4, CBR1, mPGES2 and PTGIS compared to mares without inflammation. Mares with mild or minimal endometrial fibrosis had increased expression of mPGES2 and PTGIS, compared to mares with moderate endometrial fibrosis. In conclusion, several genes were identified to be differentially expressed in mares with histological changes compared to mares with no to minimal histological changes. The presence of inflammation and fibrosis may alter the concentration of prostaglandins in endometrial tissue, which could impair many of the uterine reproductive and immune functions during estrus, affecting early embryo survival.
Collapse
Affiliation(s)
- Michael Byron
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jennine Lection
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Tracey Chenier
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Mariana Diel de Amorim
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Cerveira-Pinto M, Wójtowicz A, Pires MA, Kordowitzki P, Skarzynski D, Ferreira-Dias G, Szóstek-Mioduchowska A, Amaral A. TLR-2 and TLR-4 mRNA expression in different grades of histopathological lesions of equine endometrium from follicular phase. Reprod Domest Anim 2024; 59 Suppl 3:e14657. [PMID: 39396880 DOI: 10.1111/rda.14657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 06/12/2024] [Indexed: 10/15/2024]
Abstract
Increased synthesis and deposition of collagen (COL) in the extracellular matrix (ECM) of equine endometrium contributes to endometrosis. Toll-like receptors (TLRs) are transmembrane receptors involved in the innate immune response, recognized for their role in antigen recognition and previously associated with equine endometritis. The TLRs not only recognize pathogen-associated molecular patterns but also regulate inflammations, fibrosis and cancer. The aim of this study was to explore the relationship between TLR expression at different stages of Kenney and Doig's (K-D) grading and COL1 expression during the follicular phase of the oestrous cycle. Forty samples of endometrial tissues were collected post-mortem from mares on the follicular phase of the oestrous cycle (10 samples of each K-D category). Relative mRNA transcription of TLR-2, TLR-4 and COL1A2 genes was assessed using qPCR, and COL1 protein expression by Western blot analysis. The COL1A2 transcription increased in category IIB when compared to categories I, IIA and III endometria (p < .01). The relative protein abundance of COL1 showed no significant differences between endometrial categories (p > .05). As for the TLRs mRNA transcription, TLR-2/-4 transcripts increased in IIA when compared to the other K-D endometria categories (p < .05). Our findings suggest that TLRs may be involved in the initiation of the endometrial inflammatory response. Additional studies are needed to explore TLRs' potential role as diagnostic markers for monitoring inflammation progression and fibrosis development, as well as their involvement in the mechanisms underlying fibrotic pathways.
Collapse
Affiliation(s)
- Marta Cerveira-Pinto
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Anna Wójtowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Maria Anjos Pires
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- CECAV-Animal and Veterinary Research Centre, University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Pawel Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - Dariusz Skarzynski
- Department of Reproduction and Clinic of Farm Animals, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Graça Ferreira-Dias
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | | | - Ana Amaral
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), Évora, Portugal
| |
Collapse
|
7
|
Ferreira-Dias GM, Alpoim-Moreira J, Szóstek-Mioduchowska A, Rebordão MR, Skarzynski DJ. The path to fertility: Current approaches to mare endometritis and endometrosis. Anim Reprod 2024; 21:e20240070. [PMID: 39286368 PMCID: PMC11404863 DOI: 10.1590/1984-3143-ar2024-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
The path to fertility in the mare requires an understanding of the hormonal influences, the immune response, genetics, and epigenetic mechanisms involved not only in physiological reproductive processes, but also such pathologies as endometritis and endometrosis. Endometritis may lead to endometrosis establishment. In the presence of endometritis, neutrophils arrive at the mare endometrium, and form neutrophil extracellular traps. While NETosis plays pivotal roles, prolonged inflammation can lead to chronic endometritis, endometrosis, and fertility issues. Matrix metalloproteinases and epigenetic changes influence the course of endometrosis. Inhibitors of specific enzymes involved in NETosis and epigenetic inhibitors have shown potential in reducing pro-fibrotic effects. Collagen type III (COL3) has emerged as a putative biomarker, correlating with endometrosis and useful in fertility assessment. Thus, COL3 may offer a non-invasive diagnostic tool, as a complement to histopathological methods. Epigenetic modifications and miRNA expressions offer new avenues for therapeutic strategies, emphasizing the importance of understanding the cellular mechanisms at play in mare endometrial fibrosis.
Collapse
Affiliation(s)
- Graça Ml Ferreira-Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Lisboa, Portugal
| | - Joana Alpoim-Moreira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- AL4AnimalS-Associate Laboratory for Animal and Veterinary Sciences, Lisboa, Portugal
| | | | - Maria Rosa Rebordão
- Research Center for Natural Resources, Environment and Society, Polytechnic University of Coimbra, Coimbra, Portugal
- Polytechnic University of Coimbra, S. Martinho do Bispo, Coimbra, Portugal
| | - Dariusz J Skarzynski
- Department of Animal Reproduction with Large Animal Clinic, Faculty of Veterinary Medicine, University of Environmental and Live Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
9
|
Szóstek-Mioduchowska A, Wójtowicz A, Sadowska A, Moza Jalali B, Słyszewska M, Łukasik K, Gurgul A, Szmatoła T, Bugno-Poniewierska M, Ferreira-Dias G, Skarzynski DJ. Transcriptomic profiling of mare endometrium at different stages of endometrosis. Sci Rep 2023; 13:16263. [PMID: 37758834 PMCID: PMC10533846 DOI: 10.1038/s41598-023-43359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
In the current study, transcriptome profiles of mare endometrium, classified into categories I, IIA, and IIB according to Kenney and Doig, were compared using RNA sequencing, analyzed, and functionally annotated using in silico analysis. In the mild stage (IIA) of endometrosis compared to category I endometrium, differentially expressed genes (DEGs) were annotated to inflammation, abnormal metabolism, wound healing, and quantity of connective tissue. In the moderate stage (IIB) of endometrosis compared to category I endometrium, DEGs were annotated to inflammation, fibrosis, cellular homeostasis, mitochondrial dysfunction, and pregnancy disorders. Ingenuity pathway analysis (IPA) identified cytokines such as transforming growth factor (TGF)-β1, interleukin (IL)-4, IL-13, and IL-17 as upstream regulators of DEGs associated with cellular homeostasis, metabolism, and fibrosis signaling pathways. In vitro studies showed the effect of these cytokines on DEGs such as ADAMTS1, -4, -5, -9, and HK2 in endometrial fibroblasts at different stages of endometrosis. The effect of cytokines on ADAMTS members' gene transcription in fibroblasts differs according to the severity of endometrosis. The identified transcriptomic changes associated with endometrosis suggest that inflammation and metabolic changes are features of mild and moderate stages of endometrosis. The changes of ADAMTS-1, -4, -5, -9, in fibrotic endometrium as well as in endometrial fibroblast in response to TGF-β1, IL-4, IL-13, and IL-17 suggest the important role of these factors in the development of endometrosis.
Collapse
Affiliation(s)
- A Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland.
| | - A Wójtowicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - A Sadowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - B Moza Jalali
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - M Słyszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - K Łukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - A Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Cracow, Cracow, Poland
| | - T Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Cracow, Cracow, Poland
| | - M Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Cracow, Cracow, Poland
| | - G Ferreira-Dias
- Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - D J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Satué K, Fazio E, La Fauci D, Bruschetta G, Medica P. Adaptive response of estrogen-iron axis in pregnant Purebred Spanish mares of different age. J Equine Vet Sci 2023:104827. [PMID: 37247748 DOI: 10.1016/j.jevs.2023.104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The maintenance of iron (Fe) homeostasis is vital for the physiological function along life. In sexually mature humans and experimental animals, estrogens downregulate hepcidin (Hpc) expression, in order to improve the intestinal absorption and to mobilize Fe stores for maternal erythropoietic expansion and placental development. However, changes of these mechanisms related to regulation of Hpc on the availability of Fe during gestation with advancing age in mares, remain unknown. The objective of this study was to evaluate the interrelationships between serum Fe, Ferritin (Ferr) and Hpc with estrone (E1) and estradiol-17β (E2) concentrations in pregnant mares of different ages. Blood samples were taken from 40 pregnant Spanish Purebred mares belonging to 4 different age groups, 10 subjects for each group: 4-6 years, 7-9 years, 10-12 years, and > 12 years were used in this study. Fe concentrations of 4-6 and 7-9 years groups were higher (P < .01) than 10-12 and >12 years groups. Ferr concentrations of 4-6 years group were higher (P < .01) than other groups. Hpc concentrations increased and E1 decreased (P < .01) in > 12 years group compared to other age groups. E2 concentrations of 7-9, 10-12 and >12 years groups were higher (P < .01) than those of 4-6 years group; 7-9 years group had higher E2 concentrations (P < .01) than > 12 years group. Fe and Ferr were negatively correlated with Hpc (r = -0.81 and r = -0.67, respectively). E1 and E2 were negatively correlated with Fe (r = -0.23 and r = -0.11, respectively). E2 was positively correlated with Hpc (r = 0.78). In pregnant Spanish Purebred mare, the increase of estrogens, according to the more efficient iron status in response to Hpc inhibition and consequent mobilization of circulating and iron reserve, shows the existence of "estrogen-iron axis" in young mares. Nevertheless, these mechanisms are reversed in old mares, suggesting a less efficient iron metabolism with advancing age. It is hoped that new investigations are needed to understand in depth and clarify further the complex metabolic and hormonal mechanisms involved also in equine species.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, Biochemistry Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
11
|
Serum progesterone and oxytocinase, and endometrial and luteal gene expression in pregnant, nonpregnant, oxytocin, carbetocin and meclofenamic acid treated mares. Theriogenology 2023; 198:47-60. [PMID: 36549183 DOI: 10.1016/j.theriogenology.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
Abstract
Our objectives were to examine changes in endometrial and luteal gene expression during estrus, diestrus, pregnancy and treatments to induce luteolysis and putatively induce luteostasis. Groups were: Diestrus (DIEST), Estrus (ESTR), Pregnant (PREG), Oxytocin (OXY), Carbetocin (CARB), and Meclofenamic acid (MFA). Blood was obtained from day (D)12 to D15 for measurement of oxytocinase, also referred to as leucyl-cysteinyl aminopeptidase (LNPEP) and progesterone. Luteal biopsies were obtained on D12 and D15 and an endometrial biopsy on D15. Real-time RT-PCR was performed for the following genes: PGR, ESR1, OXTR,OXT, LNPEP, PTGS2, PTGFR, PLA2G2C, PTGES, SLC2A4, and SLC2A1. Regarding serum LNPEP, PREG and OXY (p-value<0.001) had higher concentrations than DIEST mares. Endometrial PTGES expression was higher (p-value <0.04) in DIEST, PREG and OXY than other groups. Endometrium from ESTR had increased expression of OXT (p-value < 0.02) compared to MFA and OXY mares. Carbetocin treatment: decreased serum progesterone and LNPEP; increased endometrial PLA2G2C; decreased endometrial PTGES; and decreased luteal aromatase and PTGES. Treatment with MFA: decreased endometrial PLA2G2C, increased endometrial PTGES; and resulted in less OXTR and OXT luteal abundance on D12 compared to D15. Endometrial and luteal expression of LNPEP is affected by physiologic stage and treatment and is involved in luteal function and pregnancy recognition pathways through effects on oxytocin and prostaglandin synthesis in the horse.
Collapse
|
12
|
Amaral A, Cebola N, Szóstek-Mioduchowska A, Rebordão MR, Kordowitzki P, Skarzynski D, Ferreira-Dias G. Inhibition of Myeloperoxidase Pro-Fibrotic Effect by Noscapine in Equine Endometrium. Int J Mol Sci 2023; 24:ijms24043593. [PMID: 36835008 PMCID: PMC9959736 DOI: 10.3390/ijms24043593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Department of Zootechnics, School of Sciences and Technology (ECT), University of Évora, 7002-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), 7000-811 Évora, Portugal
- Correspondence:
| | - Nélio Cebola
- Faculty of Veterinary Medicine, Universidade Lusofona, 1749-024 Lisbon, Portugal
- Veterinary Teaching Hospital of the University of Extremadura, 10003 Cáceres, Spain
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Maria Rosa Rebordão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Bencanta, 3045-601 Coimbra, Portugal
| | - Paweł Kordowitzki
- Department of Basic and Preclinical Sciences, Institute for Veterinary Medicine, Nicolaus Copernicus University, ul. Gagarina 1, 87-100 Torun, Poland
| | - Dariusz Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
13
|
Collagen Type III as a Possible Blood Biomarker of Fibrosis in Equine Endometrium. Animals (Basel) 2022; 12:ani12141854. [PMID: 35883401 PMCID: PMC9311888 DOI: 10.3390/ani12141854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In the mare, endometrosis is a disease characterized by excessive collagen fibers deposition in the endometrium (uterus inner layer), which is responsible for infertility. The gold standard method for endometrosis evaluation has been endometrial biopsy histopathological classification. The use of blood biomarkers for endometrosis identification would be less invasive, and could provide additional information regarding endometrosis diagnosis and fertility prognosis. Therefore, this study aimed to identify possible blood biomarkers for endometrosis diagnosis and fertility assessment on mares. Reproductive examination, endometrial biopsy histopathological classification, and blood collection were performed. Endometrium and serum collagen type I (COL1) and type III (COL3), and hydroxyproline concentrations were determined. In conclusion, serum COL3 concentration might be considered as a potential aid for the diagnosis of endometrosis and fertility prognosis in the mare. In contrast, COL1 and hydroxyproline did not prove to be effective as biomarkers of endometrial fibrosis in this species. Although it is very unlikely that a single blood biomarker could replace a histopathological evaluation, serum COL3 may have clinical applications. Thus, it may be useful to evaluate a group of mares as possible recipients in embryo transfer programs, where performing endometrial biopsies of several mares is not feasible. Abstract Collagen pathological deposition in equine endometrium (endometrosis) is responsible for infertility. Kenney and Doig’s endometrial biopsy histopathological classification is the gold standard method for endometrosis evaluation, whereby blood biomarkers identification would be less invasive and could provide additional information regarding endometrosis diagnosis and fertility prognosis. This study aimed to identify blood biomarkers for endometrosis diagnosis (42 mares were used in experiment 1), and fertility assessment (50 mares were used in experiment 2). Reproductive examination, endometrial biopsy histopathological classification (Kenney and Doig) and blood collection were performed. Endometrium and serum collagen type I (COL1) and type III (COL3), and hydroxyproline concentrations were measured (ELISA). Serum COL3 cut-off value of 60.9 ng/mL allowed healthy endometria (category I) differentiation from endometria with degenerative/fibrotic lesions (categories IIA, IIB or III) with 100% specificity and 75.9% sensitivity. This cut-off value enabled category I + IIA differentiation from IIB + III (76% specificity, 81% sensitivity), and category III differentiation from others (65% specificity, 92.3% sensitivity). COL1 and hydroxyproline were not valid as blood biomarkers. Serum COL3 cut-off value of 146 ng/mL differentiated fertile from infertile mares (82.4% specificity, 55.6% sensitivity), and was not correlated with mares’ age. Only COL3 may prove useful as a diagnostic aid in mares with endometrial fibrosis and as a fertility indicator.
Collapse
|
14
|
Evolution of the Concepts of Endometrosis, Post Breeding Endometritis, and Susceptibility of Mares. Animals (Basel) 2022; 12:ani12060779. [PMID: 35327176 PMCID: PMC8944725 DOI: 10.3390/ani12060779] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, the evolution of our understanding about post breeding endometritis (PBE), the susceptibility of mares, and events leading to endometrosis are reviewed. When sperm arrive in the uterus, pro-inflammatory cytokines and chemokines are released. They attract neutrophils and induce modulatory cytokines which control inflammation. In susceptible mares, this physiological defense can be prolonged since the pattern of cytokine release differs from that of resistant mares being delayed and weaker for anti-inflammatory cytokines. Delayed uterine clearance due to conformational defects, deficient myometrial contractions, and failure of the cervix to relax is detected by intrauterine fluid accumulation and is an important reason for susceptibility to endometritis. Multiparous aged mares are more likely to be susceptible. Untreated prolonged PBE can lead to bacterial or fungal endometritis called persistent or chronic endometritis. Exuberant or prolonged neutrophilia and cytokine release can have deleterious and permanent effects in inducing endometrosis. Interactions of neutrophils, cytokines, and prostaglandins in the formation of collagen and extracellular matrix in the pathogenesis of fibrosis are discussed. Endometritis and endometrosis are interconnected, influencing each other. It is suggested that they represent epigenetic changes induced by age and hostile uterine environment.
Collapse
|
15
|
Neto da Silva AC, Costa AL, Teixeira A, Alpoim-Moreira J, Fernandes C, Fradinho MJ, Rebordão MR, Silva E, Ferreira da Silva J, Bliebernicht M, Alexandre-Pires G, Ferreira-Dias G. Collagen and Microvascularization in Placentas From Young and Older Mares. Front Vet Sci 2022; 8:772658. [PMID: 35059454 PMCID: PMC8764314 DOI: 10.3389/fvets.2021.772658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
In older mares, increasing collagen fibers (fibrosis) in the endometrium and oviduct predisposes to sub-fertility and infertility. In this study, (i) gene transcription of collagen (qPCR: COL1A1, COL1A2, COL3A1, COL5A1); (ii) total collagen protein (hydroxyproline); (iii) collagen distribution (Picrosirius red staining; polarized light microscopy); and (iv) microvascular density (Periodic acid-Schiff staining), were evaluated in mares' placenta, and related to mares age, and placenta and neonate weights. Samples were collected from the gravid horn, non-gravid horn, and body of the placenta from younger (n = 7), and older mares (n = 9) of different breeds. Transcripts of COL1A1, COL3A1 and COL5A1, total collagen protein, chorionic plate connective tissue thickness, and microvascularization increased in the gravid horn of older mares' placentas, compared to the youngest (P < 0.05). Although in other species placenta fibrosis may indicate placental insufficiency and reduced neonate weight, this was not observed here. It appears that older fertile mares, with more parities, may develop a heavier, more vascularized functional placenta with more collagen, throughout a longer gestation, which enables the delivery of heavier foals. Thus, these features might represent morphological and physiological adaptations of older fertile mares' placentas to provide the appropriate nutrition to the equine fetus.
Collapse
Affiliation(s)
- Ana Catarina Neto da Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | | | - Ana Teixeira
- Pole Reprodución Haras de La Gesse, Boulogne-sur-Gesse, France
| | - Joana Alpoim-Moreira
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Carina Fernandes
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Fradinho
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Rosa Rebordão
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal.,Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Elisabete Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - José Ferreira da Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | | | - Graça Alexandre-Pires
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Graça Ferreira-Dias
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
The Inhibitory Effect of Noscapine on the In Vitro Cathepsin G-Induced Collagen Expression in Equine Endometrium. Life (Basel) 2021; 11:life11101107. [PMID: 34685478 PMCID: PMC8539599 DOI: 10.3390/life11101107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Cathepsin G (CAT) is a protease released by neutrophils when forming neutrophil extracellular traps that was already associated with inducing type I collagen (COL1) in equine endometrium in vitro. Endometrosis is a fibrotic condition mainly characterized by COL1 deposition in the equine endometrium. The objective was to evaluate if noscapine (an alkaloid for cough treatment with anti-neoplastic and anti-fibrotic properties) would reduce COL1A2 transcription (evaluated by qPCR) and COL1 protein relative abundance (evaluated by western blot) induced by CAT in equine endometrial explants from follicular and mid-luteal phases treated for 24 or 48 h. The explants treated with CAT increased COL1 expression. Noscapine decreased COL1A2 transcription at both estrous cycle phases, but COL1 relative protein only at the follicular phase, both induced by CAT. Additionally, the noscapine anti-fibrotic action was found to be more effective in the follicular phase. The CAT treatment caused more fibrosis at the longest period of treatment, while noscapine acted better at the shortest time of treatment. Our results showed that noscapine could act as an anti-fibrotic drug in equine endometrosis by inhibiting CAT in vitro. Noscapine offers a new promising therapeutic tool for treating fibrosis as a single non-selective agent to be considered in the future.
Collapse
|
17
|
Rebordão MR, Amaral A, Fernandes C, Silva E, Lukasik K, Szóstek-Mioduchowska A, Pinto-Bravo P, Galvão A, Skarzynski DJ, Ferreira-Dias G. Enzymes Present in Neutrophil Extracellular Traps May Stimulate the Fibrogenic PGF 2α Pathway in the Mare Endometrium. Animals (Basel) 2021; 11:ani11092615. [PMID: 34573581 PMCID: PMC8469524 DOI: 10.3390/ani11092615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Endometrosis is a fibrotic disease in mare endometrium whose pathological mechanisms remain obscure. Prostaglandin (PG)F2α, despite modulating reproductive physiological processes, may also provoke local pathological collagen deposition (fibrogenesis). Neutrophil extracellular traps (NETs) released during inflammation have been linked to fibrogenesis in several tissues. We have previously shown that enzymes found in NETs increase in vitro collagen production in mare endometrium. In this study, activation of PGF2α-pathway in equine endometrial explants challenged in vitro by enzymes found in NETs is shown. Our results indicate that both endocrine microenvironment (estrous cycle phase) and healthy or pathological conditions of endometrial tissues play an important role in PGF2α-pathway activation. In the endometrium of the follicular phase, we have observed both high production of PGF2α and/or PGF2α receptor gene transcription under the action of enzymes found in NETs, both conditions associated with fibrogenesis in other tissues. Nevertheless, transcription of the PGF2α receptor gene does not appear to be hormone-dependent, albeit their levels seem to be dependent on endometrial category in the mid-luteal phase. This study suggests that enzymes existing in NETs may instigate changes on PGF2α mediators, which may become an additional mechanism of fibrogenesis in mare endometrium. Abstract Endometrosis, a fibrotic disease of mare endometrium, impairs uterine function. Prostaglandins (PG), despite modulating reproductive physiological functions, may also cause local pathological collagen deposition (fibrogenesis). We have previously shown that neutrophil extracellular traps (NETs) may also favor mare endometrosis. The aim of this study was to investigate the effect of enzymes present in NETs on PGF2α-pathway activation. Kenney and Doig’s type I/IIA and IIB/III mare endometria, from follicular phase (FLP) and mid-luteal (MLP) phase, were cultured in vitro in the presence of NETs enzymes (elastase, cathepsin-G or myeloperoxidase). Production of PGF2α (EIA) and transcription (qPCR) of its synthases (PTGS2, AKR1C3) and receptor (PTGFR) genes were evaluated. PGF2α and PTGFR were influenced by endometrial category and estrous cycle phase. In FLP endometrium, NETs enzymes induced both high PGF2α production and/or PTGFR transcription. In MLP type I/IIA tissues, down-regulation of PTGFR transcripts occurred. However, in MLP type IIB/III endometrium, high levels of PTGFR transcripts were induced by NETs enzymes. As PGF2α-pathway activation facilitates fibrogenesis in other tissues, PGF2α may be involved in endometrosis pathogenesis. In the mare, the endocrine microenvironment of healthy and pathological endometrium might modulate the PGF2α pathway, as well as fibrosis outcome on endometrium challenged by NETs enzymes.
Collapse
Affiliation(s)
- Maria Rosa Rebordão
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
- Polytechnic Institute of Coimbra, College of Agriculture, 3045-601 Coimbra, Portugal;
| | - Ana Amaral
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
| | - Carina Fernandes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
| | - Elisabete Silva
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Pedro Pinto-Bravo
- Polytechnic Institute of Coimbra, College of Agriculture, 3045-601 Coimbra, Portugal;
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Dariusz J. Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, 10-748 Olsztyn, Poland; (K.L.); (A.S.-M.); (A.G.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (M.R.R.); (A.A.); (C.F.); (E.S.)
- Correspondence: ; Tel.: +351-213-652-859
| |
Collapse
|
18
|
Noscapine Acts as a Protease Inhibitor of In Vitro Elastase-Induced Collagen Deposition in Equine Endometrium. Int J Mol Sci 2021; 22:ijms22105333. [PMID: 34069423 PMCID: PMC8159119 DOI: 10.3390/ijms22105333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
Endometrosis is a reproductive pathology that is responsible for mare infertility. Our recent studies have focused on the involvement of neutrophil extracellular traps enzymes, such as elastase (ELA), in the development of equine endometrosis. Noscapine (NOSC) is an alkaloid derived from poppy opium with anticough, antistroke, anticancer, and antifibrotic properties. The present work investigates the putative inhibitory in vitro effect of NOSC on collagen type I alpha 2 chain (COL1A2) mRNA and COL1 protein relative abundance induced by ELA in endometrial explants of mares in the follicular or mid-luteal phases at 24 or 48 h of treatment. The COL1A2 mRNA was evaluated by qPCR and COL1 protein relative abundance by Western blot. In equine endometrial explants, ELA increased COL 1 expression, while NOSC inhibited it at both estrous cycle phases and treatment times. These findings contribute to the future development of new endometrosis treatment approaches. Noscapine could be a drug capable of preventing collagen synthesis in mare’s endometrium and facilitate the therapeutic approach.
Collapse
|
19
|
Pinto-Bravo P, Rebordão MR, Amaral A, Fernandes C, Galvão A, Silva E, Pessa-Santos P, Alexandre-Pires G, Roberto da Costa RP, Skarzynski DJ, Ferreira-Dias G. Microvascularization and Expression of Fibroblast Growth Factor and Vascular Endothelial Growth Factor and Their Receptors in the Mare Oviduct. Animals (Basel) 2021; 11:ani11041099. [PMID: 33921416 PMCID: PMC8070128 DOI: 10.3390/ani11041099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The oviduct provides the ideal conditions for fertilization and early embryonic development. Adequate vascularization is essential for proper oviduct physiological function. In this work on the mare oviduct, differences in the oviductal artery and arterioles and their ramifications in the infundibulum, ampulla and isthmus were examined. Locally, vascularization is modulated by the action of angiogenic factors, mediated by their specific receptors. In the present study, the isthmus presented the largest vascular area and the highest number of vascular structures in the follicular phase. We have also shown that the relative abundance of angiogenic transcripts and proteins, such as fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all portions of the oviduct throughout the estrous cycle. There was an increase in the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus, and of FGF2 and KDR in the isthmus. This was also observed in the isthmus, where the relative abundance of proteins FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns. Abstract The oviduct presents the ideal conditions for fertilization and early embryonic development. In this study, (i) vascularization pattern; (ii) microvascular density; (iii) transcripts of angiogenic factors (FGF1, FGF2, VEGF) and their receptors—FGFR1, FGFR2, KDR, respectively, and (iv) the relative protein abundance of those receptors were assessed in cyclic mares’ oviducts. The oviductal artery, arterioles and their ramifications, viewed by means of vascular injection-corrosion, differed in the infundibulum, ampulla and isthmus. The isthmus, immunostained with CD31, presented the largest vascular area and the highest number of vascular structures in the follicular phase. Transcripts (qPCR) and relative protein abundance (Western blot) of angiogenic factors fibroblast growth factor 1 (FGF1) and 2 (FGF2) and vascular endothelial growth factor (VEGF), and their respective receptors (FGFR1, FGFR2, VEGFR2 = KDR), were present in all oviduct portions throughout the estrous cycle. Upregulation of the transcripts of angiogenic receptors FGF1 and FGFR1 in the ampulla and isthmus and of FGF2 and KDR in the isthmus were noted. Furthermore, in the isthmus, the relative protein abundance of FGFR1 and KDR was the highest. This study shows that the equine oviduct presents differences in microvascular density in its three portions. The angiogenic factors VEGF, FGF1, FGF2 and their respective receptors are expressed in all studied regions of the mare oviduct, in agreement with microvascular patterns.
Collapse
Affiliation(s)
- Pedro Pinto-Bravo
- CERNAS (Research Center for Natural Resources, Environment and Society), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal; (P.P.-B.); (R.P.R.d.C.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal;
| | - Maria Rosa Rebordão
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal;
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - Carina Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - António Galvão
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.G.); (D.J.S.)
| | - Elisabete Silva
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | | | - Graça Alexandre-Pires
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
| | - Rosário P. Roberto da Costa
- CERNAS (Research Center for Natural Resources, Environment and Society), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal; (P.P.-B.); (R.P.R.d.C.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal;
| | - Dariusz J. Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.G.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (E.S.); (G.A.-P.)
- Correspondence: ; Tel.: +351-213-652-859
| |
Collapse
|
20
|
Myeloperoxidase Inhibition Decreases the Expression of Collagen and Metallopeptidase in Mare Endometria under In Vitro Conditions. Animals (Basel) 2021; 11:ani11010208. [PMID: 33467081 PMCID: PMC7830995 DOI: 10.3390/ani11010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Neutrophils can originate neutrophil extracellular traps (NETs). Myeloperoxidase (MPO) is a peroxidase found in NETs associated to equine endometrosis and can be inhibited by 4-aminobenzoic acid hydrazide (ABAH). Metallopeptidases (MMPs) participate in extracellular matrix stability and fibrosis development. The objectives of this in vitro work were to investigate, in explants of mare's endometrium, (i) the ABAH capacity to inhibit MPO-induced collagen type I (COL1) expression; and (ii) the action of MPO and ABAH on the expression and gelatinolytic activity of MMP-2/-9. Explants retrieved from the endometrium of mares in follicular or mid-luteal phases were treated with MPO, ABAH, or their combination, for 24 or 48 h. The qPCR analysis measured the transcription of COL1A2, MMP2, and MMP9. Western blot and zymography were performed to evaluate COL1 protein relative abundance and gelatinolytic activity of MMP-2/-9, respectively. Myeloperoxidase elevated COL1 relative protein abundance at both treatment times in follicular phase (p < 0.05). The capacity of ABAH to inhibit MPO-induced COL1 was detected in follicular phase at 48 h (p < 0.05). The gelatinolytic activity of activated MMP-2 augmented in mid-luteal phase at 24 h after MPO treatment, but it was reduced with MPO+ABAH treatment. The activity of MMP-9 active form augmented in MPO-treated explants. However, this effect was inhibited by ABAH in the follicular phase at 48 h (p < 0.05). By inhibiting the pro-fibrotic effects of MPO, it might be possible to reduce the development of endometrosis. Metallopeptidase-2 might be involved in an acute response to MPO in the mid-luteal phase, while MMP-9 might be implicated in a prolonged exposition to MPO in the follicular phase.
Collapse
|
21
|
Amaral A, Fernandes C, Morazzo S, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. The Inhibition of Cathepsin G on Endometrial Explants With Endometrosis in the Mare. Front Vet Sci 2020; 7:582211. [PMID: 33195599 PMCID: PMC7661753 DOI: 10.3389/fvets.2020.582211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Although proteases found in neutrophil extracellular traps (NETs) have antimicrobial properties, they also stimulate collagen type 1 (COL1) production by the mare endometrium, contributing for the development of endometrosis. Cathepsin G (CAT), a protease present in NETs, is inhibited by specific inhibitors, such as cathepsin G inhibitor I (INH; β-keto-phosphonic acid). Matrix metallopeptidases (MMPs) are proteases involved in the equilibrium of the extracellular matrix. The objective of this study was to investigate the effect of CAT and INH (a selective CAT inhibitor) on the expression of MMP-2 and MMP-9 and on gelatinolytic activity. In addition, the putative inhibitory effect of INH on CAT-induced COL1 production in mare endometrium was assessed. Endometrial explants retrieved from mares in follicular phase or midluteal phase were treated for 24 or 48 h with CAT, inhibitor alone, or both treatments. In explants, transcripts (quantitative polymerase chain reaction) of COL1A2, MMP2, and MMP9, as well as the relative abundance of COL1 protein (Western blot), and activity of MMP-2 and MMP-9 (zymography) were evaluated. The protease CAT induced COL1 expression in explants, at both estrous cycle phases and treatment times. The inhibitory effect of INH was observed on COL1A2 transcripts in follicular phase at 24-h treatment, and in midluteal phase at 48 h (P < 0.05), and on the relative abundance of COL protein in follicular phase and midluteal phase explants, at 48 h (P < 0.001). Our study suggests that MMP-2 might also be involved in an earlier response to CAT, and MMP-9 in a later response, mainly in the follicular phase. While the use of INH reduced CAT-induced COL1 endometrial expression, MMPs might be involved in the fibrogenic response to CAT. Therefore, in mare endometrium, the use of INH may be a future potential therapeutic means to reduce CAT-induced COL1 formation and to hamper endometrosis establishment.
Collapse
Affiliation(s)
- Ana Amaral
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Carina Fernandes
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Morazzo
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Rosa Rebordão
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal.,Polytechnic of Coimbra, Coimbra Agriculture School, Coimbra, Portugal
| | | | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Luís Telo da Gama
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| | - Dariusz Jan Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
| | - Graça Ferreira-Dias
- Department Morfologia e Função, Faculdade de Medicina Veterinária, CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Szóstek-Mioduchowska A, Leciejewska N, Zelmańska B, Staszkiewicz-Chodor J, Ferreira-Dias G, Skarzynski D. Lysophosphatidic acid as a regulator of endometrial connective tissue growth factor and prostaglandin secretion during estrous cycle and endometrosis in the mare. BMC Vet Res 2020; 16:343. [PMID: 32943074 PMCID: PMC7499873 DOI: 10.1186/s12917-020-02562-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Equine endometrosis is a chronic degenerative condition, described as endometrial fibrosis that forms in the stroma, under the basement membrane and around the endometrial glands. The role of lysophosphatidic acid (LPA) in the development of tissue fibrosis varies depending on the organ, and its profibrotic role in mare endometrosis remains unclear. The study aimed to establish the endometrial presence of LPA and its receptors (LPAR1–4), together with its effects on connective tissue growth factor (CTGF) and prostaglandins (PG) secretion from equine endometrium under physiological (estrous cycle), or pathological conditions (endometrosis). Mare endometria in the mid-luteal phase (n = 5 for each category I, IIA, IIB, III of Kenney and Doig) and in the follicular phase (n = 5 for each category I, IIA, III and n = 4 for IIB) were used. In experiment 1, the levels of LPA, LPAR1–4 mRNA level and protein abundance were investigated in endometria at different stages of endometrosis. In experiment 2, the in vitro effect of LPA (10− 9 M) on the secretion of CTGF and PGs from endometrial tissue explants at different stages of endometrosis were determined. Results Endometrial LPA concentration was higher in the mid-luteal phase compared to the follicular phase in category I endometrium (P < 0.01). There was an alteration in endometrial concentrations of LPA and LPAR1–4 protein abundance in the follicular phase at different stages of endometrosis (P < 0.05). Additionally, LPA increased the secretion of PGE2 from category I endometrium in both phases of the estrous cycle (P < 0.05). The effect of LPA on the secretion of CTGF and PGF2α from endometrial tissue was altered depending on different stages of endometrosis (P < 0.05). Conclusion Our data indicate that endometrosis disturbs proper endometrial function and is associated with altered endometrial LPA concentration, its receptor expression and protein abundance, PGE2/PGF2α ratio, and CTGF secretion in response to LPA. These changes could influence several physiological events occurring in endometrium in mare during estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland.
| | - Natalia Leciejewska
- Department of Animal Physiology and Biochemistry and Biostructure, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznan, Poland
| | - Beata Zelmańska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| | - Graça Ferreira-Dias
- CIISA, Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Tuwima-st 10, 10-748, Olsztyn, Poland
| |
Collapse
|
23
|
Miró J, Gutiérrez-Reinoso M, da Silva JA, Fernandes C, Rebordão MR, Alexandre-Pires G, Catalán J, Ferreira-Dias G. Collagen and Eosinophils in Jenny's Endometrium: Do They Differ With Endometrial Classification? Front Vet Sci 2020; 7:631. [PMID: 33134338 PMCID: PMC7511575 DOI: 10.3389/fvets.2020.00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen fibers and inflammatory cells are the basis for jenny endometrium Kenney and Doig's classification developed for the mare. The infiltration of a large number of eosinophils in the jenny endometrium is intriguing. Eosinophil and fibroblast produced IL33, which has been related to fibrosis development and chronicity. This work on the endometrium consisted of (i) quantification of collagen type I (COL1A2), type III (COL3A1), and IL33 transcripts; (ii) histological localization and quantification of COL1 and COL3 proteins; and (iii) eosinophil and neutrophil count and correlation with collagen area and IL33 transcripts. Localization of COL protein in the jenny endometrium was also compared to the mare endometrium. As fibrosis increased, eosinophil and neutrophil count decreased (P < 0.05). A 5-fold increase in IL33 transcripts was noted from categories IIA to III. There was a tendency toward a positive correlation between eosinophil count and IL33 transcripts in category IIA endometrium (P = 0.055). Neither transcripts of COL1A2 nor COL3A1 nor the areas of COL1 or COL3 differed with endometrial categories. Unlike for the mare, and regardless of the jenny endometrium classification, COL3 was always found to different extents in the stratum compactum, while COL1 was mainly present in deep stroma. As fibrosis progressed in the mare, an extensive increase in COL1 fibers was notorious under the surface epithelium. Correlations between neutrophil count and COL1 and COL3 areas were observed in the jenny endometrium, although no correlation was found for eosinophil count. Neutrophil count positive correlation with the COL1 area and negative correlation with the COL3 area in endometria with mild lesions suggest that neutrophils in the jenny endometrium may be involved in fibrogenesis. In addition, when eosinophilia subsides, the endometrium reacts with fibrosis establishment, which could be stimulated by the pro-fibrotic cytokine IL33, whose release might then be ascribed to fibroblasts. Further studies are needed to analyze the effect of the presence of COL3 next to the surface epithelium in the stratum compactum, or around the endometrial glands on jenny's endometrial function and fertility.
Collapse
Affiliation(s)
- Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Miguel Gutiérrez-Reinoso
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joana Aguiar da Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Carina Fernandes
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Rosa Rebordão
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Graça Alexandre-Pires
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Graça Ferreira-Dias
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Lange-Consiglio A, Funghi F, Cantile C, Idda A, Cremonesi F, Riccaboni P. Case Report: Use of Amniotic Microvesicles for Regenerative Medicine Treatment of a Mare With Chronic Endometritis. Front Vet Sci 2020; 7:347. [PMID: 32626730 PMCID: PMC7311574 DOI: 10.3389/fvets.2020.00347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic endometritis is an inflammation in the inner layer of uterine mucosa, with or without an infectious process, which affects the animal's fertility but not its general health. A variety of treatments has been adopted over the years but to date, no effective cures have been able to renew the injured tissue. Since the defects in the fetal-maternal communication are caused by degenerative changes due to chronic endometrial inflammation, our working hypothesis was a new approach to this disease by the regenerative medicine using amniotic derived microvesicles (MVs) for their anti-inflammatory and regenerative effects. The MVs are responsible for horizontal transfer of genetic materials, including microRNA (miRNAs) that are involved in paracrine communication between origin cells and target cells. Thus, intrauterine MV infusion may be beneficial in degenerative chronic endometritis and in the fetal–maternal talk. The selected mare was an 11-year-old Friesian, with a history of failed pregnancies despite numerous insemination attempts. Punctual and evident heats characterized the reproductive history, but no insemination attempts had been made for many years. The first (failed) insemination was when the mare was 9-years-old. In the next two reproductive seasons, other attempts were made at regular intervals but none was successful. After a final insemination attempt using a stallion of proven fertility, the collection of an 8-day old embryo suggested that the mare was affected by implantation failure related to endometritis. The mare was treated with two cycles of intrauterine administration of amniotic-derived MVs. The success of the intrauterine administration of MVs was demonstrated by an improvement in the classification of endometritis and in a successful artificial insemination (AI) with implantation of an embryo, as detected at day 14 and with a pregnancy that is still ongoing. Probably, MVs were able to restore the injured endometrium and re-establish the proper communication for a successful embryo implantation.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via dell'Università, Lodi, Italy
| | | | - Carlo Cantile
- Department of Veterinary Science, Università di Pisa, Viale delle Piagge, Pisa, Italy
| | - Antonella Idda
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via dell'Università, Lodi, Italy
| | - Fausto Cremonesi
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via dell'Università, Lodi, Italy
| | - Pietro Riccaboni
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Via dell'Università, Lodi, Italy
| |
Collapse
|
25
|
Amaral A, Fernandes C, Rebordão MR, Szóstek-Mioduchowska A, Lukasik K, Gawronska-Kozak B, Telo da Gama L, Skarzynski DJ, Ferreira-Dias G. The In Vitro Inhibitory Effect of Sivelestat on Elastase Induced Collagen and Metallopeptidase Expression in Equine Endometrium. Animals (Basel) 2020; 10:E863. [PMID: 32429399 PMCID: PMC7278485 DOI: 10.3390/ani10050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) fight endometritis, and elastase (ELA), a protease found in NETs, might induce collagen type I (COL1) accumulation in equine endometrium. Metallopeptidases (MMPs) are involved in extracellular matrix balance. The aim was to evaluate the effects of ELA and sivelestat (selective elastase inhibitor) on MMP-2 and MMP-9 expression and gelatinolytic activity, as well as the potential inhibitory effect of sivelestat on ELA-induced COL1 in equine endometrium. Endometrial explants from follicular (FP) and mid-luteal (MLP) phases were treated for 24 or 48 h with ELA, sivelestat, and their combination. Transcripts of COL1A2, MMP2, and MMP9 were evaluated by qPCR; COL1 protein relative abundance by Western blot, and MMP-2 and MMP-9 gelatinolytic activity by zymography. In response to ELA treatment, there was an increase in MMP2 mRNA transcription (24 h) in active MMP-2 (48 h), both in FP, and in MMP9 transcripts in FP (48 h) and MLP (24 h) (p < 0.05). Sivelestat inhibited ELA-induced COL1A2 transcripts in FP (24 h) and MLP (24 h, 48 h) (p < 0.05). The sivelestat inhibitory effect was detected in MMP9 transcripts in FP at 48 h (p < 0.05), but proteases activity was unchanged. Thus, MMP-2 and MMP-9 might be implicated in endometrium fibrotic response to ELA. In mare endometrium, sivelestat may decrease ELA-induced COL1 deposition and hinder endometrosis development.
Collapse
Affiliation(s)
- Ana Amaral
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Carina Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Maria Rosa Rebordão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
- Coimbra College of Agriculture, Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| | - Anna Szóstek-Mioduchowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Luís Telo da Gama
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| | - Dariusz J. Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Science,10-748 Olsztyn, Poland; (A.S.-M.); (K.L.); (B.G.-K.); (D.J.S.)
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal; (A.A.); (C.F.); (M.R.R.); (L.T.d.G.)
| |
Collapse
|
26
|
Expression of genes involved in the NF-κB-dependent pathway of the fibrosis in the mare endometrium. Theriogenology 2020; 147:18-24. [PMID: 32074495 DOI: 10.1016/j.theriogenology.2020.01.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/29/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Equine endometrosis is a multifactorial chronic degenerative condition, considered to be one of a major causes of equine infertility. The formation of periglandular fibrosis seems to be linked to chronic inflammation of the mare endometrium in a paracrine way and in a response to numerous forms of inflammatory stimuli elicit the net deposition of extracellular matrix (ECM) around the endometrial glands and stroma. We hypothesized some of these stimuli, such as monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and hyaluronan synthases (HASs), may share the nuclear factor-κB (NF-κB) dependent activation pathway. This study aimed to determine whether mRNA expression of MCP-1, IL-6, HASs, and proteins of canonical (RelA/NK-κβ1) and noncanonical (NK-κβ2) signaling pathways for NF-kB would change in subsequent categories of endometrosis during the estrous cycle. The expression of selected genes was established in mare endometrium (n = 80; Kenney and Doig categories I, IIA, IIB, III), obtained in the follicular phase (FLP) and mid-luteal phase (MLP). The high expression of RelA mRNA was observed in III, whereas of NK-κβ1 and NK-κβ2 also in IIA, and IIA and IIB, respectively. The expression of MCP-1 mRNA occurred constantly, regardless of the category, whereas IL-6 mRNA was low in IIA, IIB, and III. The expression of HAS 1 was high in IIA and HAS 3 in IIA, IIB, and III. All those changes were observed in FLP, but not MLP. Our results suggest that NF-κB may be involved in progression of the chronic degenerative condition of the mare endometrium, on both canonical and noncanonical pathways. The most important changes in target genes expression were observed only in FLP, which may suggest the hormone-dependent activation of the NF-κB-dependent fibrosis pathway.
Collapse
|
27
|
Neutrophils, monocytes and other immune components in the equine endometrium: Friends or foes? Theriogenology 2020; 150:150-157. [PMID: 31973963 DOI: 10.1016/j.theriogenology.2020.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/11/2020] [Indexed: 02/06/2023]
Abstract
The innate and adaptive immune mechanisms are key components of regulation of reproductive physiological function and uterine disorders in equine uterus. The predominant immunological response in equine endometrium, characterized by an innate immune response, occurs under estrogens influence, in the follicular phase. Although, the increase in immune-related genes in equine endometrium during estrus has been suggested to play a role in uterine clearance after mating, immune cells and their product, i.e. cytokines play also mandatory role in the luteal development and maintenance, regression of equine corpus luteum, as well as in early pregnancy. Innate immune response is nonspecific and acts as the first line of defense against pathogens, foreign stimuli that include constituents of seminal fluid and local infections (endometritis). It has been recently established that a phagocytosis-independent mechanism to restrain bacteria, by means of neutrophil extracellular traps (NETs) formation, is involved in pathogenesis of in mare endometrial fibrosis (endometrosis). Moreover, persistent macrophages and mast cell activation could also have pro-fibrotic roles by secreting great amounts of pro-fibrotic factors and lead to fibrosis. This review will highlight the involvement of immune key components of the innate and adaptive immune system and their products in equine uterus and their contribution to reproductive physiological function and uterine disorders.
Collapse
|
28
|
Szóstek-Mioduchowska AZ, Baclawska A, Okuda K, Skarzynski DJ. Effect of proinflammatory cytokines on endometrial collagen and metallopeptidase expression during the course of equine endometrosis. Cytokine 2019; 123:154767. [PMID: 31265984 DOI: 10.1016/j.cyto.2019.154767] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 01/04/2023]
Abstract
Equine endometrosis (endometrial fibrosis) is a degenerative chronic process that occurs in the uterus of the mare and disturbs proper endometrial function. Fibrosis is attributed to excessive deposition of extracellular matrix (ECM) components. The turnover of ECM is mediated by matrix metallopeptidases (MMP). Previously, it was shown that cytokines modulate MMP expression in other tissues and may regulate fibrosis indirectly by attracting inflammatory cells to the site of inflammation and directly on various tissues. However, the regulation of MMP expression in equine endometrosis is still relatively unknown. Thus, our aim was to determine if interleukin (IL)-1β and IL-6 regulate ECM, MMPs, or their inhibitors (TIMPs) and whether this regulation differs during endometrosis in the mare. Endometrial fibrosis was divided into four categories according to severity: I (no degenerative changes), IIA (mild degenerative changes), IIB (moderate degenerative changes) and III (severe degenerative changes) according to Kenney and Doig classification. Endometrial explants (n = 5 for category I, IIA, IIB and III according to Kenney and Doig) were incubated with IL-1β (10 ng/ml) or IL-6 (10 ng/ml) for 24 h. Secretion and mRNA transcription of collagen type 1 (Col1a1) and type 3 (Col3a1), fibronectin (Fn1), Mmp-1, -2, -3, -9, -13, Timp-1, -2 were analyzed by real-time PCR and ELISA, respectively. IL-1β treatment up-regulated secretion of COL1, MMP-2, TIMP1, and TIMP2 in category I endometrial fibrosis tissues (P < 0.05). IL-6 treatment up-regulated secretion of ECM, MMP-2, and MMP-3 and down-regulated secretion of MMP-9 in category I tissues (P < 0.05). In category IIA tissues, IL-1β and IL-6 treatment up-regulated secretion of COL3 (P < 0.05; P < 0.05), and IL-6 treatment also down-regulated secretion of MMP-9 (P < 0.05). In category IIB tissues, IL-1β treatment down-regulated secretion of COL3 (P < 0.05) and up-regulated secretion of MMP-3 (P < 0.01), while IL-6 treatment up-regulated secretion of MMP-3, MMP-9, and MMP-13 (P < 0.05). In category III tissues, IL-1β treatment up-regulated secretion of COL1, MMP-1, MMP-9 and TIMP-2 (P < 0.05), and IL-6 up-regulated secretion of all investigated ECM components, MMPs and TIMPs. These results reveal that the effect of IL-1β and IL-6 on equine endometrium differs depending on the severity of endometrial fibrosis. Our findings indicate an association between inflammation and development of endometrosis through the effect of IL-1β and IL-6 on expression of ECM components, MMPs, and TIMPs in the mare.
Collapse
Affiliation(s)
- A Z Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - A Baclawska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - K Okuda
- Laboratory of Reproductive Physiology Graduate School of Environmental and Science, Okayama University, 700-8530 Okayama, Japan; Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - D J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|