1
|
Fioretto MN, Barata LA, de Andrade Felipe VA, Dos Santos SAA, Maciel FA, Ribeiro IT, Mattos R, Baptista HS, Bueno G, Fagundes FL, Portela LMF, Scarano WR, Seiva FRF, Lima CAH, Justulin LA. Long-term effects of maternal protein restriction on adrenal proteomic profile and steroidogenesis in male offspring rats. Cell Signal 2025; 130:111707. [PMID: 40032160 DOI: 10.1016/j.cellsig.2025.111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Maternal protein restriction (MPR) can significantly affect offspring's early development and aging, impacting several organs, including the adrenal glands. This study evaluated the adrenal proteomic profile in male rat offspring exposed to MPR during pregnancy and lactation. Male offspring were divided into two groups: Control (CTR), born to dams fed a normoprotein diet (17 % protein), and Gestational and Lactational Low-Protein (GLLP), born to dams fed a low-protein diet (6 % protein) throughout gestation and lactation, and after received control diet. Offspring were euthanized at postnatal day (PND) 21 or PND 540. Blood samples and adrenal glands were processed for histological, metabolic, molecular, and proteomic assessments. At PND21, the GLLP group exhibited reduced adrenal gland mass and cortical thickness. At PND21, the proteomic landscape showed that the most impacted biological pathways were associated with decreased steroid hormone synthesis, increased glucose metabolism, and stress response. At PND540, the main impacts were increased apoptotic pathway, stress response, and steroid hormone synthesis, with decreased glucose metabolism. At PND 540, the GLLP group showed higher adrenal collagen content and elevated apoptosis. Age-related changes included decreased peroxiredoxin 3 and increased expression of aldosterone synthase (Cyp11b2). Furthermore, steroid 11-Beta-Hydroxylase (Cyp11b1) expression decreased at PND540, alongside reduced serum aldosterone and elevated serum corticosterone levels. These results suggest that MPR modulates the adrenal glands' proteomic profile, serving as a pivotal mechanism underpinning diverse systemic diseases. It influences adrenal morphophysiology early in life, with long-lasting consequences for cellular stress, immune response, and catabolic pathways in male offspring with aging.
Collapse
Affiliation(s)
- Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luísa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | | | - Sérgio Alexandre Alcantara Dos Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Flávia Alessandra Maciel
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Hecttor Sebástian Baptista
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Gabriela Bueno
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Felipe Leonardo Fagundes
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luiz Marcos Frediane Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Chemical and Biological Sciences, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil..
| |
Collapse
|
2
|
Redifer CA, Wichman LG, Rathert-Williams AR, Meyer AM. Effects of late gestational nutrient restriction on uterine artery blood flow, placental size, and cotyledonary mRNA expression in primiparous beef females. J Anim Sci 2024; 102:skae145. [PMID: 38785319 PMCID: PMC11349610 DOI: 10.1093/jas/skae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024] Open
Abstract
Fall-calving primiparous beef females [body weight (BW): 451 ± 28 (SD) kg; body condition score (BCS): 5.4 ± 0.7] were individually-fed either 100% (control; CON; n = 13) or 70% (nutrient restricted; NR; n = 13) of metabolizable energy and metabolizable protein requirements for maintenance, pregnancy, and growth from day 160 of gestation to parturition. Doppler ultrasonography of both uterine arteries was conducted pre-treatment and every 21 d from days 181 to 265 of gestation. Expelled placentas were collected, and ipsilateral cotyledonary tissue was sampled to assess relative messenger ribonucleic acid (mRNA) expression. Placentas were separated into ipsilateral and contralateral sides, dissected (cotyledonary vs. intercotyledonary), and dried. Data were analyzed with nutritional plane, treatment initiation date, and calf sex (when P < 0.25) as fixed effects. Uterine blood flow included day and nutritional plane × day as repeated measures. We previously reported that post-calving, NR dams weighed 64 kg less and were 2.0 BCS lower than CON, but calf birth weight was not affected. Maternal heart rate was less (P < 0.001) for NR dams than CON after nutritional planes began. Nutritional plane did not affect (P ≥ 0.20) uterine artery hemodynamics, but all variables were affected (P ≤ 0.04) by day. Contralateral cotyledonary and placental weight were less (P ≤ 0.04) and contralateral intercotyledonary weight and number of cotyledons tended to be less (P ≤ 0.10) for NR dams than CON, but ipsilateral and whole placental weights were not affected (P ≥ 0.13). Ipsilateral placental weight as a percentage of total placental weight was greater (P = 0.03) for NR dams than CON. Whole placental cotyledonary: intercotyledonary weight was less (P = 0.01) for NR dams than CON. Placental efficiency was not affected (P = 0.89) by nutritional plane. Cotyledonary relative mRNA expression of GLUT3 and SNAT2 was greater (P ≤ 0.05) and relative expression of GLUT1, GLUT4, and NOS3 tended to be greater (P ≤ 0.07) for NR dams than CON. Nutritional plane did not affect (P ≥ 0.13) relative mRNA expression of GLUT5, 4F2hc, CAT1, LAT1, LAT2, VEGFA, FLT1, KDR, GUCY1B3, and PAG2. Despite less contralateral placental growth, beef heifers experiencing late gestational nutrient restriction maintained uterine artery blood flow and total placental mass and had 4 nutrient transporters and 1 angiogenic factor upregulated in cotyledons, all of which likely contributed to conserving fetal growth.
Collapse
Affiliation(s)
- Colby A Redifer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lindsey G Wichman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Nickles KR, Relling AE, Garcia-Guerra A, Fluharty FL, Parker AJ. Environmental stress during the last trimester of gestation in pregnant cows and its effect on offspring growth performance and response to glucose and adrenocorticotropic hormone. J Anim Sci 2023; 101:skac332. [PMID: 36592758 PMCID: PMC9831103 DOI: 10.1093/jas/skac332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 01/04/2023] Open
Abstract
Winter and spring precipitation are predicted to increase in the Midwest region of the United States, causing muddy conditions. In a previous experiment, Angus cows (8 per treatment) were paired based on initial body weight (BW) and one cow from each pair was randomly allocated to either the mud or control treatment. Though cows consumed the same amount of dry matter, cows in the mud treatment weighed 37.4 kg less than cows in the control treatment by day 269 of gestation. The objective of this experiment was to evaluate developmental programming effects of steers born to cows in the mud treatment (MUD; n = 7) or the control treatment (CON; n = 6). Steers were weighed at birth and then weekly from approximately 56 d of age until weaning and were subjected to a glucose tolerance test (GTT) and adrenocorticotropic hormone (ACTH) challenge after weaning. Steers were then placed in the feedlot for an 84-d growing phase and were weighed weekly and 12th rib back fat (BF) and ribeye area (REA) were imaged every 28 d using ultrasonography. Data were analyzed as a randomized complete block design with repeated measurements when appropriate (SAS 9.4). Although there was a 37.4 kg decrease in BW of cows by the end of gestation, there was no evidence of a pen treatment effect on calf birth weight (P = 0.60) or weaning weight (P = 0.99). Additionally, there was no evidence of a pen treatment × day effect for steer BW from birth to weaning (P = 0.67) or growing phase BW (P = 0.60). There was evidence of a treatment × day of growing phase effect (P = 0.02) for BF, such that CON steers had greater BF on day 28 of the growing phase; however, there was no evidence of a treatment × day effect for REA (P = 0.20). Furthermore, there was no evidence of a pen treatment effect for the growing phase average daily gain (P = 0.74), dry matter intake (P = 0.65), gain:feed (P = 0.48), plasma glucose concentration (P = 0.67) or plasma insulin concentration (P = 0.61) in response to the GTT, or plasma cortisol concentration in response to the ACTH challenge (P = 0.51). These results indicate that while mud increased net energy requirements for cows in the MUD treatment, there were no subsequent effects observed for steer BW, gain:feed, or response to glucose and ACTH during the growing phase.
Collapse
Affiliation(s)
- Kirsten R Nickles
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Alvaro Garcia-Guerra
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Francis L Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony J Parker
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
4
|
Wichman LG, Redifer CA, Meyer AM. Maternal nutrient restriction during late gestation reduces vigor and alters blood chemistry and hematology in neonatal beef calves. J Anim Sci 2023; 101:skad342. [PMID: 37788576 PMCID: PMC10648570 DOI: 10.1093/jas/skad342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Fall-calving primiparous beef females [body weight: 451 ± 28 (SD) kg; body condition score: 5.4 ± 0.7] were individually-fed either 100% (control; CON; n = 13) or 70% (nutrient restricted; NR; n = 13) of metabolizable energy and metabolizable protein requirements for maintenance, pregnancy, and growth from day 160 of gestation to parturition. Calves were reared naturally by their dams and monitored for latency times from birth to first sternal recumbency, attempt to stand, and stand; vigor scores were assigned at 2, 5, 10, and 20 min of age. Rectal temperatures and jugular blood were obtained at 0 (pre-suckling), 6, 12, 24, and 48 h of age, and blood chemistry, hematology, cortisol, and insulin were determined. Data were analyzed with fixed effects of late gestational nutritional plane (single data point) or nutritional plane, hour, and their interaction (data over time, repeated measures). Calving date was a fixed effect; calf sex was included when P < 0.25. We previously reported that late gestational nutritional plane did not affect gestation length or calf size at birth, but calving assistance and fetal malpresentation occurred more often in NR. Nutritional plane did not affect (P = 0.65) duration of parturition, but calves born to NR dams had slower times to attempt to stand (P = 0.09), slower times to stand (P = 0.02), and poorer 20 min vigor scores (P = 0.05). Serum immunoglobulin G and A concentrations at 48 h were greater (P ≤ 0.03) for NR calves. Rectal temperature of NR calves was less (P = 0.02) at 0 h, but greater (P = 0.04) at 24 h compared with CON. Circulating glucose, non-esterified fatty acids, triglycerides, cortisol, and insulin were not affected by nutritional plane (P ≥ 0.18). Total protein and globulin from 6 to 48 h were greater (P ≤ 0.02) in NR calves. Calves from NR dams had greater (P ≤ 0.08) gamma-glutamyl transferase at 6, 12, and 48 h. Serum aspartate aminotransferase was greater (P ≤ 0.07) from 0 to 24 h and creatine kinase was greater (P ≤ 0.04) from 6 to 24 h in NR calves. At 0 h, potassium was greater (P = 0.03) in NR calves. Calves born to CON had greater chloride (P = 0.08; main effect), sodium (P ≤ 0.09) from 0 to 48 h, and anion gap (P = 0.02) at 6 h. Hematocrit from 6 to 24 h and red blood cells and hemoglobin at 6 and 12 h were greater (P ≤ 0.09) in CON calves. These data indicate that nutrient restriction during late gestation resulted in less vigorous calves with more indicators of trauma in early life.
Collapse
Affiliation(s)
- Lindsey G Wichman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Colby A Redifer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Wathes DC. Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Animals (Basel) 2022; 12:2654. [PMID: 36230395 PMCID: PMC9558991 DOI: 10.3390/ani12192654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle fertility remains sub-optimal despite recent improvements in genetic selection. The extent to which an individual heifer fulfils her genetic potential can be influenced by fetal programming during pregnancy. This paper reviews the evidence that a dam's age, milk yield, health, nutrition and environment during pregnancy may programme permanent structural and physiological modifications in the fetus. These can alter the morphology and body composition of the calf, postnatal growth rates, organ structure, metabolic function, endocrine function and immunity. Potentially important organs which can be affected include the ovaries, liver, pancreas, lungs, spleen and thymus. Insulin/glucose homeostasis, the somatotropic axis and the hypothalamo-pituitary-adrenal axis can all be permanently reprogrammed by the pre-natal environment. These changes may act directly at the level of the ovary to influence fertility, but most actions are indirect. For example, calf health, the timing of puberty, the age and body structure at first calving, and the ability to balance milk production with metabolic health and fertility after calving can all have an impact on reproductive potential. Definitive experiments to quantify the extent to which any of these effects do alter fertility are particularly challenging in cattle, as individual animals and their management are both very variable and lifetime fertility takes many years to assess. Nevertheless, the evidence is compelling that the fertility of some animals is compromised by events happening before they are born. Calf phenotype at birth and their conception data as a nulliparous heifer should therefore both be assessed to avoid such animals being used as herd replacements.
Collapse
Affiliation(s)
- D Claire Wathes
- Department for Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| |
Collapse
|
6
|
Fetal programming in sheep: Effects on pre- and postnatal organs and glands development in lambs. Res Vet Sci 2022; 151:100-109. [PMID: 35878535 DOI: 10.1016/j.rvsc.2022.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
The present systematic review and meta-analysis aim to summarize the effects of maternal undernutrition or overnutrition during pregnancy on the absolute weight and relative weight of the organs (liver, kidneys, heart, spleen, and lung) and glands (adrenal, pancreas, and thyroid) measured during gestation, birth and the postnatal period in lambs. After completing the search, selection, and data extraction steps, the measure of effect was generated by the individual comparison of each variable response compared with the average of the control and treated group (undernutrition or overnutrition) using the DerSimonian and Laird method for random effects. The liver was the organ most affected by maternal undernutrition, as the absolute weight of the liver was reduced during pregnancy, birth, and the postnatal period. The extent of this effect is related to the duration of the intervention. Reductions in the absolute fetal weight of the lungs and spleen have also been observed. No change in organs weight were observed when the results were expressed as relative weight. For overnutrition, the fetal weight of the liver was reduced to both absolute and relative values. In contrast, the relative weight of the kidneys has been increased. For the glands analyzed, no changes in weight were observed in either scenario (absolute or relative weight). Thus, the organs are more likely to suffer weight changes, especially during pregnancy, as a result of maternal nutrition. However, this change in organ weight seems to be closely related to the reduction in body weight of the progeny as a whole.
Collapse
|
7
|
Identification of eQTLs and differential gene expression associated with fetal programming in beef cattle. J Appl Genet 2022; 63:717-728. [PMID: 35859251 DOI: 10.1007/s13353-022-00711-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
This study assessed differential gene expression and identified expression quantitative trait loci (eQTLs) from samples of Longissimus lumborum muscle from bulls at 15 months of age submitted to different prenatal nutrition. Upon confirmation of pregnancy, 126 dams were separated into three diet treatments varying the period of inclusion of energy protein supplementation (NP, PP, and FP). At calving, 63 males were genotyped with GGP LD BeadChip. The skeletal muscle of 15 bulls was sequenced (RNA-seq) at 15 months of age. The EdgeR package was used for differential gene expression and principal component analysis (PCA), and the Matrix eQTL package was used for the eQTLs analysis (R statistical). The functional enrichment analysis was performed using the MetaCore® software. No genes differentially expressed were found between treatments (FDR > 0.05); nevertheless, we found 179 cis-tag-eQTLs and 20,762 trans-tag-eQTLs (FDR < 0.05) after linkage disequilibrium analysis. The functional enrichment analysis identified terms from gene ontology related to genes associated to trans-eQTLs (FDR < 0.05) as well as metabolic pathways (> gScore). Most biological pathways and genes found had been previously associated to fetal programming. The different prenatal supplementation strategies did not impact on muscle transcriptome of bulls. Additionally, there is a link between genotype and gene expression levels related to developmental traits in Nellore cattle.
Collapse
|
8
|
Effects of Maternal Nutrient Restriction and Melatonin Supplementation on Cardiomyocyte Cell Development Parameters Using Machine Learning Techniques. Animals (Basel) 2022; 12:ani12141818. [PMID: 35883365 PMCID: PMC9311781 DOI: 10.3390/ani12141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 07/02/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of the current study was to examine the effects of maternal feed restriction and melatonin supplementation on fetal cardiomyocyte cell development parameters and predict binucleation and hypertrophy using machine learning techniques using pregnant beef heifers. Brangus heifers (n = 29) were assigned to one of four treatment groups in a 2 × 2 factorial design at day 160 of gestation: (1) 100% of nutrient requirements (adequately fed; ADQ) with no dietary melatonin (CON); (2) 100% of nutrient requirements (ADQ) with 20 mg/d of dietary melatonin (MEL); (3) 60% of nutrient requirements (nutrient-restricted; RES) with no dietary melatonin (CON); (4) 60% of nutrient requirements (RES) with 20 mg/d of dietary melatonin (MEL). On day 240 of gestation, fetuses were removed, and fetal heart weight and thickness were determined. The large blood vessel perimeter was increased in fetuses from RES compared with ADQ (p = 0.05). The total number of capillaries per tissue area exhibited a nutrition by treatment interaction (p = 0.01) where RES-MEL increased capillary number compared (p = 0.03) with ADQ-MEL. The binucleated cell number per tissue area showed a nutrition by treatment interaction (p = 0.010), where it was decreased in RES-CON vs. ADQ-CON fetuses. Hypertrophy was estimated by dividing ventricle thickness by heart weight. Based on machine learning results, for the binucleation and hypertrophy target variables, the Bagging model with 5 Decision Tree estimators and 3 Decision Tree estimators produced the best results without overfitting. In the prediction of binucleation, left heart ventricular thickness feature had the highest Gin importance weight followed by fetal body weight. In the case of hypertrophy, heart weight was the most important feature. This study provides evidence that restricted maternal nutrition leads to a reduction in the number of cardiomyocytes while melatonin treatment can mitigate some of these disturbances.
Collapse
|
9
|
Nickles KR, Garcia-Guerra A, Fluharty FL, Kieffer JD, Relling AE, Parker AJ. Energy restriction and housing of pregnant beef heifers in mud decreases body weight and conceptus free live weight. Transl Anim Sci 2022; 6:txac101. [PMID: 36000074 PMCID: PMC9391926 DOI: 10.1093/tas/txac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Average temperatures in the Midwest, USA are predicted to increase 2–9°C by the end of the century; resulting in muddy pastures for spring calving beef heifers as they enter late gestation. The objective of this study was to evaluate the effects of muddy conditions on heifer body weight (BW), body condition score (BCS), conceptus free live weight (CFLW), and fetal growth when heifers were energy restricted during late gestation. Eighteen Angus heifers (n = 9/treatment) were paired based on initial BW. One heifer from each BW pair was randomly allocated to either the mud (MUD) or control (CON) treatment on day 196 of gestation. Pens in the CON treatment were bedded with wood chips, while pens in the MUD treatment were filled with mud (average depth of 19.5 ± 7.9 cm). Heifers were housed individually and fed the same diet that consisted of a limit-fed total mixed ration from day 196 to 266 of gestation that was formulated to meet 66% of the net energy for maintenance, growth, and gestation requirements. Requirements and the amount of the diet offered were adjusted weekly, and heifers were weighed and sampled for blood metabolites weekly. Data were analyzed as a randomized complete block design with repeated measurements. There was a treatment × day of gestation interaction, such that heifers had similar BW, BCS, and CFLW on day 196 of gestation. By day 266 of gestation; however, heifers in the MUD treatment weighed 43.5 kg less (P < 0.01) and were 1.8 BCS units less (P < 0.01) than heifers in the CON treatment. This is further supported by the treatment × day effects we observed for back fat (BF) and rump fat (RF) thickness, such that the MUD heifers had less BF (P = 0.02) and RF (P < 0.01) by day 266 of gestation. There was a marginally significant difference for gestation length (P = 0.06), such that heifers in the MUD treatment calved approximately 3.1 days before the heifers in the CON treatment. Though heifers in the MUD treatment decreased their BW and CFLW during the treatment period, we did not observe a difference in calf birth weight (P = 0.34), calf plasma IgG concentration (P = 0.37), or calf weaning weight (P = 0.63). Despite heifers in the MUD treatment having greater BW, CFLW, and BCS losses compared with the heifers in the CON treatment, the heifers in the MUD treatment seemed to prioritize fetal growth, as they mobilized their body tissues to meet the energetic demands of pregnancy.
Collapse
Affiliation(s)
- Kirsten R Nickles
- Department of Animal Sciences, The Ohio State University , Wooster, OH 44691 , USA
| | - Alvaro Garcia-Guerra
- Department of Animal Sciences, The Ohio State University , Columbus, OH 43210 , USA
| | - Francis L Fluharty
- Department of Animal and Dairy Science, University of Georgia , Athens, GA 30602 USA
| | - Justin D Kieffer
- Department of Animal Sciences, The Ohio State University , Columbus, OH 43210 , USA
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University , Wooster, OH 44691 , USA
| | - Anthony J Parker
- Department of Animal Sciences, The Ohio State University , Wooster, OH 44691 , USA
| |
Collapse
|
10
|
Malau-Aduli AEO, Curran J, Gall H, Henriksen E, O'Connor A, Paine L, Richardson B, van Sliedregt H, Smith L. Genetics and nutrition impacts on herd productivity in the Northern Australian beef cattle production cycle. Vet Anim Sci 2022; 15:100228. [PMID: 35024494 PMCID: PMC8724957 DOI: 10.1016/j.vas.2021.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetics and nutrition drive herd productivity due to significant impacts on all components of the beef cattle production cycle. In northern Australia, the beef production system is largely extensive and relies heavily on tropical cattle grazing low quality, phosphorus-deficient pastures with seasonal variations in nutritive value. The existing feedlots are predominantly grain-based; providing high-energy rations, faster turn-off and finishing of backgrounded cattle to meet market specifications. This review focusses on the beef cattle production cycle components of maternal nutrition, foetal development, bull fertility, post-natal to weaning, backgrounding, feedlotting, rumen microbes and carcass quality as influenced by genetics and nutrition. This student-driven review identified the following knowledge gaps in the published literature on northern Australian beef cattle production cycle: 1. Long-term benefits and effects of maternal supplementation to alter foetal enzymes on the performance and productivity of beef cattle; 2. Exogenous fibrolytic enzymes to increase nutrient availability from the cell wall and better utilisation of fibrous and phosphorus deficient pasture feedbase during backgrounding; 3. Supplementation with novel encapsulated calcium butyrate and probiotics to stimulate the early development of rumen papillae and enhance early weaning of calves; 4. The use of single nucleotide polymorphisms as genetic markers for the early selection of tropical beef cattle for carcass and meat eating quality traits prior to feedlotting; The review concludes by recommending future research in whole genome sequencing to target specific genes associated with meat quality characteristics in order to explore the development of breeds with superior genes more suited to the North Australian beef industry. Further research into diverse nutritional strategies of phosphorus supplementation and fortifying tropically adapted grasses with protein-rich legumes and forages for backgrounding and supplementing lot-fed beef cattle with omega-3 oil of plant origin will ensure sustainable production of beef with a healthy composition, tenderness, taste and eating quality.
Collapse
Affiliation(s)
- Aduli E O Malau-Aduli
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jessica Curran
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Holly Gall
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Erica Henriksen
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Alina O'Connor
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lydia Paine
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Bailey Richardson
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Hannake van Sliedregt
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Lucy Smith
- Animal Genetics and Nutrition, Veterinary Science Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
11
|
Correlation between Parturients' Uterine Artery Blood Flow Spectra in the First and Second Trimesters of Pregnancy and Fetal Growth Restriction. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2129201. [PMID: 34950439 PMCID: PMC8692016 DOI: 10.1155/2021/2129201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023]
Abstract
Objective To explore the correlation between parturients' uterine artery blood flow spectra in the first and second trimesters of pregnancy and fetal growth restriction (FGR). Methods The data of parturients treated in our hospital from February 2018 to February 2020 were retrospectively analyzed, 50 parturients with FGR were selected as the FGR group, and other 50 healthy cases were selected as the control group. In the first trimester (11-12 weeks of gestation) and the second trimester of pregnancy (13–24 weeks of gestation), the parturients of the two groups accepted the color Doppler ultrasonography (CDS), their hemodynamics indicators of uterine artery were recorded, and the correlation between their uterine artery blood flow spectra in the two periods and FGR was analyzed with the Receiver Operating Characteristic (ROC) curve. Results No statistical differences in the parturients' general information including age, gestational weeks, gravidity, and parity between the two groups were observed (P > 0.05); the newborn's body weight, Apgar scores, number of preterm infants, and the number of infants transferring to the neonatal intensive care unit (NICU) were significantly different between the two groups (P < 0.05); in the first and second trimesters of pregnancy, the uterine artery pulsatility index (UtA-PI), uterine artery resistance index (UtA-RI), maximal systolic flow velocity, and systolic/diastolic (UtA-S/D) ratio were significantly higher in the FGR group than in the control group (P < 0.05), and the time-averaged maximal velocity (TAMX) was significantly lower in the FGR group than in the control group (P < 0.001); in early pregnancy, the incidence of early diastolic notch at bilateral uterine arteries between the two groups was not significantly different (P > 0.05), and the unilateral and total incidence in the first trimester as well as the unilateral, bilateral, and total incidence in the second trimester were significantly higher in the FGR group than in the control group (P < 0.05); in the first trimester, the sensitivity of detecting FGR with a uterine artery blood flow spectrum was 0.820, AUC (95% CI) = 0.840 (0.757–0.923), and in the second trimester, it was 0.860, AUC (95% CI) = 0.900 (0.832–0.968). Conclusion There is a correlation between uterine artery blood flow spectra in the first and second trimesters of pregnancy and FGR, and the sensitivity of spectrum in the first trimester is higher than that in the second trimester, presenting a better clinical application value.
Collapse
|
12
|
Cracco RC, Bussiman FDO, Polizel GHG, Furlan É, Garcia NP, Poit DAS, Pugliesi G, Santana MHDA. Effects of Maternal Nutrition on Female Offspring Weight Gain and Sexual Development. Front Genet 2021; 12:737382. [PMID: 34887899 PMCID: PMC8650139 DOI: 10.3389/fgene.2021.737382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022] Open
Abstract
Maternal nutrition during pregnancy influences postnatal life of animals; nevertheless, few studies have investigated its effects on the productive performance and reproductive development of heifers. This study evaluated the performance, reproductive development, and correlation between reproduction × fat thickness and performance × ribeye area (REA) traits of heifers. We also performed an exploratory genomic association during the rearing period in heifers submitted to fetal programming. The study comprised 55 Nellore heifers born to dams exposed to one of the following nutritional planes: control, without protein-energy supplementation; PELT, protein-energy last trimester, protein-energy supplementation offered in the final third of pregnancy; and PEWG, protein-energy whole gestation, protein-energy supplementation upon pregnancy confirmation. Protein-energy supplementation occurred at the level of 0.3% live weight. After weaning, heifers were submitted to periodic evaluations of weight and body composition by ultrasonography. From 12 to 18 months, we evaluated the reproductive tract of heifers to monitor its development for sexual precocity and ovarian follicle population. The treatments had no effect (p > 0.05) on average daily gain; however, the weight of the animals showed a significant difference over time (p = 0.017). No differences were found between treatments for REA, backfat, and rump fat thickness, nor for puberty age, antral follicular count, and other traits related to reproductive tract development (p > 0.05). The correlation analysis between performance traits and REA showed high correlations (r > 0.37) between REA at weaning and year versus weight from weaning until yearling; however, no correlation was found for reproductive development traits versus fat thickness (p > 0.05). The exploratory genomic association study showed one single-nucleotide polymorphism (SNP) for each treatment on an intergenic region for control and PEWG, and the one for PELT on an intronic region of RAPGEF1 gene. Maternal nutrition affected only the weight of the animals throughout the rearing period.
Collapse
Affiliation(s)
- Roberta Cavalcante Cracco
- Department of Animal Science, College of Animal Science and Food Engineering - USP, Pirassununga, Brazil
| | | | | | - Édison Furlan
- Department of Animal Science, College of Animal Science and Food Engineering - USP, Pirassununga, Brazil
| | - Nara Pontes Garcia
- Departament of Veterinary Medicine, College of Animal Science and Food Engineering - USP, Pirassununga, Brazil
| | - Diego Angelo Schmidt Poit
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science - USP, Pirassununga, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Science - USP, Pirassununga, Brazil
| | | |
Collapse
|
13
|
Polizel GHG, de Francisco Strefezzi R, Cracco RC, Fernandes AC, Zuca CB, Castellar HH, Baldin GC, de Almeida Santana MH. Effects of different maternal nutrition approaches on weight gain and on adipose and muscle tissue development of young bulls in the rearing phase. Trop Anim Health Prod 2021; 53:536. [PMID: 34751823 DOI: 10.1007/s11250-021-02982-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
This study evaluated the effects of prenatal nutrition on body weight (BW), average daily gain (ADG), rump fat thickness (RFT), backfat thickness (BFT), ribeye area (REA), muscle cell area (MCA), and the number of cells in REA (NCREA) of young Nellore bulls during the rearing period. After pregnancy confirmation (30 days of pregnancy), 126 Nellore cows were separated into three prenatal nutritional treatments (NP (control; 0.03% of BW), only mineral supplementation; PP (0.3% of BW), protein-energy supplementation in the final third; and FP (0.3% of BW) protein-energy supplementation during the entire pregnancy). After calving, all animals were submitted to the same environmental conditions (sanitary and nutritional) and the different supplementation protocols ceased. The males (63 bulls) were evaluated during the entire rearing phase (210 ± 28 days to 540 ± 28 days of age) to weight gain (BW and ADG), carcass characteristics (RFT, BFT, and REA), and for histological assessments (MCA and NCREA; 7 animals per treatment randomly selected). All phenotypes were subjected to an analysis of variance. The different prenatal stimuli had no effect on BFT, RFT, MCA, and NCREA (P > 0.05); however, prenatal nutrition influenced BW of the animals during the rearing phase (P < 0.01) and showed a tendency on ADG (P = 0.09) and REA (P = 0.08). In conclusion, the offspring from FP treatment showed greater BW during the rearing phase in comparison to the NP group. This is related to a greater protein offered in prenatal nutrition, increasing muscle development during the gestational period.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.
| | - Ricardo de Francisco Strefezzi
- Department of Veterinary Medicine, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Roberta Cavalcante Cracco
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Arícia Christofaro Fernandes
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Cassiano Bordignon Zuca
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Henrique Hespanhol Castellar
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Geovana Camila Baldin
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, GOPec, College of Animal Science and Food Engineering - USP, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
14
|
Maternal nutrient restriction in late pregnancy programs postnatal metabolism and pituitary development in beef heifers. PLoS One 2021; 16:e0249924. [PMID: 33831110 PMCID: PMC8031383 DOI: 10.1371/journal.pone.0249924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Maternal undernutrition during pregnancy followed by ad libitum access to nutrients during postnatal life induces postnatal metabolic disruptions in multiple species. Therefore, an experiment was conducted to evaluate postnatal growth, metabolism, and development of beef heifers exposed to late gestation maternal nutrient restriction. Pregnancies were generated via transfer of in vitro embryos produced using X-bearing sperm from a single Angus sire. Pregnant dams were randomly assigned to receive either 100% (control; n = 9) or 70% (restricted; n = 9) of their total energy requirements from gestational day 158 to parturition. From post-natal day (PND) 301 until slaughter (PND485), heifers were individually fed ad libitum in a Calan gate facility. Calves from restricted dams were lighter than controls at birth (P<0.05) through PND70 (P<0.05) with no difference in body weight from PND105 through PND485 (P>0.10). To assess pancreatic function, glucose tolerance tests were performed on PND315 and PND482 and a diet effect was seen with glucose area under the curve being greater (P<0.05) in calves born to restricted dams compared to controls. At slaughter, total internal fat was greater (P<0.05) in heifers born to restricted dams, while whole pituitary weight was lighter (P<0.05). Heifers from restricted dams had fewer growth hormone-positive cells (somatotrophs) compared to controls (P<0.05). Results demonstrate an impaired ability to clear peripheral glucose in heifers born to restricted dams leading to increased deposition of internal fat. A reduction in the number of somatotrophs may contribute to the adipogenic phenotype of heifers born to restricted dams due to growth hormone’s known anabolic roles in growth, lipolysis, and pancreatic islet function.
Collapse
|