1
|
Xiang W, Yang F, Pu X, Zhao S, Wang P. A New Perspective on Pig Genetics and Breeding: microRNA. Reprod Domest Anim 2024; 59:e14751. [PMID: 39639849 DOI: 10.1111/rda.14751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
microRNA (miRNA) is a class of small non-coding RNA molecules that are widely expressed in organisms and play an important role in the regulation of gene expression at the post-transcriptional level. In recent years, researchers have begun to explore its effects on the development of domestic animals and have begun to think about its potential role in modern molecular breeding. Increasing evidence shows that miRNA play a central role in the regulation of pig fertility, pork product quality and disease resistance. Understanding the physiological mechanism of miRNA will be able to better guide future breeding work. In this paper, we will review the research progress of the function and mechanism of miRNA in combination with the above economic characteristics of pigs. The reported miRNA and their target genes were sorted out to evaluate their potential role in improving economic traits such as pig fertility, meat quality and disease resistance, to provide a reference for modern pig molecular breeding.
Collapse
Affiliation(s)
- Wei Xiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, China
| | - Fan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiufen Pu
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Shuang Zhao
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Pingqing Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Ying W, Yunqi Z, Deji L, Jian K, Fusheng Q. Follicular fluid HD-sevs-mir-128-3p is a key molecule in regulating bovine granulosa cells autophagy. Theriogenology 2024; 226:263-276. [PMID: 38954995 DOI: 10.1016/j.theriogenology.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Follicular fluid (FF) is rich in extracellular vesicles (EVs). EVs carries a variety of miRNA involved in regulating follicular development, the function of cells in follicles, primordial follicular formation, follicular recruitment and selection, follicular atresia, oocyte communication, granulosa cells (GCs) function and luteinization and other biological processes of follicular development. Previous studies in our laboratory have shown that bovine follicular fluid (bFF) high density-small extracellular vesicles (HD-sEVs)-miRNA was enriched in autophagy-related pathways. However, the mechanism of bFF EVs carrying miRNA regulating GCs autophagy is not clear. Thus, this study carried out a series of studies on the previous HD-sEVs sequencing data and miR-128-3p contained in bFF HD-sEVs. A total of 38 differentially expressed genes were detected by RNA-Seq after overexpression of miR-128-3p in bovine GCs (bGCs). Through cell transfection, Western blot (WB) and Immunofluorescence (IF), it was proved that overexpression of miR-128-3p could promote the expression of LC3 (microtubule-associated protein I light chain 3), inhibit p62, promote the number of autophagosome, promote the formation of autophagy lysosome and autophagy flow, and activate bGCs autophagy. MiR-128-3p inhibitor significantly inhibited the expression of LC3 and monodansylcadaverine (MDC) in bGCs, and promoted the expression of autophagy substrate p62, indicating that HD-sEVs-miR-128-3p could activate bGCs autophagy. In addition, through double luciferase assay, bioinformatics analysis, WB and RT-qPCR, it was concluded that bFF HD-sEVs-miR-128-3p could target TFEB (transcription factor EB) and FoxO4 (Forkhead box O4) and activate GCs autophagy.
Collapse
Affiliation(s)
- Wang Ying
- Chongqing Key Laboratory of Forage &Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing, 400715, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhao Yunqi
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Luan Deji
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kang Jian
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quan Fusheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Zhang Y, Jiang Y, Dong X, Luo S, Jiao G, Weng K, Bao Q, Zhang Y, Vongsangnak W, Chen G, Xu Q. Follicular fluid-derived exosomal HMOX1 promotes granulosa cell ferroptosis involved in follicular atresia in geese (Anser cygnoides). Poult Sci 2024; 103:103912. [PMID: 38943808 PMCID: PMC11261456 DOI: 10.1016/j.psj.2024.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 07/01/2024] Open
Abstract
The proliferation and death of granulosa cells (GCs) in poultry play a decisive role in follicular fate and egg production. The follicular fluid (FF) contains a variety of nutrients and genetic substances to ensure the communication between follicular cells. Exosomes, as a new intercellular communication, could carry and transport the proteins, RNA, and lipids to react on GCs, which had been found in FF of various domestic animals. Whether exosomes of FF in poultry play a similar role is unclear. In this study, geese, a poultry with low egg production, were chosen, and the effect of FF exosomes on the proliferation and death of GCs was investigated. Firstly, there were not only a large number of healthy small yellow follicles (HSYFs) but also some atresia small yellow follicles (ASYFs) in the egg-laying stage. Also, the GC layers of ASYFs became loose interconnections, inward detachment, and diminished survival rate than that of HSYFs. Besides, compared to HSYFs, the contents of E2, P4, and the mRNA expression levels of ferroptosis-related genes GPX4, FPN1, and FTH1 were significantly decreased, while COX2, NCOA4, VDAC3 mRNA were significantly increased, and the structure of mitochondrial cristae disappeared and the outer membrane broke in the GC layers of ASYFs. Moreover, the ROS, MDA, and oxidation levels in the GC layers of ASYFs were significantly higher than those of HSYFs. All these hinted that ferroptosis might result in a large number of GCs death and involvement in follicle atresia. Secondly, FF exosomes were isolated from HSYFs and ASYFs, respectively, and identified by TEM, NTA, and detection of exosome marker proteins. Also, we found the exosomes were phagocytic by GCs by tracking CM-Dil. Moreover, the addition of ASYF-FF exosomes significantly elevated the MDA content, Fe2+ levels, and the mitochondrial membrane potential (MMP) in GCs, thus significantly inhibiting the proliferation of GCs, which was restored by the ferroptosis inhibitor ferrostatin-1. Thirdly, the proteomic sequencing was performed between FF-derived exosomes of HSYFs and ASYFs. We obtained 1615 differentially expressed proteins, which were mainly enriched in the protein transport and ferroptosis pathways. Among them, HMOX1 was enriched in the ferroptosis pathway based on differential protein-protein interaction network analysis. Finally, the role of HMOX1 in regulating ferroptosis in GCs was further explored. The highly expressed HMOX1 was observed in the exosomes of ASYF-FF than that in HSYF-FF. Overexpression of HMOX1 increased ATG5, LC3II, and NCOA4 expression and reduced the expression of FTH1, GPX4, PCBP2, FPN1 in the ferroptosis pathway, also promoted intracellular Fe2+ accumulation and MDA surge, which drove ferroptosis in GCs. The effects of HMOX1 on ferroptosis could be blocked by its inhibitor Znpp. Taken together, the important protein HMOX1 was identified in FF, which could be delivered to GCs via exosomes, triggering ferroptosis and thus determining the fate of follicles.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Youluan Jiang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoqian Dong
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuwen Luo
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guoyu Jiao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kaiqi Weng
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
4
|
Wang W, Tan L, Ge L, Gou R, Gou L, Liu L, Zhang L, Ma X. Circ_0043314 Modulates Proliferation and Apoptosis of Ovarian Granulosa Cells in Polycystic Ovarian Syndrome via the MicroRNA-146b-3p/Apelin 13 Axis. Gynecol Obstet Invest 2024; 90:18-29. [PMID: 39008951 DOI: 10.1159/000540097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/09/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. At present, the pathogenesis has not been clarified, and the clinical application of drugs and lifestyle intervention may not prevent disease progression. This study aimed to investigate how circ_0043314 regulates ovarian granulosa cell biological functions to provide a theoretical basis for the treatment of patients with PCOS. MicroRNA (miR)-146b-3p/Apelin 13 axis was used to investigate the mechanism by which circ_0043314 regulated ovarian granulosa cell proliferation and apoptosis in PCOS via miR-146b-3p/Apelin 13 axis. Participants/Materials, Methods: Ovarian tissues (cortical tissues) from 35 PCOS patients and 35 normal controls, as well as HEK293T and human ovarian granulosa cell line (KGN, COV434), were included in this study. We examined the expression levels of circ_0043314, miR-146b-3p, and Apelin 13 in PCOS tissues. Ovarian granulosa cells were transfected with corresponding plasmids to clarify the influence of circ_0043314, miR-146b-3p, or Apelin 13 on proliferation and apoptosis of ovarian granulosa cells through MTT and flow cytometry assays. Moreover, the relationships among circ_0043314, miR-146b-3p, and Apelin 13 were analyzed through dual-luciferase and RNA immunoprecipitation assays. RESULTS Circ_0043314 and Apelin 13 were highly expressed and miR-146b-3p was lowly expressed in ovarian tissues of PCOS compared with non-PCOS controls. Downregulation of circ_0043314 or upregulation of miR-146b-3p hindered ovarian granulosa cell proliferation and advanced its apoptosis. Downregulation of miR-146b-3p reversed the impacts of downregulation of circ_0043314, and overexpression of Apelin 13 counteracted the influences of upregulation of miR-146b-3p in ovarian granulosa cells. Mechanically, circ_0043314 could bind to miR-146b-3p, and miR-146b-3p directly targeted and modulated Apelin 13 expression. LIMITATIONS This study was limited by the lack of animal experiments. CONCLUSION Our data demonstrated that circ_0043314 enhances ovarian granulosa cell proliferation and suppresses its apoptosis via miR-146b-3p/Apelin 13 axis.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Luni Tan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Liang Ge
- Department of Anesthesiology, Gansu Province Maternity and Child-Care Hospital, Lanzhou, China
| | - Ruiqiang Gou
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Li Gou
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Lin Liu
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lili Zhang
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Ma
- Key Laboratory for Reproductive Medicine and Embryo, The Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Zhu Q, Ma H, Wang J, Liang X. Understanding the Mechanisms of Diminished Ovarian Reserve: Insights from Genetic Variants and Regulatory Factors. Reprod Sci 2024; 31:1521-1532. [PMID: 38347379 DOI: 10.1007/s43032-024-01467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 05/24/2024]
Abstract
Delaying childbearing age has become a trend in modern times, but it has also led to a common challenge in clinical reproductive medicine-diminished ovarian reserve (DOR). Since the mechanism behind DOR is unknown and its clinical features are complex, physicians find it difficult to provide targeted treatment. Many factors affect ovarian reserve function, and existing studies have shown that genetic variants, upstream regulatory genes, and changes in protein expression levels are present in populations with reduced ovarian reserve function. However, existing therapeutic regimens often do not target the genetic profile for more individualized treatment. In this paper, we review the types of genetic variants, mutations, altered expression levels of microRNAs, and other related factors and their effects on the regulation of follicular development, as well as altered DNA methylation. We hope this review will have significant implications for the future treatment of individuals with reduced ovarian reserve.
Collapse
Affiliation(s)
- Qinying Zhu
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Hao Ma
- The First Clinical Medical College of, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, No.1, Donggangxi Rd, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Gao L, Zhang L, Zhang Y, Madaniyati M, Shi S, Huang L, Song X, Pang W, Chu G, Yang G. miR-10a-5p inhibits steroid hormone synthesis in porcine granulosa cells by targeting CREB1 and inhibiting cholesterol metabolism. Theriogenology 2023; 212:19-29. [PMID: 37683501 DOI: 10.1016/j.theriogenology.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mielie Madaniyati
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Sun Y, Liu Z, Zhang W, Lin H, Li Q, Liu C, Zhang C. Paternal genetic effects of cadmium exposure during pregnancy on hormone synthesis disorders in ovarian granulosa cells of offspring. J Ovarian Res 2023; 16:98. [PMID: 37194017 DOI: 10.1186/s13048-023-01175-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
The aim of this study was to investigate the paternal genetic intergenerational and transgenerational genetic effects of cadmium (Cd) exposure during pregnancy on estradiol (E2) and progesterone (Pg) synthesis in the ovarian granulosa cells (GCs) of offspring. Pregnant SD rats were intragastrically exposed to CdCl2 (0, 0.5, 2.0, 8.0 mg/kg) from days 1 to 20 to produce the F1 generation, F1 males were mated with newly purchased females to produce the F2 generation, and the F3 generation was obtained in the same way. Using this model, Cd-induced hormone synthesis disorders in GCs of F1 have been observed [8]. In this study, altered serum E2 and Pg levels in both F2 and F3 generations showed a nonmonotonic dose‒response relationship. In addition, hormone synthesis-related genes (Star, Cyp11a1, Cyp17a1, Cyp19a1, Sf-1) and miRNAs were observed to be altered in both F2 and F3. No differential changes in DNA methylation modifications of hormone synthesis-related genes were observed, and only the Adcy7 was hypomethylated. In summary, paternal genetic intergenerational and transgenerational effects exist in ovarian GCs E2 and Pg synthesis disorders induced by Cd during pregnancy. In F2, the upregulation of StAR and CYP11A1, and changes in the miR-27a-3p, miR-27b-3p, and miR-146 families may be important, while changes in the miR-10b-5p and miR-146 families in F3 may be important.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhangpin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Hao Lin
- Fuzhou Center for Disease Control and Prevention, Fuzhou, 350005, Fujian Province, China
| | - Qingyu Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenchen Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Chenyun Zhang
- School of Health Management, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
8
|
Chen C, Zhang Z, Gu X, Sheng X, Xiao L, Wang X. Exosomes: New regulators of reproductive development. Mater Today Bio 2023; 19:100608. [PMID: 36969697 PMCID: PMC10034510 DOI: 10.1016/j.mtbio.2023.100608] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a size range between 30 and 150 nm, which can be released by the majority of cell types and circulate in body fluid. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has indicated exosomes' central role in regulating various complex reproductive processes. However, to our knowledge, a review that focally and vividly describes the role of exosomes in reproductive development is still lacking. This review highlights our knowledge about the contribution of exosomes to early mammalian reproduction, such as gametogenesis, fertilization, early embryonic development, implantation, placentation and pregnancy. The discussion is primarily drawn from literature pertaining to the mammalian lineage with emphasis on the roles of exosomes in human reproduction and laboratory and livestock models.
Collapse
|
9
|
Han M, Liang C, Liu Y, He X, Chu M. Integrated Transcriptome Analysis Reveals the Crucial mRNAs and miRNAs Related to Fecundity in the Hypothalamus of Yunshang Black Goats during the Luteal Phase. Animals (Basel) 2022; 12:ani12233397. [PMID: 36496918 PMCID: PMC9738480 DOI: 10.3390/ani12233397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
A normal estrus cycle is essential for the breeding of goats, and the luteal phase accounts for most of the estrus cycle. The corpus luteum (CL) formed during the luteal phase is a transient endocrine gland that is crucial for the reproductive cycle and pregnancy maintenance, and is controlled by many regulatory factors. However, the molecular mechanism of the hypothalamus effect on the reproductive performance of different litter sizes during the luteal phase of goats has not been elucidated. In this study, RNA-sequencing was used to analyze the mRNA and miRNA expression profiles of the hypothalamic tissues with the high-fecundity goats during the luteal phase (LP-HF) and low-fecundity goats during the luteal phase (LP-LF). The RNA-seq results found that there were 1963 differentially expressed genes (DEGs) (890 up-regulated and 1073 down-regulated). The miRNA-seq identified 57 differentially expressed miRNAs (DEMs), including 11 up-regulated and 46 down-regulated, of which 199 DEGs were predicted to be potential target genes of DEMs. Meanwhile, the functional enrichment analysis identified several mRNA-miRNA pairs involved in the regulation of the hypothalamic activity, such as the common target gene MEA1 of novel-miR-972, novel-miR-125 and novel-miR-403, which can play a certain role as a related gene of the reproductive development in the hypothalamic-pituitary-gonadal (HPG) axis and its regulated network, by regulating the androgen secretion. While another target gene ADIPOR2 of the novel-miR-403, is distributed in the hypothalamus and affects the reproductive system through a central role on the HPG axis and a peripheral role in the gonadal tissue. An annotation analysis of the DE miRNA-mRNA pairs identified targets related to biological processes, such as anion binding (GO:0043168) and small molecule binding (GO: 0036094). Subsequently, the KEGG(Kyoto Encyclopedia of Genes and Genomes) pathways were performed to analyze the miRNA-mRNA pairs with negatively correlated miRNAs. We found that the GnRH signaling pathway (ko04912), the estrogen signaling pathway (ko04915), the Fc gamma R-mediated phagocytosis (ko04666), and the IL-17 signaling pathway (ko04657), etc., were directly and indirectly associated with the reproductive process. These targeting interactions may be closely related to the reproductive performance of goats. The results of this study provide a reference for further research on the molecular regulation mechanism for the high fertility in goats.
Collapse
Affiliation(s)
- Miaoceng Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62819850
| |
Collapse
|
10
|
Baddela VS, Michaelis M, Sharma A, Plinski C, Viergutz T, Vanselow J. Estradiol production of granulosa cells is unaffected by the physiological mix of non-esterified fatty acids in follicular fluid. J Biol Chem 2022; 298:102477. [PMID: 36096202 PMCID: PMC9576879 DOI: 10.1016/j.jbc.2022.102477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cycle is controlled by circulating levels of the steroid hormone 17-β-estradiol, which is predominantly synthesized by the granulosa cells (GCs) of ovarian follicles. Our earlier studies showed that unsaturated fatty acids (USFs) downregulate and saturated fatty acids (SFAs) upregulate estradiol production in GCs. However, it was unclear whether pituitary gonadotropins induce accumulation of free fatty acids (FFAs) in the follicular fluid since follicle-stimulating hormone induces and luteinizing hormone inhibits estradiol production in the mammalian ovary. Interestingly, we show here the gas chromatography analysis of follicular fluid revealed no differential accumulation of FFAs between pre- and post-luteinizing hormone surge follicles. We therefore wondered how estradiol production is regulated in the physiological context, as USFs and SFAs are mutually present in the follicular fluid. We thus performed in vitro primary GC cultures with palmitate, palmitoleate, stearate, oleate, linoleate, and alpha-linolenate, representing >80% of the FFA fraction in the follicular fluid, and analyzed 62 different cell culture conditions to understand the regulation of estradiol biosynthesis under diverse FFA combinations. Our analyses showed co-supplementation of SFAs with USFs rescued estradiol production by restoring gonadotropin receptors and aromatase, antagonizing the inhibitory effects of USFs. Furthermore, transcriptome data of oleic acid–treated GCs indicated USFs induce the ERK and Akt signaling pathways. We show SFAs inhibit USF-induced ERK1/2 and Akt activation, wherein ERK1/2 acts as a negative regulator of estradiol synthesis. We propose SFAs are vital components of the follicular fluid, without which gonadotropin signaling and the ovarian cycle would probably be shattered by USFs.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany.
| | - Marten Michaelis
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Arpna Sharma
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Christian Plinski
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| | - Jens Vanselow
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), Wilhelm Stahl Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
11
|
Tang R, Xu C, Zhu Y, Yan J, Yao Z, Zhou W, Gui L, Li M. Identification and expression analysis of sex biased miRNAs in chinese hook snout carp Opsariichthys bidens. Front Genet 2022; 13:990683. [PMID: 36118893 PMCID: PMC9478731 DOI: 10.3389/fgene.2022.990683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022] Open
Abstract
As an economically important fish, Opsariichthys bidens has obvious sexual dimorphism and strong reproductive capacity, but no epigenetics study can well explain its phenotypic variations. In recent years, many microRNAs involved in the regulation of reproductive development have been explored. In this study, the small RNA libraries of O. bidens on the testis and ovary were constructed and sequenced. A total of 295 known miRNAs were obtained and 100 novel miRNAs were predicted. By comparing testis and ovary libraries, 115 differentially expressed (DE) miRNAs were selected, of which 53 were up-regulated and 62 were down-regulated. A total of 64 GO items (padj < 0.01) and 206 KEGG pathways (padj < 0.01) were enriched in the target gene of miRNA. After that, the expression levels of nine DE miRNAs, including let-7a, miR-146b, miR-18c, miR-202-5p, miR-135c, miR-9-5p, miR-34c-3p, miR-460-5p and miR-338 were verified by qRT-PCR. Furthermore, bidirectional prediction of DE miRNAs and sex-related genes was carried out and the targeting correlation between miR-9-5p and nanos1 was verified by Dual-Luciferase reporter assay. Our findings identified the differentially expressed miRNA and paved the way to new possibilities for the follow-up study on the mechanism of miRNA-mRNA interaction in the gonads of O. bidens.
Collapse
Affiliation(s)
- Rongkang Tang
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Cong Xu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Yefei Zhu
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ziliang Yao
- Lishui Fishery Technical Extension Station, Lishui, Zhejiang, China
| | - Wenzong Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lang Gui
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Lang Gui, ; Mingyou Li,
| | - Mingyou Li
- Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Lang Gui, ; Mingyou Li,
| |
Collapse
|
12
|
Li L, Zhang J, Lu C, Wang B, Guo J, Zhang H, Cui S. MicroRNA-7a2 Contributes to Estrogen Synthesis and Is Modulated by FSH via the JNK Signaling Pathway in Ovarian Granulosa Cells. Int J Mol Sci 2022; 23:ijms23158565. [PMID: 35955699 PMCID: PMC9369042 DOI: 10.3390/ijms23158565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/22/2022] Open
Abstract
MicroRNA-7a2 (miR-7a2) plays fundamental roles in the female reproductive axis, and estrogen is indispensable for maintaining ovary function. However, the interaction between miR-7a2 and ovarian function is unclear. The present study aimed to determine whether and how miR-7a2 functions in estrogen synthesis. Firstly, the results verified that miR-7a was highly expressed in ovarian granulosa cells. The knockout (KO) of miR-7a2 caused infertility and abnormal ovarian function in mice. Concomitantly, the Cyp19a1 expression and estrogen synthesis were significantly inhibited, which was validated in primary granulosa cells. The mice transplanted with miR-7a2 KO ovaries showed similar results; however, estrogen supplementation reversed infertility. In the in vitro experiment, follicle-stimulating hormone (FSH) significantly improved the expression of miR-7a and Cyp19a1 and the synthesis of estrogen. However, the miR-7a2 KO markedly reversed the function of FSH. Also, FSH upregulated miR-7a by activating the (c-Jun N-terminal kinase) JNK signaling pathway. In addition, Golgi apparatus protein 1 (Glg1) was shown to be the target gene of miR-7a2. These findings indicated that miR-7a2 is essential for ovarian functions with respect to estrogen synthesis through the targeted inhibition of the expression of Glg1 and then promoting Cyp19a1 expression; the physiological process was positively regulated by FSH via the JNK signaling pathway in granulosa cells.
Collapse
Affiliation(s)
- Liuhui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Jiajia Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Haitong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (L.L.); (C.L.); (B.W.); (J.G.); (H.Z.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
13
|
Zhang Y, Chen X, Zhou Z, Tian X, Yang P, Fu K. CYP19A1 May Influence Lambing Traits in Goats by Regulating the Biological Function of Granulosa Cells. Animals (Basel) 2022; 12:ani12151911. [PMID: 35953905 PMCID: PMC9367365 DOI: 10.3390/ani12151911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Aromatase (CYP19A1), a member of the cytochrome family, is widely expressed in ovarian and granulosa cells and is primarily responsible for the conversion of androgens to estrogens. Increased expression of CYP19A1 in follicular granulosa cells has implications for cell proliferation, steroid hormone secretion, and the expression of related functional indicator genes. We hypothesize that CYP19A1 may indirectly influence lambing numbers in goats by regulating follicular cell growth and development, as well as ovarian ovulation. Abstract Abnormal expression of CYP19A1, a gene related to steroid hormone synthesis, causes steroid hormone disruption and leads to abnormal ovulation in granulosa cells. However, the exact mechanism of CYP19A1 regulation is unclear. In this study, we confirmed the localization of CYP19A1 in goat ovarian tissues using immunohistochemistry. Subsequently, we investigated the effects of CYP19A1 on granulosa cell proliferation, steroid hormone secretion, and expression of candidate genes for multiparous traits by overexpressing and silencing CYP19A1 in goat granulosa cells (GCs). The immunohistochemistry results showed that CYP19A1 was expressed in all types of follicular, luteal, and granulosa cells, with subcellular localization results revealing that CYP19A1 protein was mainly localized in the cytoplasm and nucleus. Overexpression of CYP19A1 significantly increased the mRNA levels of CYP19A1, FSHR, and INHBA, which are candidate genes for multiple birth traits in goats. It also promoted cell proliferation, PCNA and Cyclin E mRNA levels in granulosa cells, and secretion of estrogen and progesterone. However, it inhibited the mRNA levels of STAR, CYP11A1, and 3βSHD, which are genes related to steroid synthesis. Silencing CYP19A1 expression significantly reduced CYP19A1, FSHR, and INHBA mRNA levels in granulosa cells and inhibited granulosa cell proliferation and PCNA and Cyclin E mRNA levels. It also reduced estrogen and progesterone secretion but enhanced the mRNA levels of STAR, CYP11A1, and 3βSHD. CYP19A1 potentially influenced the lambing traits in goats by affecting granulosa cell proliferation, hormone secretion, and expression of candidate genes associated with traits for multiple births.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Z.); (Z.Z.); (X.T.); (P.Y.); (K.F.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Z.); (Z.Z.); (X.T.); (P.Y.); (K.F.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| | - Zhinan Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Z.); (Z.Z.); (X.T.); (P.Y.); (K.F.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Z.); (Z.Z.); (X.T.); (P.Y.); (K.F.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Peifang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Z.); (Z.Z.); (X.T.); (P.Y.); (K.F.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kaibing Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Z.); (Z.Z.); (X.T.); (P.Y.); (K.F.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Wei Y, Cheng J, Luo M, Yang S, Xing Q, Cheng J, Lv J, Yu C, Sun L, Shi D, Deng Y. Targeted metabolomics analysis of bile acids and cell biology studies reveal the critical role of glycodeoxycholic acid in buffalo follicular atresia. J Steroid Biochem Mol Biol 2022; 221:106115. [PMID: 35460848 DOI: 10.1016/j.jsbmb.2022.106115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
The follicular fluid of mammals has a high abundance of bile acids and these have proven to be closely related to the follicular atresia. However, the origin and content of bile acids in follicular fluid and its mechanisms on follicular atresia remain largely unknown. In this work, we analyzed the origin of bile acids in buffalo follicles by using cell biology studies, and quantified the subspecies of bile acids in follicular fluid from healthy follicles (HF) and atretic follicles (AF) by targeted metabolomics. The function of differential bile acids on follicular granulosa cells was also studied. The results showed that the bile acids transporters were abundantly expressed in ovarian tissues, but the rate-limiting enzymes were not, which was consistent with the inability of cultured follicular cells to convert cholesterol into bile acids. Targeted metabolomics analysis revealed thirteen differential subspecies of bile acids between HF and AF. The free bile acids were significant down-regulated and their conjugated forms were significantly up-regulated in AF as compared to HF. Finally, cell biological validation found a specific differentially conjugated bile acid, glycodeoxycholic acid (GDCA), which could promote follicular granulosa cell apoptosis and reduce steroid hormone secretion. In summary, our studies suggest that bile acids in buffalo follicles are transported from the blood rather than being synthesized within the follicles. The conjugated bile acids such as GDCA, accumulate in buffalo follicles, and may accelerate atresia by promoting apoptosis of granulosa cells and inhibiting steroid hormone production. These results will provide new clues for studying the physiological role and mechanism of bile acids involved in buffalo follicular atresia.
Collapse
Affiliation(s)
- Yaochang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Man Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Jiarui Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Jiashun Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Chenqi Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Le Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| |
Collapse
|
15
|
Zhou S, Zhao A, Wu Y, Bao T, Mi Y, Zhang C. Protective Effect of Follicle-Stimulating Hormone on DNA Damage of Chicken Follicular Granulosa Cells by Inhibiting CHK2/p53. Cells 2022; 11:1291. [PMID: 35455970 PMCID: PMC9031212 DOI: 10.3390/cells11081291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
The increase in follicular atresia and the decrease in the fecundity of laying hens occur with the aging process. Therefore, the key measure for maintaining high laying performance is to alleviate follicular atresia in the aging poultry. Follicle-stimulating hormone (FSH), as an important pituitary hormone to promote follicle development and maturation, plays an important role in preventing reproductive aging in diverse animals. In this study, the physiological state of the prehierarchical small white follicles (SWFs) and atretic SWFs (ASWFs) were compared, followed by an exploration of the possible capacity of FSH to delay ASWFs' progression in the hens. The results showed that the DNA damage within follicles increased with aging, along with Golgi complex disintegration, cell cycle arrest, increased apoptosis and autophagy in the ASWFs. Subsequently, the ACNU-induced follicular atresia model was established to evaluate the enhancing capacity of FSH on increasing cell proliferation and attenuating apoptosis in ASWFs. FSH inhibited DNA damage and promoted DNA repair by regulating the CHK2/p53 pathway. Furthermore, FSH inhibited CHK2/p53, thus, suppressing the disintegration of the Golgi complex, cell cycle arrest, and increased autophagy in the atretic follicles. Moreover, these effects from FSH treatment in ACNU-induced granulosa cells were similar to the treatment by a DNA repair agent AV-153. These results indicate that FSH protects aging-resulted DNA damage in granulosa cells by inhibiting CHK2/p53 in chicken prehierarchical follicles.
Collapse
Affiliation(s)
| | | | | | | | | | - Caiqiao Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (S.Z.); (A.Z.); (Y.W.); (T.B.); (Y.M.)
| |
Collapse
|
16
|
Yu Y, Zhang Q, Sun K, Xiu Y, Wang X, Wang K, Yan L. Long non-coding RNA BBOX1 antisense RNA 1 increases the apoptosis of granulosa cells in premature ovarian failure by sponging miR-146b. Bioengineered 2022; 13:6092-6099. [PMID: 35188872 PMCID: PMC8973711 DOI: 10.1080/21655979.2022.2031675] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNA (lncRNA) BBOX1 antisense RNA 1 (BBOX1-AS1) was reported to participate in ovarian cancer, while its role in other ovarian disorders is unclear. We speculated that BBOX1-AS1 could interact with microRNA(miR)-146b, which is involved in premature ovarian failure (POF). This study was therefore carried out to explore its role in POF. In this study, 60 patients with POF and 60 controls were enrolled. The expression of BBOX1-AS1 and miR-146b were analyzed by RT-qPCRs. The direct interaction between miR-146b and the wild type BBOX1-AS1 (BBOX1-AS1-WT) or mutant BBOX1-AS1 (BBOX1-AS1-mut) was explored with RNA-RNA pulldown assay. Subcellular location of BBOX1-AS1 in COV434 granulosa cells was detected by subcellular fractionation. The role of BBOX1-AS1 and miR-146b in the apoptosis of COV434 cells was evaluated by cell apoptosis assay. Overexpression assay was applied to explore the relationship between BBOX1-AS1 and miR-146b. We found that the expression levels of BBOX1-AS1 were increased, while the expression levels of miR-146b were decreased in POF patients. BBOX1-AS1-WT, but not BBOX1-AS1-mut, directly interacted with miR-146b. BBOX1-AS1 was detected in both nucleus and cytoplasm, while they did not affect the expression of each other. BBOX1-AS1 suppressed the role of miR-146b in cell apoptosis. Therefore, BBOX1-AS1 may increase the apoptosis of granulosa cells in POF by sponging miR-146b.
Collapse
Affiliation(s)
- Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Qian Zhang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Kaixuan Sun
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Yinling Xiu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Xiliang Wang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Kaiyue Wang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| | - Li Yan
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning province, PR. China
| |
Collapse
|
17
|
Wang L, Li J, Zhang L, Shi S, Zhou X, Hu Y, Gao L, Yang G, Pang W, Chen H, Zhao L, Chu G, Cai C. NR1D1 targeting CYP19A1 inhibits estrogen synthesis in ovarian granulosa cells. Theriogenology 2021; 180:17-29. [PMID: 34933195 DOI: 10.1016/j.theriogenology.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Abstract
The circadian system performs an important role in mammalian reproduction with significant effects on hormone secretion. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor in the circadian system and affects granulosa cells (GCs), but how it regulates estrogen synthesis has not been clarified. We investigated the effect of NR1D1 on estrogen synthesis and found that NR1D1 was highly expressed in GCs, mainly in cell nuclei. Additionally, the expression of NR1D1 and estrogen synthesis key genes CYP19A1, CYP11A1 and StAR showed rhythmic changes in porcine ovarian GCs. Activation of NR1D1 enhances its ability to inhibit the transcriptional activity of CYP19A1 by binding to the RORE on the CYP19A1 promoter, resulting in a decrease in estradiol content. Interference with NR1D1 can eliminate the transcriptional inhibition of CYP19A1 and promote the synthesis of estradiol. The results suggest that the hormone secretion of the ovary itself is also regulated by the biological clock, and any factors that affect the circadian rhythm can affect the endocrine and reproductive performance of sows, so the natural rhythm of sows should be maintained in production.
Collapse
Affiliation(s)
- Liguang Wang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Jingjing Li
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lutong Zhang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Shengjie Shi
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Xiaoge Zhou
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Yamei Hu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lei Gao
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Weijun Pang
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Huatao Chen
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Lijia Zhao
- College of Veterinary Medicine, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Guiyan Chu
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F Univeristy, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Li M, Xue L, Xu W, Liu P, Li F. rno-miR-128-3p promotes apoptosis in rat granulosa cells (GCs) induced by norepinephrine through Wilms tumor 1 (WT1). In Vitro Cell Dev Biol Anim 2021; 57:775-785. [PMID: 34554376 PMCID: PMC8585816 DOI: 10.1007/s11626-021-00609-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/07/2021] [Indexed: 11/24/2022]
Abstract
The mechanism related to ovarian follicular is complex, which has not been fully elucidated. Abundant reports have confirmed that the ovarian function development is closely related to sympathetic innervation. As one of the major neurotransmitters, norepinephrine (NE) is considered an effective regulator of ovarian functions like granulosa cell (GC) apoptosis. However, the mechanism between NE and GC apoptosis in rat is still unclear. In our study, GCs were isolated and cultured in vitro with NE treatment. The apoptosis of GCs was facilitated by NE. Wilms tumor 1 (WT1) was found to be significantly downregulated in GCs after NE treatment, and overexpression of WT1 repressed apoptosis in rat GCs induced by NE. rno-miR-128-3p was found to be significantly enhanced by NE in GCs, and inhibition of rno-miR-128-3p repressed apoptosis in rat GCs induced by NE. Mechanistically, rno-miR-128-3p interacted with WT1 and repressed its expression. In summary, inhibition of rno-miR-128-3p may enhance WT1 expression, and then repress NE-induced apoptosis in rat GCs. Our research may provide a new insight for the improvement of ovarian follicular development.
Collapse
Affiliation(s)
- Ming Li
- Department of Pharmacy, Lian Yungang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiang Su Province, Lianyungang, 222000, People's Republic of China
| | - Ling Xue
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional Chinese and Western Medicine, No. 3 Jiaxiang Road, South District, Qingdao City, Shandong Province, 266002, China
| | - Weibin Xu
- Pharmacy Department, Gaoqing County People's Hospital, No.11 Qingcheng Road, Gaoqing County, Zibo City, 256300, Shandong Province, China
| | - Pingping Liu
- Pharmacy Department, Liaocheng Chiping District People's Hospital, No. 1057 Culture Road, Chiping County, Liaocheng City, 252100, Shandong Province, China
| | - Feng Li
- Drug Dispensing Department, Zibo Central Hospital, No. 54 The Communist Youth League West Road, Zhangdian District, Zibo City, 255000, Shandong Province, China.
| |
Collapse
|
19
|
Mo J, Sun L, Cheng J, Lu Y, Wei Y, Qin G, Liang J, Lan G. Non-targeted Metabolomics Reveals Metabolic Characteristics of Porcine Atretic Follicles. Front Vet Sci 2021; 8:679947. [PMID: 34381832 PMCID: PMC8350117 DOI: 10.3389/fvets.2021.679947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/25/2021] [Indexed: 01/27/2023] Open
Abstract
Follicular atresia is one of the main factors limiting the reproductive power of domestic animals. At present, the molecular mechanisms involved in porcine follicular atresia at the metabolic level remain unclear. In this study, we divided the follicles of Bama Xiang pigs into healthy follicles (HFs) and atretic follicles (AFs) based on the follicle morphology. The expression of genes related to atresia in granulosa cells (GCs) and the concentration of hormones in the follicular fluid (FF) from HFs and AFs were detected. We then used liquid chromatography–mass spectrometry-based non-targeted metabolomic approach to analyze the metabolites in the FF from HFs and AFs. The results showed that the content of estradiol was significantly lower in AFs than in HFs, whereas that of progesterone was significantly higher in AFs than that in HFs. The expression of BCL2, VEGFA, and CYP19A1 was significantly higher in HFs than in AFs. In contrast, the expression of BAX and CASPASE3 was significantly lower in HFs. A total of 18 differential metabolites (DMs) were identified, including phospholipids, bioactive substances, and amino acids. The DMs were involved in 12 metabolic pathways, including arginine biosynthesis and primary bile acid biosynthesis. The levels of eight DMs were higher in the HF group than those in the AF group (p < 0.01), and those of 10 DMs were higher in the AF group than those in the HF group (p < 0.01). These findings indicate that the metabolic characteristics of porcine AFs are lower levels of lipids such as phospholipids and higher levels of amino acids and bile acids than those in HFs. Disorders of amino acid metabolism and cholic acid metabolism may contribute to porcine follicular atresia.
Collapse
Affiliation(s)
- Jiayuan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Le Sun
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Juanru Cheng
- Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaochang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Guangsheng Qin
- Key Laboratory of Buffalo Genetics, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Jing Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Wołodko K, Castillo-Fernandez J, Kelsey G, Galvão A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int J Mol Sci 2021; 22:4270. [PMID: 33924072 PMCID: PMC8074257 DOI: 10.3390/ijms22084270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022] Open
Abstract
The complex nature of folliculogenesis regulation accounts for its susceptibility to maternal physiological fitness. In obese mothers, progressive expansion of adipose tissue culminates with severe hyperestrogenism and hyperleptinemia with detrimental effects for ovarian performance. Indeed, maternal obesity is associated with the establishment of ovarian leptin resistance. This review summarizes current knowledge on potential effects of impaired leptin signaling throughout folliculogenesis and oocyte developmental competence in mice and women.
Collapse
Affiliation(s)
- Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
| | | | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of PAS, Tuwima 10, 10-748 Olsztyn, Poland;
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; (J.C.-F.); (G.K.)
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|