1
|
Anitha K, Chenchula S, Surendran V, Shvetank B, Ravula P, Milan R, Chikatipalli R, R P. Advancing cancer theranostics through biomimetics: A comprehensive review. Heliyon 2024; 10:e27692. [PMID: 38496894 PMCID: PMC10944277 DOI: 10.1016/j.heliyon.2024.e27692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Nanotheranostics, especially those employing biomimetic approaches, are of substantial interest for molecular imaging and cancer therapy. The incorporation of diagnostics and therapeutics, known as cancer theranostics, represents a promising strategy in modern oncology. Biomimetics, inspired by nature, offers a multidisciplinary avenue with potential in advancing cancer theranostics. This review comprehensively analyses recent progress in biomimetics-based cancer theranostics, emphasizing its role in overcoming current treatment challenges, with a focus on breast, prostate, and skin cancers. Biomimetic approaches have been explored to address multidrug resistance (MDR), emphasizing their role in immunotherapy and photothermal therapy. The specific areas covered include biomimetic drug delivery systems bypassing MDR mechanisms, biomimetic platforms for immune checkpoint blockade, immune cell modulation, and photothermal tumor ablation. Pretargeting techniques enhancing radiotherapeutic agent uptake are discussed, along with a comprehensive review of clinical trials of global nanotheranostics. This review delves into biomimetic materials, nanotechnology, and bioinspired strategies for cancer imaging, diagnosis, and targeted drug delivery. These include imaging probes, contrast agents, and biosensors for enhanced specificity and sensitivity. Biomimetic strategies for targeted drug delivery involve the design of nanoparticles, liposomes, and hydrogels for site-specific delivery and improved therapeutic efficacy. Overall, this current review provides valuable information for investigators, clinicians, and biomedical engineers, offering insights into the latest biomimetics applications in cancer theranostics. Leveraging biomimetics aims to revolutionize cancer diagnosis, treatment, and patient outcomes.
Collapse
Affiliation(s)
- Kuttiappan Anitha
- Department of Pharmacology, School of Pharmacy and Technology Management (SPTM), SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur, 425405, India
| | - Santenna Chenchula
- Department of Clinical Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, 462020, Madhya Pradesh, India
| | - Vijayaraj Surendran
- Dr Kalam College of Pharmacy, Thanjavur District, Tamil Nadu, 614 623, India
| | - Bhatt Shvetank
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, 411038, Maharashtra, India
| | - Parameswar Ravula
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Rhythm Milan
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Radhika Chikatipalli
- Sri Venkateshwara College of Pharmacy, Chittoor District, Andhra Pradesh, 517520, India
| | - Padmavathi R
- SVS Medical College, Mahbubnagar, Telangana, India
| |
Collapse
|
2
|
Narayanam MK, Tsang JE, Xu S, Nathanson DA, Murphy JM. 18F-Labeled brain-penetrant EGFR tyrosine kinase inhibitors for PET imaging of glioblastoma. Chem Sci 2023; 14:13825-13831. [PMID: 38075671 PMCID: PMC10699577 DOI: 10.1039/d3sc04424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
Significant evidence suggests that the failure of clinically tested epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (e.g. erlotinib, lapatinib, gefitinib) in glioblastoma (GBM) patients is primarily attributed to insufficient brain penetration, resulting in inadequate exposure to the targeted cells. Molecular imaging tools can facilitate GBM drug development by visualizing drug biodistribution and confirming target expression and localization. To assess brain exposure via PET molecular imaging, we synthesized fluorine-18 isotopologues of two brain-penetrant EGFR tyrosine kinase inhibitors developed specifically for GBM. Adapting our recently reported radiofluorination of N-arylsydnones, we constructed an ortho-disubstituted [18F]fluoroarene as the key intermediate. The radiotracers were produced on an automated synthesis module in 7-8% activity yield with high molar activity. In vivo PET imaging revealed rapid brain uptake in rodents and tumor accumulation in an EGFR-driven orthotopic GBM xenograft model.
Collapse
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jonathan E Tsang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles CA 90095 USA
| |
Collapse
|
3
|
Högnäsbacka A, Poot AJ, Kooijman E, Schuit RC, Schreurs M, Verlaan M, van den Hoek J, Heideman DAM, Beaino W, van Dongen GAMS, Vugts DJ, Windhorst AD. Synthesis and preclinical evaluation of two osimertinib isotopologues labeled with carbon-11 as PET tracers targeting the tyrosine kinase domain of the epidermal growth factor receptor. Nucl Med Biol 2023; 120-121:108349. [PMID: 37209556 DOI: 10.1016/j.nucmedbio.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/22/2023]
Abstract
INTRODUCTION Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) that is able to inhibit the EGFR treatment resistance mutation T790M and primary EGFR mutations Del19 and L858R. The aim of the study was to evaluate the potential of carbon-11 labeled osimertinib to be used as a tracer for the PET imaging of tumors bearing the T790M mutation. METHODS Osimertinib was labeled with carbon-11 at two positions, and the effect of the labeling position on the metabolism and biodistribution was studied in female nu/nu mice. The mutation status specificity of osimertinib was confirmed in vitro in a cell growth inhibition experiment, and the tumor-targeting potential of the carbon-11 isotopologues was evaluated using female nu/nu mice xenografted with NSCLC cell lines; the wild-type EGFR expressing A549, the primary Del19 EGFR mutated HCC827 and the resistance T790M/L858R mutated H1975. One of the osimertinib tracers was selected based on the results acquired and evaluated for tracer specificity and selectivity by assessment of tumor uptake in a PET study where HCC827 tumor-bearing mice were pretreated with osimertinib or afatinib. RESULTS [Methylindole-11C]- and [dimethylamine-11C]osimertinib were synthesized by 11C-methylation of precursors AZ5104 and AZ7550, respectively. Rapid metabolism of both analogs of [11C]osimertinib was observed. Although the tumor uptake and retention of [methylindole-11C]- and [dimethylamine-11C]osimertinib in tumors were similar, the tumor-to-muscle ratios appeared to be higher for [methylindole-11C]osimertinib. The highest uptake, tumor-to-blood, and tumor-to-muscle ratio were observed in the Del19 EGFR mutated HCC827 tumors. However, the specificity and selectivity of [methylindole-11C]osimertinib PET could not be demonstrated in HCC827 tumors. The uptake of [methylindole-11C]osimertinib was not significantly higher in T790M resistance mutated H1975 xenografts compared to the negative control cell line A549. CONCLUSIONS Osimertinib was successfully labeled at two positions with carbon-11, yielding two EGFR PET tracers, [methylindole-11C]osimertinib and [dimethylamine-11C]osimertinib. The preclinical evaluation demonstrated uptake and retention in three NSCLC xenografts; A549, HCC827, and H1975. The highest uptake was observed in the primary Del19 EGFR mutated HCC827. The ability of [methylindole-11C]osimertinib to distinguish between the T790M resistance mutated H1975 xenografts and the wild-type EGFR expressing A549 could not be confirmed in the ex vivo study.
Collapse
Affiliation(s)
- Antonia Högnäsbacka
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.
| | - Alex J Poot
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Esther Kooijman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Robert C Schuit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Maxime Schreurs
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Mariska Verlaan
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Johan van den Hoek
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniëlle A M Heideman
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Pathology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Wissam Beaino
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Guus A M S van Dongen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Danielle J Vugts
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Amsterdam UMC location Vrije Universiteit Amsterdam, Dept. Radiology & Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Jain A, Kumar A, Vasumathy R, Subramanian S, Sarma HD, Satpati D. Preparation of radiolabeled erlotinib analogues and analysis of the effect of linkers. Bioorg Med Chem Lett 2022; 76:128995. [PMID: 36152732 DOI: 10.1016/j.bmcl.2022.128995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022]
Abstract
Erlotinib is a first generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) which was granted Food and Drug administration (FDA) approval for treatment of patients with locally advanced or metastatic NSCLC. The present study aimed at development of radiolabeled erlotinib variants as tyrosine kinase inhibitors. Three DOTA-erlotinib conjugates were prepared for radiolabeling with 177Lu. The terminal alkyne group of erlotinib was modified by performing Cu-catalyzed click chemistry and three different linkers were introduced which were then conjugated to the chelator, DOTA. The DOTA-erlotinib conjugates were characterized by 1H NMR and ESI-MS. 177Lu-DOTA-erlotinib complexes were characterized using natLu-DOTA-erlotinib conjugates. The 177Lu-complexes exhibited high in vitro stability in human serum up to 48 h. They were highly hydrophilic in nature as observed from their log Po/w values (177Lu-DOTA-propyl-Er: -2.5 ± 0.1; 177Lu-DOTA-PEG3-Er: -3.0 ± 0.1; 177Lu-DOTA-PEG6-Er: -3.3 ± 0.1). The MTT assay in A431 human epidermoid carcinoma cell lines indicates that the chemical modification at the terminal alkyne group of the erlotinib molecule does not have significant effect on its TKI property. Biodistribution studies in normal Swiss mice demonstrated fast clearance and excretion of 177Lu-labeled erlotinib complexes. These studies indicate that erlotinib variants with hydrophobic pharmacokinetic modifiers/chelators may enhance the retention of 177Lu-labeled complexes in blood thereby increasing the probability to reach EGFR-expressing tumor.
Collapse
Affiliation(s)
- Akanksha Jain
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Anuj Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - R Vasumathy
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - H D Sarma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
5
|
van der Wildt B, Nezam M, Kooijman EJ, Reyes ST, Shen B, Windhorst AD, Chin FT. Evaluation of carbon-11 labeled 5-(1-methyl-1H-pyrazol-4-yl)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)nicotinamide as PET tracer for imaging of CSF-1R expression in the brain. Bioorg Med Chem 2021; 42:116245. [DOI: 10.1016/j.bmc.2021.116245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022]
|
6
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
7
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
8
|
Lien VT, Celen S, Nuruddin S, Attili B, Doumont G, Van Simaeys G, Bormans G, Klaveness J, Olberg DE. Preclinical evaluation of [ 18F]cabozantinib as a PET imaging agent in a prostate cancer mouse model. Nucl Med Biol 2021; 93:74-80. [PMID: 33422771 DOI: 10.1016/j.nucmedbio.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Cabozantinib is a tyrosine kinase inhibitor (TKI) approved for the treatment of medullary thyroid cancer, renal cell carcinoma and hepatocellular carcinoma, and is currently in clinical trials for the treatment of prostate cancer and others. It exerts its therapeutic effect mainly through inhibition of the tyrosine kinases MET (hepatocyte growth factor receptor) and VEGFR2 (vascular endothelial growth factor receptor 2), in addition to several other kinases involved in cancer. PET imaging with TKIs such as [18F]cabozantinib could potentially aid in cancer diagnosis and guide treatment. This study aims to evaluate the utility of [18F]cabozantinib as a PET imaging probe in PC3 tumor xenografted mice. METHODS [18F]cabozantinib was evaluated in non-tumor and tumor bearing (PC3 xenografted) male mice by ex vivo biodistribution studies and in vivo μPET imaging. Pretreatment studies were performed in the tumor bearing mice with the MET inhibitor PF04217903. Mouse plasma was analyzed with HPLC to quantify radiometabolites. To further evaluate the binding specificity of [18F]cabozantinib, in vitro autoradiography studies on heart and PC3 tumor sections were performed in the presence of authentic cabozantinib or specific MET and VEGFR2 inhibitors. RESULTS Tissue distribution studies in non-tumor bearing mice revealed slow blood clearance, absence of brain uptake and a high myocardial uptake. In the tumor bearing mice, tumor uptake was low (0.58 ± 0.20% ID/g at 30 min post tracer injection), which was confirmed by μPET imaging. No differences in tissue distribution and kinetics were observed in both biodistributions and μPET studies after pretreatment with the MET inhibitor PF04217903. At 30 min post tracer injection, 60 ± 3% of the recovered radioactivity in plasma in non-tumor bearing mice was present as intact tracer. [18F]cabozantinib binding in vitro to heart and tumor tissues was partly blocked in the presence of selective MET and VEGFR2 inhibitors (up to 40% block). The fraction of non-specific binding was relatively high for both tissues (66% for heart and 39% for tumor). CONCLUSION [18F]cabozantinib exhibits non-favorable properties as a PET imaging probe, demonstrated by slow excretion kinetics along with low tumor uptake and high non-specific binding in tumor and heart tissue. The results reflect cabozantinibs multi-kinase activity, making PET imaging of tumor specific kinase expression with [18F]cabozantinib challenging.
Collapse
Affiliation(s)
- Vegard Torp Lien
- Department of Pharmacy, University of Oslo, Boks 1068, Blindern, 0316 Oslo, Norway; Norwegian Medical Cyclotron Center, Oslo, Norway.
| | - Sofie Celen
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Bala Attili
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi, Belgium
| | - Gaetan Van Simaeys
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Charleroi, Belgium; Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, Boks 1068, Blindern, 0316 Oslo, Norway
| | - Dag Erlend Olberg
- Department of Pharmacy, University of Oslo, Boks 1068, Blindern, 0316 Oslo, Norway; Norwegian Medical Cyclotron Center, Oslo, Norway
| |
Collapse
|
9
|
Poot AJ, Lam MGEH, van Noesel MM. The Current Status and Future Potential of Theranostics to Diagnose and Treat Childhood Cancer. Front Oncol 2020; 10:578286. [PMID: 33330054 PMCID: PMC7710543 DOI: 10.3389/fonc.2020.578286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
In theranostics (i.e., therapy and diagnostics) radiopharmaceuticals are used for both therapeutic and diagnostic purposes by targeting one specific tumor receptor. Biologically relevant compounds, e.g., receptor ligands or drugs, are labeled with radionuclides to form radiopharmaceuticals. The possible applications are multifold: visualization of biological processes or tumor biology in vivo, diagnosis and tumor staging, therapy planning, and treatment of specific tumors. Theranostics research is multidisciplinary and allows for the rapid translation of potential tumor targets from preclinical research to “first-in-man” clinical studies. In the last decade, the use of theranostics has seen an unprecedented value for adult cancer patients. Several radiopharmaceuticals are routinely used in clinical practice (e.g., [68Ga/177Lu]DOTATATE), and dozens are under (pre)clinical development. In contrast to these successes in adult oncology, theranostics have scarcely been developed to diagnose and treat pediatric cancers. To date, [123/131I]meta-iodobenzylguanidine ([123/131I]mIBG) is the only available and approved theranostic in pediatric oncology. mIBG targets the norepinephrine transporter, expressed by neuroblastoma tumors. For most pediatric tumors, including neuroblastoma, there is a clear need for novel and improved radiopharmaceuticals for imaging and therapy. The strategy of theranostics for pediatric oncology can be divided in (1) the improvement of existing theranostics, (2) the translation of theranostics developed in adult oncology for pediatric purposes, and (3) the development of novel theranostics for pediatric tumor-specific targets. Here, we describe the recent advances in theranostics development in pediatric oncology and shed a light on how this methodology can affect diagnosis and provide additional treatment options for these patients.
Collapse
Affiliation(s)
- Alex J Poot
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Solid Tumors, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Max M van Noesel
- Department of Solid Tumors, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
10
|
Worm DJ, Els‐Heindl S, Beck‐Sickinger AG. Targeting of peptide‐binding receptors on cancer cells with peptide‐drug conjugates. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dennis J. Worm
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | - Sylvia Els‐Heindl
- Faculty of Life Sciences, Institute of BiochemistryLeipzig University Leipzig Germany
| | | |
Collapse
|
11
|
Pruis IJ, van Dongen GAMS, Veldhuijzen van Zanten SEM. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int J Mol Sci 2020; 21:E1029. [PMID: 32033160 PMCID: PMC7037158 DOI: 10.3390/ijms21031029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
This review highlights the added value of PET imaging in Central Nervous System (CNS) tumors, which is a tool that has rapidly evolved from a merely diagnostic setting to multimodal molecular diagnostics and the guidance of targeted therapy. PET is the method of choice for studying target expression and target binding behind the assumedly intact blood-brain barrier. Today, a variety of diagnostic PET tracers can be used for the primary staging of CNS tumors and to determine the effect of therapy. Additionally, theranostic PET tracers are increasingly used in the context of pharmaceutical and radiopharmaceutical drug development and application. In this approach, a single targeted drug is used for PET diagnosis, upon the coupling of a PET radionuclide, as well as for targeted (nuclide) therapy. Theranostic PET tracers have the potential to serve as a non-invasive whole body navigator in the selection of the most effective drug candidates and their most optimal dose and administration route, together with the potential to serve as a predictive biomarker in the selection of patients who are most likely to benefit from treatment. PET imaging supports the transition from trial and error medicine to predictive, preventive, and personalized medicine, hopefully leading to improved quality of life for patients and more cost-effective care.
Collapse
Affiliation(s)
- Ilanah J. Pruis
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
| | - Guus A. M. S. van Dongen
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Sophie E. M. Veldhuijzen van Zanten
- Department of Radiology & Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands;
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Department of Pediatrics, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Jolibois J, Schmitt A, Royer B. A simple and fast LC-MS/MS method for the routine measurement of cabozantinib, olaparib, palbociclib, pazopanib, sorafenib, sunitinib and its main active metabolite in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121844. [DOI: 10.1016/j.jchromb.2019.121844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/01/2023]
|
13
|
Altine B, Gai Y, Han N, Jiang Y, Ji H, Fang H, Niyonkuru A, Bakari KH, Rajab Arnous MM, Liu Q, Zhang Y, Lan X. Preclinical Evaluation of a Fluorine-18 ( 18F)-Labeled Phosphatidylinositol 3-Kinase Inhibitor for Breast Cancer Imaging. Mol Pharm 2019; 16:4563-4571. [PMID: 31553879 DOI: 10.1021/acs.molpharmaceut.9b00690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Breast cancer is one of the commonest malignancies in women, especially in middle-aged and elderly women. Abnormal activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKt/mTOR) pathway has been found to be involved in breast cancer proliferation. Pictilisib (GDC-0941) is a potent inhibitor of PI3K with high affinity and is undergoing phase 2 clinical trials. In this study, we aimed to develop a noninvasive PI3K radiotracer to help determine the mechanism of the PI3K/AKt/mTOR pathway to aid in diagnosis. We designed a new 18F-radiolabeled radiotracer based on the structure of pictilisib, to evaluate noninvasively abnormal activation of the PI3K/AKT/mTOR pathway. To increase the water solubility, and to decrease hepatobiliary and gastrointestinal uptake of the tracer, pictilisib was modified with triethylene glycol di(p-toluenesulfonate) (TsO-PEG3-OTs) to obtain TsO-PEG3-GDC-0941 as the precursor for 18F labeling. A nonradiolabeled reference compound [19F]-PEG3-GDC-0941 was also prepared. Breast cancer cell lines, MCF-7 and MDA-MB-231, were used as high- and low-expression PI3K models, respectively. PET imaging and ex vivo biodistribution assays of [18F]-PEG3-GDC-0941 in MCF-7 and MDA-MB-231 xenografts were also performed, and the results were compared. The precursor compound and reference standard compound were successfully synthesized and identified using NMR and mass spectroscopy. The 18F radiolabeling was achieved with a high yield (61 ± 1%) at a high molar activity (2100 ± 100 MBq/mg). MicroPET images and biodistribution studies showed a higher uptake of the radiotracer in MCF-7 tumors than in MDA-MB-231 tumors (7.56 ± 1.01%ID/g vs 4.07 ± 0.68%ID/g, 1 h postinjection). Additionally, the MCF-7 tumor uptake was significantly decreased when a blocking dose of GDC-0941 was coinjected, indicating high specificity. The liver was found to be the major excretory organ with 5.82 ± 0.88%ID/g at 30 min postinjection for MCF-7 mice. This radiotracer holds great potential for patient screening, diagnosis, and therapy prediction of PI3K-related diseases.
Collapse
Affiliation(s)
- Bouhari Altine
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Na Han
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Hanyi Fang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Alexandre Niyonkuru
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Khamis Hassan Bakari
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Maher Mohamad Rajab Arnous
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan 430022 , China.,Hubei Province Key Laboratory of Molecular Imaging , Wuhan 430022 , China
| |
Collapse
|
14
|
Radaram B, Pisaneschi F, Rao Y, Yang P, Piwnica-Worms D, Alauddin MM. Novel derivatives of anaplastic lymphoma kinase inhibitors: Synthesis, radiolabeling, and preliminary biological studies of fluoroethyl analogues of crizotinib, alectinib, and ceritinib. Eur J Med Chem 2019; 182:111571. [PMID: 31425908 DOI: 10.1016/j.ejmech.2019.111571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/13/2022]
Abstract
Anaplastic lymphoma kinase (ALK), an oncogenic receptor tyrosine kinase, is a therapeutic target in various cancers, including non-small cell lung cancer. Although several ALK inhibitors, including crizotinib, ceritinib, and alectinib, are approved for cancer treatment, their long-term benefit is often limited by the cancer's acquisition of resistance owing to secondary point mutations in ALK. Importantly, some ALK inhibitors cannot cross the blood-brain barrier (BBB) and thus have little or no efficacy against brain metastases. The introduction of a lipophilic moiety, such as a fluoroethyl group may improve the drug's BBB penetration. Herein, we report the synthesis of fluoroethyl analogues of crizotinib 1, alectinib 4, and ceritinib 9, and their radiolabeling with 18F for pharmacokinetic studies. The fluoroethyl derivatives and their radioactive analogues were obtained in good yields with high purity and good molar activity. A cytotoxicity screen in ALK-expressing H2228 lung cancer cells showed that the analogues had up to nanomolar potency and the addition of the fluorinated moiety had minimal impact overall on the potency of the original drugs. Positron emission tomography in healthy mice showed that the analogues had enhanced BBB penetration, suggesting that they have therapeutic potential against central nervous system metastases.
Collapse
Affiliation(s)
- Bhasker Radaram
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yi Rao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mian M Alauddin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Development of a Fluorinated Analogue of Erlotinib for PET Imaging of EGFR Mutation–Positive NSCLC. Mol Imaging Biol 2018; 21:696-704. [DOI: 10.1007/s11307-018-1286-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, Cho S, Zaidi H, Casey ME, Wahl RL. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging 2018; 46:501-518. [PMID: 30269154 DOI: 10.1007/s00259-018-4153-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE In this article, we discuss dynamic whole-body (DWB) positron emission tomography (PET) as an imaging tool with significant clinical potential, in relation to conventional standard uptake value (SUV) imaging. BACKGROUND DWB PET involves dynamic data acquisition over an extended axial range, capturing tracer kinetic information that is not available with conventional static acquisition protocols. The method can be performed within reasonable clinical imaging times, and enables generation of multiple types of PET images with complementary information in a single imaging session. Importantly, DWB PET can be used to produce multi-parametric images of (i) Patlak slope (influx rate) and (ii) intercept (referred to sometimes as "distribution volume"), while also providing (iii) a conventional 'SUV-equivalent' image for certain protocols. RESULTS We provide an overview of ongoing efforts (primarily focused on FDG PET) and discuss potential clinically relevant applications. CONCLUSION Overall, the framework of DWB imaging [applicable to both PET/CT(computed tomography) and PET/MRI (magnetic resonance imaging)] generates quantitative measures that may add significant value to conventional SUV image-derived measures, with limited pitfalls as we also discuss in this work.
Collapse
Affiliation(s)
- Arman Rahmim
- Department of Radiology and Radiological Science, Johns Hopkins University, JHOC Building Room 3245, 601 N. Caroline St, Baltimore, MD, 21287, USA. .,Departments of Radiology and Physics & Astronomy, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| | - Martin A Lodge
- Department of Radiology and Radiological Science, Johns Hopkins University, JHOC Building Room 3245, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | | | | | - Yun Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University, JHOC Building Room 3245, 601 N. Caroline St, Baltimore, MD, 21287, USA
| | - Alan McMillan
- Department of Radiology, University of Wisconsin, Madison, WI, 53705, USA
| | - Steve Cho
- Department of Radiology, University of Wisconsin, Madison, WI, 53705, USA
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | | | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
17
|
Yan W, Lakkaniga NR, Carlomagno F, Santoro M, McDonald NQ, Lv F, Gunaganti N, Frett B, Li HY. Insights into Current Tropomyosin Receptor Kinase (TRK) Inhibitors: Development and Clinical Application. J Med Chem 2018; 62:1731-1760. [PMID: 30188734 DOI: 10.1021/acs.jmedchem.8b01092] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of kinase-directed precision medicine has been heavily pursued since the discovery and development of imatinib. Annually, it is estimated that around ∼20 000 new cases of tropomyosin receptor kinase (TRK) cancers are diagnosed, with the majority of cases exhibiting a TRK genomic rearrangement. In this Perspective, we discuss current development and clinical applications for TRK precision medicine by providing the following: (1) the biological background and significance of the TRK kinase family, (2) a compilation of known TRK inhibitors and analysis of their cocrystal structures, (3) an overview of TRK clinical trials, and (4) future perspectives for drug discovery and development of TRK inhibitors.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naga Rajiv Lakkaniga
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Francesca Carlomagno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy.,Istituto di Endocrinologia e Oncologia Sperimentale del CNR , Via S Pansini 5 , 80131 Naples , Italy
| | - Massimo Santoro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università Federico II , Via S Pansini 5 , 80131 Naples , Italy
| | - Neil Q McDonald
- Signaling and Structural Biology Laboratory , The Francis Crick Institute , London NW1 1AT , U.K.,Institute of Structural and Molecular Biology, Department of Biological Sciences , Birkbeck College , Malet Street , London WC1E 7HX , U.K
| | - Fengping Lv
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Naresh Gunaganti
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
18
|
Slobbe P, Windhorst AD, Adamzek K, Bolijn M, Schuit RC, Heideman DAM, van Dongen GAMS, Poot AJ. Development of [11C]vemurafenib employing a carbon-11 carbonylative Stille coupling and preliminary evaluation in mice bearing melanoma tumor xenografts. Oncotarget 2018; 8:38337-38350. [PMID: 28418885 PMCID: PMC5503536 DOI: 10.18632/oncotarget.16321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Over the last decade kinase inhibitors have witnessed tremendous growth as anti-cancer drugs. Unfortunately, despite their promising clinical successes, a large portion of patients does not benefit from these targeted therapeutics. Vemurafenib is a serine/threonine kinase inhibitor approved for the treatment of melanomas specifically expressing the BRAFV600E mutation. The aim of this study was to develop vemurafenib as PET tracer to determine its potential for identification of tumors sensitive to vemurafenib treatment. Therefore, vemurafenib was labeled with carbon-11 and analyzed for its tumor targeting potential in melanoma xenografts Colo829 (BRAFV600E) and MeWo (BRAFwt) using autoradiography on tissue sections, in vitro tumor cell uptake studies and biodistribution studies in xenografted athymic nu/nu mice. [11C]vemurafenib was synthesized in 21 ± 4% yield (decay corrected, calculated from [11C]CO) in > 99% radiochemical purity and a specific activity of 55 ± 18 GBq/μmol. Similar binding of [11C]vemurafenib was shown during autoradiography and cellular uptake studies in both cell lines. Plasma metabolite analysis demonstrated > 95% intact [11C]vemurafenib in vivo at 45 minutes after injection, indicating excellent stability. Biodistribution studies confirmed the in vitro results, showing similar tumor-to-background ratios in both xenografts models. These preliminary results suggest that identification of BRAFV600E mutations in vivo using PET with [11C]vemurafenib will be challenging.
Collapse
Affiliation(s)
- Paul Slobbe
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Kevin Adamzek
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Marije Bolijn
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Alex J Poot
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Waaijer SJ, Kok IC, Eisses B, Schröder CP, Jalving M, Brouwers AH, Lub-de Hooge MN, de Vries EG. Molecular Imaging in Cancer Drug Development. J Nucl Med 2018; 59:726-732. [DOI: 10.2967/jnumed.116.188045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/16/2018] [Indexed: 12/23/2022] Open
|
20
|
Lien VT, Klaveness J, Olberg DE. One-step synthesis of [18
F]cabozantinib for use in positron emission tomography imaging of c-Met. J Labelled Comp Radiopharm 2017; 61:11-17. [DOI: 10.1002/jlcr.3564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023]
Affiliation(s)
| | - Jo Klaveness
- Department of Pharmacy; University of Oslo; Oslo Norway
| | - Dag Erlend Olberg
- Department of Pharmacy; University of Oslo; Oslo Norway
- Research & Development; Norwegian Medical Cyclotron Center; Oslo Norway
| |
Collapse
|
21
|
68 Ga labeled Erlotinib: A novel PET probe for imaging EGFR over-expressing tumors. Bioorg Med Chem Lett 2017; 27:4552-4557. [DOI: 10.1016/j.bmcl.2017.08.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 01/13/2023]
|
22
|
Raaphorst RM, Luurtsema G, Schuit RC, Kooijman EJM, Elsinga PH, Lammertsma AA, Windhorst AD. Synthesis and Evaluation of New Fluorine-18 Labeled Verapamil Analogs To Investigate the Function of P-Glycoprotein in the Blood-Brain Barrier. ACS Chem Neurosci 2017; 8:1925-1936. [PMID: 28650628 PMCID: PMC5609126 DOI: 10.1021/acschemneuro.7b00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023] Open
Abstract
P-glycoprotein is an efflux transporter located in the blood-brain barrier. (R)-[11C]Verapamil is widely used as a PET tracer to investigate its function in patients with epilepsy, Alzheimer's disease, and other neurodegenerative diseases. Currently it is not possible to use this successful tracer in clinics without a cyclotron, because of the short half-life of carbon-11. We developed two new fluorine-18 labeled (R)-verapamil analogs, with the benefit of a longer half-life. The synthesis of (R)-N-[18F]fluoroethylverapamil ([18F]1) and (R)-O-[18F]fluoroethylnorverapamil ([18F]2) has been described. [18F]1 was obtained in reaction of (R)-norverapamil with the volatile [18F]fluoroethyltriflate acquired from bromoethyltosylate and a silver trilate column with a radiochemical yield of 2.7% ± 1.2%. [18F]2 was radiolabeled by direct fluorination of precursor 13 and required final Boc-deprotection with TFA resulting in a radiochemical yield of 17.2% ± 9.9%. Both tracers, [18F]1 and [18F]2, were administered to Wistar rats, and blood plasma and brain samples were analyzed for metabolic stability. Using [18F]1 and [18F]2, PET scans were performed in Wistar rats at baseline and after blocking with tariquidar, showing a 3.6- and 2.4-fold increase in brain uptake in the blocked rats, respectively. In addition, for both [18F]1 and [18F]2, PET scans in Mdr1a/b(-/-), Bcrp1(-/-), and WT mice were acquired, in which [18F]2 showed a more specific brain uptake in Mdr1a/b(-/-) mice and no increased signal in Bcrp1(-/-) mice. [18F]2 was selected as the best performing tracer and should be evaluated further in clinical studies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Animals
- Blood-Brain Barrier/metabolism
- Central Nervous System Agents/pharmacology
- Drug Evaluation, Preclinical
- Drug Stability
- Male
- Mice, Knockout
- Molecular Structure
- Positron-Emission Tomography
- Quinolines/pharmacology
- Radiopharmaceuticals/chemical synthesis
- Radiopharmaceuticals/pharmacokinetics
- Rats, Wistar
- Tissue Distribution
- Verapamil/chemical synthesis
- Verapamil/pharmacology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Renske M. Raaphorst
- Department
of Radiology & Nuclear Medicine, VU
University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Gert Luurtsema
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Robert C. Schuit
- Department
of Radiology & Nuclear Medicine, VU
University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Esther J. M. Kooijman
- Department
of Radiology & Nuclear Medicine, VU
University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Philip H. Elsinga
- Department
of Nuclear Medicine and Molecular Imaging, University Medical Center
Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Adriaan A. Lammertsma
- Department
of Radiology & Nuclear Medicine, VU
University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Albert D. Windhorst
- Department
of Radiology & Nuclear Medicine, VU
University Medical Center, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Langer O. Use of PET Imaging to Evaluate Transporter-Mediated Drug-Drug Interactions. J Clin Pharmacol 2017; 56 Suppl 7:S143-56. [PMID: 27385172 DOI: 10.1002/jcph.722] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 12/25/2022]
Abstract
Several membrane transporters belonging to the adenosine triphosphate-binding cassette (ABC) and solute carrier (SLC) families can transport drugs and drug metabolites and thereby exert an effect on drug absorption, distribution, and excretion, which may potentially lead to transporter-mediated drug-drug interactions (DDIs). Some transporter-mediated DDIs may lead to changes in organ distribution of drugs (eg, brain, liver, kidneys) without affecting plasma concentrations. Positron emission tomography (PET) is a noninvasive imaging method that allows studying of the distribution of radiolabeled drugs to different organs and tissues and is therefore the method of choice to quantitatively assess transporter-mediated DDIs on a tissue level. There are 2 approaches to how PET can be used in transporter-mediated DDI studies. When the drug of interest is a potential perpetrator of DDIs, it may be administered in unlabeled form to assess its influence on tissue distribution of a generic transporter-specific PET tracer (probe substrate). When the drug of interest is a potential victim of DDIs, it may be radiolabeled with carbon-11 or fluorine-18 and used in combination with a prototypical transporter inhibitor (eg, rifampicin). PET has already been used both in preclinical species and in humans to assess the effects of transporter-mediated DDIs on drug disposition in different organ systems, such as brain, liver, and kidneys, for which examples are given in the present review article. Given the growing importance of membrane transporters with respect to drug safety and efficacy, PET is expected to play an increasingly important role in future drug development.
Collapse
Affiliation(s)
- Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Medical Imaging Cluster, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Bernard-Gauthier V, Mahringer A, Vesnaver M, Fricker G, Schirrmacher R. Design and synthesis of a fluorinated quinazoline-based type-II Trk inhibitor as a scaffold for PET radiotracer development. Bioorg Med Chem Lett 2017; 27:2771-2775. [DOI: 10.1016/j.bmcl.2017.04.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/20/2022]
|
25
|
[ 11C]Erlotinib PET cannot detect acquired erlotinib resistance in NSCLC tumor xenografts in mice. Nucl Med Biol 2017; 52:7-15. [PMID: 28575795 DOI: 10.1016/j.nucmedbio.2017.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/24/2022]
Abstract
INTRODUCTION [11C]Erlotinib PET has shown promise to distinguish non-small cell lung cancer (NSCLC) tumors harboring the activating epidermal growth factor receptor (EGFR) mutation delE746-A750 from tumors with wild-type EGFR. To assess the suitability of [11C]erlotinib PET to detect the emergence of acquired erlotinib resistance in initially erlotinib-responsive tumors, we performed in vitro binding and PET experiments in mice bearing tumor xenografts using a range of different cancer cells, which were erlotinib-sensitive or exhibited clinically relevant resistance mechanisms to erlotinib. METHODS The following cell lines were used for in vitro binding and PET experiments: the epidermoid carcinoma cell line A-431 (erlotinib-sensitive, wild-type EGFR) and the three NSCLC cell lines HCC827 (erlotinib-sensitive, delE746-A750), HCC827EPR (erlotinib-resistant, delE746-A750 and T790M) and HCC827ERLO (erlotinib-resistant, delE746-A750 and MET amplification). BALB/c nude mice with subcutaneous tumor xenografts underwent two consecutive [11C]erlotinib PET scans, a baseline scan and a second scan in which unlabeled erlotinib (10mg/kg) was co-injected. Logan graphical analysis was used to estimate total distribution volume (VT) of [11C]erlotinib in tumors. RESULTS In vitro experiments revealed significantly higher uptake of [11C]erlotinib (5.2-fold) in the three NSCLC cell lines as compared to A-431 cells. In all four cell lines co-incubation with unlabeled erlotinib (1μM) led to significant reductions in [11C]erlotinib uptake (-19% to -66%). In both PET scans and for all four studied cell lines there were no significant differences in tumoral [11C]erlotinib VT values. For all three NSCLC cell lines, but not for the A-431 cell line, tumoral VT was significantly reduced following co-injection of unlabeled erlotinib (-20% to -35%). CONCLUSIONS We found no significant differences in the in vitro and in vivo binding of [11C]erlotinib between erlotinib-sensitive and erlotinib-resistant NSCLC cells. Our findings suggest that [11C]erlotinib PET will not be suitable to distinguish erlotinib-sensitive NSCLC tumors from tumors with acquired resistance to erlotinib.
Collapse
|
26
|
Zafon C, Díez JJ, Galofré JC, Cooper DS. Nodular Thyroid Disease and Thyroid Cancer in the Era of Precision Medicine. Eur Thyroid J 2017; 6:65-74. [PMID: 28589087 PMCID: PMC5422742 DOI: 10.1159/000457793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/19/2017] [Indexed: 12/27/2022] Open
Abstract
The management of thyroid nodules, one of the main clinical challenges in endocrine clinical practice, is usually straightforward. Although the most important concern is ruling out malignancy, there are grey areas where uncertainty is frequently present: the nodules labelled as indeterminate by cytology and the extent of therapy when thyroid cancer is diagnosed pathologically. There is evidence that the current available precision medicine tools (from all the "-omics" to molecular analysis, fine-tuning imaging or artificial intelligence) may help to fill present gaps in the future. We present here a commentary on some of the current challenges faced by endocrinologists in the field of thyroid nodules and cancer, and illustrate how precision medicine may improve their diagnostic and therapeutic capabilities in the future.
Collapse
Affiliation(s)
- Carles Zafon
- Department of Endocrinology, Hospital Vall d'Hebron, and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona and CIBERDEM (ISCIII), Barcelona, Spain
| | - Juan J. Díez
- Department of Endocrinology and Nutrition, Hospital Ramón y Cajal, Madrid, Spain
- Department of Medicine, University of Alcalá de Henares, Madrid, Spain
| | - Juan C. Galofré
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
- IdiSNA (Instituto de investigación en la salud de Navarra), Pamplona, Spain
- *Dr. Juan C. Galofré, Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, University of Navarro, Avenida Pio XII, 36, ES-31080 Pamplona (Spain), E-Mail
| | - David S. Cooper
- Division of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Andersson KG, Oroujeni M, Garousi J, Mitran B, Ståhl S, Orlova A, Löfblom J, Tolmachev V. Feasibility of imaging of epidermal growth factor receptor expression with ZEGFR:2377 affibody molecule labeled with 99mTc using a peptide-based cysteine-containing chelator. Int J Oncol 2016; 49:2285-2293. [PMID: 27748899 PMCID: PMC5118000 DOI: 10.3892/ijo.2016.3721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed in a number of malignant tumors and is a molecular target for several specific anticancer antibodies and tyrosine kinase inhibitors. The overexpression of EGFR is a predictive biomarker for response to several therapy regimens. Radionuclide molecular imaging might enable detection of EGFR overexpression by a non-invasive procedure and could be used repeatedly. Affibody molecules are engineered scaffold proteins, which could be selected to have a high affinity and selectivity to predetermined targets. The anti-EGFR ZEGFR:2377 affibody molecule is a potential imaging probe for EGFR detection. The use of the generator-produced radionuclide 99mTc should facilitate clinical translation of an imaging probe due to its low price, availability and favorable dosimetry of the radionuclide. In the present study, we evaluated feasibility of ZEGFR:2377 labeling with 99mTc using a peptide-based cysteine-containing chelator expressed at the C-terminus of ZEGFR:2377. The label was stable in vitro under cysteine challenge. In addition, 99mTc-ZEGFR:2377 was capable of specific binding to EGFR-expressing cells with high affinity (274 pM). Studies in BALB/C nu/nu mice bearing A431 xenografts demonstrated that 99mTc-ZEGFR:2377 accumulates in tumors in an EGFR-specific manner. The tumor uptake values were 3.6±1 and 2.5±0.4% ID/g at 3 and 24 h after injection, respectively. The corresponding tumor-to-blood ratios were 1.8±0.4 and 8±3. The xenografts were clearly visualized at both time-points. This study demonstrated the potential of 99mTc-labeled ZEGFR:2377 for imaging of EGFR in vivo.
Collapse
Affiliation(s)
- Ken G Andersson
- Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Maryam Oroujeni
- Institute of Immunology, Genetic and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Javad Garousi
- Institute of Immunology, Genetic and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| | - Bogdan Mitran
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden
| | - Stefan Ståhl
- Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Anna Orlova
- Division of Molecular Imaging, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Vladimir Tolmachev
- Institute of Immunology, Genetic and Pathology, Uppsala University, SE-75185 Uppsala, Sweden
| |
Collapse
|
28
|
Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol Sci 2016; 37:904-932. [PMID: 27659854 DOI: 10.1016/j.tips.2016.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.
Collapse
Affiliation(s)
- Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| |
Collapse
|
29
|
Two anti-angiogenic TKI-PET tracers, [(11)C]axitinib and [(11)C]nintedanib: Radiosynthesis, in vivo metabolism and initial biodistribution studies in rodents. Nucl Med Biol 2016; 43:612-24. [PMID: 27497236 DOI: 10.1016/j.nucmedbio.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKIs) are very attractive targeted drugs, although a large portion of patients remains unresponsive. PET imaging with EGFR targeting TKIs ([(11)C]erlotinib and [(18)F]afatinib) showed promise in identifying treatment sensitive tumors. The aim of this study was to synthesize two anti-angiogenic TKI tracers, [(11)C]axitinib and [(11)C]nintedanib, and to evaluate their potential for PET. METHODS Following successful tracer synthesis, biodistribution studies in VU-SCC-OE and FaDu xenograft bearing mice were performed. Furthermore, tracer stability studies in mice were performed employing (radio-)HPLC and LC-MS/MS techniques. For [(11)C]nintedanib an LC-MS/MS method was developed to detect the primary carboxylic acid metabolite, resulting from methylester cleavage, in plasma and tumors, because this metabolite is postulated to be important for nintedanib efficacy. LC-MS/MS was also explored to assess the metabolic fate of [(11)C]axitinib in vivo, since axitinib has an isomerizable double bond. RESULTS [(11)C]axitinib and [(11)C]nintedanib were successfully synthesized with 10.5±2.6% and 25.6±3.3% radiochemical yield (corrected for decay), respectively. Biodistribution studies only demonstrated tumor uptake of [(11)C]nintedanib in FaDu xenografts of 1.66±0.02% ID/g at 60min p.i. In vivo stability analysis of [(11)C]axitinib at 45min p.i. revealed the formation of predominantly non-polar metabolites (36.6±6.8% vs 47.1±8.4% of parent tracer and 16.3±2.1% of polar metabolites), while for [(11)C]nintedanib mostly polar metabolites were found (70.9±4.1 vs 26.7±3.9% of parent tracer and only 2.4±1.6 of a non-polar metabolites). No isomerization of [(11)C]axtinib was observed in vivo; however, a sulfoxide metabolite could be detected using LC-MS/MS. For [(11)C]nintedanib, LC-MS/MS revealed formation of the reported primary carboxylic acid metabolite when in vitro plasma incubations were performed, with large differences in plasmas from different species. In vivo metabolite analysis, however, did not demonstrate the presence of the carboxylic acid in plasma or tumor tissue. CONCLUSIONS Reliable syntheses of [(11)C]axitinib and [(11)C]nintedanib were successfully developed. Tumor uptake was observed for [(11)C]nintedanib, albeit modest. The metabolic profiles of the tracers suggest that rapid metabolism is partly responsible for the modest tumor targeting observed.
Collapse
|
30
|
Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015; 20:22000-27. [PMID: 26690113 PMCID: PMC6332294 DOI: 10.3390/molecules201219816] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Over the last 20 years, intensive investigation and multiple clinical successes targeting protein kinases, mostly for cancer treatment, have identified small molecule kinase inhibitors as a prominent therapeutic class. In the course of those investigations, radiolabeled kinase inhibitors for positron emission tomography (PET) imaging have been synthesized and evaluated as diagnostic imaging probes for cancer characterization. Given that inhibitor coverage of the kinome is continuously expanding, in vivo PET imaging will likely find increasing applications for therapy monitoring and receptor density studies both in- and outside of oncological conditions. Early investigated radiolabeled inhibitors, which are mostly based on clinically approved tyrosine kinase inhibitor (TKI) isotopologues, have now entered clinical trials. Novel radioligands for cancer and PET neuroimaging originating from novel but relevant target kinases are currently being explored in preclinical studies. This article reviews the literature involving radiotracer design, radiochemistry approaches, biological tracer evaluation and nuclear imaging results of radiolabeled kinase inhibitors for PET reported between 2010 and mid-2015. Aspects regarding the usefulness of pursuing selective vs. promiscuous inhibitor scaffolds and the inherent challenges associated with intracellular enzyme imaging will be discussed.
Collapse
|
31
|
Traxl A, Wanek T, Mairinger S, Stanek J, Filip T, Sauberer M, Müller M, Kuntner C, Langer O. Breast Cancer Resistance Protein and P-Glycoprotein Influence In Vivo Disposition of 11C-Erlotinib. J Nucl Med 2015; 56:1930-6. [PMID: 26359257 DOI: 10.2967/jnumed.115.161273] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (11)C-erlotinib is a PET tracer to distinguish responders from nonresponders to epidermal growth factor receptor-targeted tyrosine kinase inhibitors and may also be of interest to predict distribution of erlotinib to tissues targeted for treatment. The aim of this study was to investigate if the known interaction of erlotinib with the multidrug efflux transporters breast cancer resistance protein (humans, ABCG2; rodents, Abcg2) and P-glycoprotein (humans, ABCB1; rodents, Abcb1a/b) affects tissue distribution and excretion of (11)C-erlotinib and has an influence on the ability of (11)C-erlotinib PET to predict erlotinib tissue distribution at therapeutic doses. METHODS Wild-type and Abcb1a/b or Abcg2 knockout mice underwent (11)C-erlotinib PET/MR scans, with or without the coinjection of a pharmacologic dose of erlotinib (10 mg/kg) or after pretreatment with the ABCB1/ABCG2 inhibitor elacridar (10 mg/kg). Integration plot analysis was used to determine organ uptake (CLuptake) and biliary excretion (CLbile) clearances of radioactivity. RESULTS (11)C-erlotinib distribution to the brain was restricted by Abcb1a/b and Abcg2, and CLuptake into the brain was only significantly increased when both Abcb1a/b and Abcg2 were absent (wild-type mice, 0.017 ± 0.004 mL/min/g of tissue; Abcb1a/b((-/-))Abcg2((-/-)) mice, 0.079 ± 0.013 mL/min/g of tissue; P < 0.001). The pretreatment of wild-type mice with elacridar increased CLuptake into the brain to levels comparable to Abcb1a/b((-/-))Abcg2((-/-)) mice (0.090 ± 0.007 mL/min/g of tissue, P < 0.001). The absence of Abcb1a/b and Abcg2 led to a 2.6-fold decrease in CLbile (wild-type mice, 0.025 ± 0.005 mL/min/g of tissue; Abcb1a/b((-/-))Abcg2((-/-)) mice, 0.0095 ± 0.001 mL/min/g of tissue; P < 0.001). There were pronounced differences in distribution of (11)C-erlotinib to the brain, liver, kidney, and lung and hepatobiliary excretion into intestine between animals injected with a microdose and pharmacologic dose of erlotinib. CONCLUSION ABCG2, ABCB1, and possibly other transporters influence in vivo disposition of (11)C-erlotinib and thereby affect its distribution to normal and potentially also tumor tissue. Saturable transport of erlotinib leads to nonlinear pharmacokinetics, possibly compromising the prediction of erlotinib tissue distribution at therapeutic doses from PET with a microdose of (11)C-erlotinib. The inhibition of ABCB1 and ABCG2 is a promising approach to enhance brain distribution of erlotinib to increase its efficacy in the treatment of brain tumors.
Collapse
Affiliation(s)
- Alexander Traxl
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Thomas Wanek
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Severin Mairinger
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Johann Stanek
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Filip
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Michael Sauberer
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kuntner
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and
| | - Oliver Langer
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; and Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Slobbe P, Windhorst AD, Stigter-van Walsum M, Smit EF, Niessen HG, Solca F, Stehle G, van Dongen GAMS, Poot AJ. A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors [(11)C]erlotinib and [(18)F]afatinib in lung cancer-bearing mice. EJNMMI Res 2015; 5:14. [PMID: 25853020 PMCID: PMC4385286 DOI: 10.1186/s13550-015-0088-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/19/2015] [Indexed: 11/12/2022] Open
Abstract
Background Tyrosine kinase inhibitors (TKIs) have experienced a tremendous boost in the last decade, where more than 15 small molecule TKIs have been approved by the FDA. Unfortunately, despite their promising clinical successes, a large portion of patients remain unresponsive to these targeted drugs. For non-small cell lung cancer (NSCLC), the effectiveness of TKIs is dependent on the mutational status of epidermal growth factor receptor (EGFR). The exon 19 deletion as well as the L858R point mutation lead to excellent sensitivity to TKIs such as erlotinib and gefitinib; however, despite initial good response, most patients invariably develop resistance against these first-generation reversible TKIs, e.g., via T790M point mutation. Second-generation TKIs that irreversibly bind to EGFR wild-type and mutant isoforms have therefore been developed and one of these candidates, afatinib, has now reached the market. Whether irreversible TKIs differ from reversible TKIs in their in vivo tumor-targeting properties is, however, not known and is the subject of the present study. Methods Erlotinib was labeled with carbon-11 and afatinib with fluorine-18 without modifying the structure of these compounds. A preclinical positron emission tomography (PET) study was performed in mice bearing NSCLC xenografts with a representative panel of mutations: an EGFR-WT xenograft cell line (A549), an acquired treatment-resistant L858R/T790M mutant (H1975), and a treatment-sensitive exon 19 deleted mutant (HCC827). PET imaging was performed in these xenografts with both tracers. Additionally, the effect of drug efflux transporter permeability glycoprotein (P-gp) on the tumor uptake of tracers was explored by therapeutic blocking with tariquidar. Results Both tracers only demonstrated selective tumor uptake in the HCC827 xenograft line (tumor-to-background ratio, [11C]erlotinib 1.9 ± 0.5 and [18F]afatinib 2.3 ± 0.4), thereby showing the ability to distinguish sensitizing mutations in vivo. No major differences were observed in the kinetics of the reversible and the irreversible tracers in each of the xenograft models. Under P-gp blocking conditions, no significant changes in tumor-to-background ratio were observed; however, [18F]afatinib demonstrated better tumor retention in all xenograft models. Conclusions TKI-PET provides a method to image sensitizing mutations and can be a valuable tool to compare the distinguished targeting properties of TKIs in vivo.
Collapse
Affiliation(s)
- Paul Slobbe
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands ; Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Marijke Stigter-van Walsum
- Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Heiko G Niessen
- Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Flavio Solca
- Department of Pharmacology and Translational Research, Boehringer Ingelheim GmbH and Co. KG, Doktor-Boehringer-Gasse 5-11, Vienna, A-1120 Austria
| | - Gerd Stehle
- Therapeutic Area Oncology, Boehringer Ingelheim Pharma GmbH and Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Guus A M S van Dongen
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands ; Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| | - Alex J Poot
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands ; Department of Otolaryngology/Head and Neck Surgery, VU University Medical Center, De Boelelaan 1117, Amsterdam, 1081 HV The Netherlands
| |
Collapse
|
33
|
Kuiper JL, Bahce I, Voorhoeve C, Yaqub M, Heideman DA, Thunnissen E, Paul MA, Postmus PE, Hendrikse NH, Smit EF. Detecting resistance in EGFR-mutated non-small-cell lung cancer after clonal selection through targeted therapy. Per Med 2015; 12:63-66. [PMID: 29754538 DOI: 10.2217/pme.14.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor heterogeneity plays an important role in the development of treatment-resistance, especially in the current era of targeted therapies. Although tumor heterogeneity is a widely recognized phenomenon, it is at present unclear how this knowledge should be incorporated into daily clinical practice. In this report, we describe an innovative nuclear imaging method that may play a role in detecting tumor heterogeneity in the future.
Collapse
Affiliation(s)
- Justine L Kuiper
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte Voorhoeve
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Daniëlle Am Heideman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marinus A Paul
- Department of Cardiothoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter E Postmus
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| | - N Harry Hendrikse
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Pharmacology & Pharmacy, VU University Medical Center, Amsterdam, The Netherlands
| | - Egbert F Smit
- Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Abourbeh G, Itamar B, Salnikov O, Beltsov S, Mishani E. Identifying erlotinib-sensitive non-small cell lung carcinoma tumors in mice using [(11)C]erlotinib PET. EJNMMI Res 2015; 5:4. [PMID: 25853010 PMCID: PMC4385014 DOI: 10.1186/s13550-014-0080-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 12/11/2022] Open
Abstract
Background Non-small cell lung carcinoma (NSCLC) represents approximately 80% of lung cancer cases, and over 60% of these tumors express the epidermal growth factor receptor (EGFR). Activating mutations in the tyrosine kinase (TK) domain of the EGFR are detected in 10% to 30% of NSCLC patients, and evidence of their presence is a prerequisite for initiation of first-line therapy with selective TK inhibitors (TKIs), such as gefitinib and erlotinib. To date, the selection of candidate patients for first-line treatment with EGFR TKIs requires an invasive tumor biopsy to affirm the mutational status of the receptor. This study was designed to evaluate whether positron emission tomography (PET) of NSCLC tumor-bearing mice using [11C]erlotinib could distinguish erlotinib-sensitive from erlotinib-insensitive or erlotinib-resistant tumors. Methods Four human NSCLC cell lines were employed, expressing either of the following forms of the EGFR: (i) the wild-type receptor (QG56 cells), (ii) a mutant with an exon 19 in-frame deletion (HCC827 cells), (iii) a mutant with the exon 21 L858R point mutation (NCI-H3255 cells), and (iv) a double mutant harboring the L858R and T790M mutations (NCI-H1975 cells). Sensitivity of each cell line to the anti-proliferative effect of erlotinib was determined in vitro. In vivo PET imaging studies following i.v. injection of [11C]erlotinib were carried out in nude mice bearing subcutaneous (s.c.) xenografts of the four cell lines. Results Cells harboring activating mutations in the EGFR TK domain (HCC827 and NCI-H3255) were approximately 1,000- and 100-fold more sensitive to erlotinib treatment in vitro, respectively, compared to the other two cell lines. [11C]Erlotinib PET scans could differentiate erlotinib-sensitive tumors from insensitive (QG56) or resistant (NCI-H1975) tumors already at 12 min after injection. Nonetheless, the uptake in HCC827 tumors was significantly higher than that in NCI-H3255, possibly reflecting differences in ATP and erlotinib affinities between the EGFR mutants. Conclusions [11C]Erlotinib imaging in mice differentiates erlotinib-sensitive NSCLC tumors from erlotinib-insensitive or erlotinib-resistant ones.
Collapse
Affiliation(s)
- Galith Abourbeh
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah Hebrew University Hospital, Jerusalem, 91120 Israel
| | - Batel Itamar
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah Hebrew University Hospital, Jerusalem, 91120 Israel
| | - Olga Salnikov
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah Hebrew University Hospital, Jerusalem, 91120 Israel
| | - Sergey Beltsov
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah Hebrew University Hospital, Jerusalem, 91120 Israel
| | - Eyal Mishani
- Cyclotron-Radiochemistry-MicroPET Unit, Hadassah Hebrew University Hospital, Jerusalem, 91120 Israel
| |
Collapse
|
35
|
Qawasmi I, Shmuel M, Eyal S. Interactions of ABCG2 (BCRP) with epidermal growth factor receptor kinase inhibitors developed for molecular imaging. Front Pharmacol 2014; 5:257. [PMID: 25484865 PMCID: PMC4240039 DOI: 10.3389/fphar.2014.00257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/04/2014] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to investigate in vitro the interactions between novel epidermal growth factor receptor kinase inhibitors (EGFRIs) developed for positron emission tomography (PET) imaging and the major efflux transporter breast cancer resistance protein (BCRP/ABCG2). Seven compounds were evaluated, using the ATPase activity assays and Madin-Darbey canine kidney (MDCK) cells overexpressing BCRP. Five of the tested compounds activated BCRP ATPase to various extent. Overexpression of BCRP conferred resistance to ML04, ML06, methoxy-Br-ML03, and PEG6-ML05 (IC50 values for inhibition of control cell proliferation 2.1 ± 0.6, 2.2 ± 0.7, 1.8 ± 1.2, and 2.8 ± 3.1 μM, respectively, compared to >50 μM in MDCK-BCRP cells). At submicromolar concentrations, none of the EGFRIs significantly inhibited BCRP. Immunoblotting studies indicated that BCRP expression is evident in cell lines utilized for in vivo tumor grafting in small animal PET imaging studies. Thus, the intensity of EGFRIs radioactivity signals previously observed in tumor xenografts reflects an interplay between transporter-mediated distribution of the probe into tumor cells and target binding. Concomitant use of efflux transporter inhibitors may help distinguish between the contribution of efflux transport and EGFR binding to the tissue signal.
Collapse
Affiliation(s)
- Israa Qawasmi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Miriam Shmuel
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Sara Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
36
|
5-(4-((4-[18F]fluorobenzyl)oxy)-3-methoxybenzyl)pyrimidine-2,4-diamine: A selective dual inhibitor for potential PET imaging of Trk/CSF-1R. Bioorg Med Chem Lett 2014; 24:4784-90. [DOI: 10.1016/j.bmcl.2014.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022]
|
37
|
Mammatas LH, Verheul HMW, Hendrikse NH, Yaqub M, Lammertsma AA, Menke-van der Houven van Oordt CW. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol (Dordr) 2014; 38:49-64. [PMID: 25248503 DOI: 10.1007/s13402-014-0194-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Molecular imaging has been defined as the visualization, characterization and measurement of biological processes at the molecular and cellular level in humans and other living systems. In oncology it enables to visualize (part of) the functional behaviour of tumour cells, in contrast to anatomical imaging that focuses on the size and location of malignant lesions. Available molecular imaging techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET) and optical imaging. In PET, a radiotracer consisting of a positron emitting radionuclide attached to the biologically active molecule of interest is administrated to the patient. Several approaches have been undertaken to use PET for the improvement of personalized cancer care. For example, a variety of radiolabelled ligands have been investigated for intratumoural target identification and radiolabelled drugs have been developed for direct visualization of the biodistibution in vivo, including intratumoural therapy uptake. First indications of the clinical value of PET for target identification and response prediction in oncology have been reported. This new imaging approach is rapidly developing, but uniformity of scanning processes, standardized methods for outcome evaluation and implementation in daily clinical practice are still in progress. In this review we discuss the available literature on molecular imaging with PET for personalized targeted treatment strategies. CONCLUSION Molecular imaging with radiolabelled targeted anticancer drugs has great potential for the improvement of personalized cancer care. The non-invasive quantification of drug accumulation in tumours and normal tissues provides understanding of the biodistribution in relation to therapeutic and toxic effects.
Collapse
Affiliation(s)
- Lemonitsa H Mammatas
- Dept of Medical Oncology VUmc Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Saleem A, Murphy P, Plisson C, Lahn M. Why are we failing to implement imaging studies with radiolabelled new molecular entities in early oncology drug development? ScientificWorldJournal 2014; 2014:269605. [PMID: 25202719 PMCID: PMC4151371 DOI: 10.1155/2014/269605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/18/2014] [Indexed: 11/18/2022] Open
Abstract
In early drug development advanced imaging techniques can help with progressing new molecular entities (NME) to subsequent phases of drug development and thus reduce attrition. However, several organizational, operational, and regulatory hurdles pose a significant barrier, potentially limiting the impact these techniques can have on modern drug development. Positron emission tomography (PET) of radiolabelled NME is arguably the best example of a complex technique with a potential to deliver unique decision-making data in small cohorts of subjects. However, to realise this potential the impediments to timely inclusion of PET into the drug development process must be overcome. In the present paper, we discuss the value of PET imaging with radiolabelled NME during early anticancer drug development, as exemplified with one such NME. We outline the multiple hurdles and propose options on how to streamline the organizational steps for future studies.
Collapse
Affiliation(s)
- Azeem Saleem
- Imanova Ltd., Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Philip Murphy
- GlaxoSmithKline Global Imaging Unit, Stockley Park West, 1-3 Ironbridge Road, Uxbridge, Middlesex UB11 1BT, UK
| | - Christophe Plisson
- Imanova Ltd., Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Michael Lahn
- Early Phase Oncology Clinical Investigation, Eli Lilly Corporate Center, Building 31/4, 893 S. Delaware Street, Indianapolis, IN 46285, USA
| |
Collapse
|
39
|
Development of [18F]afatinib as new TKI-PET tracer for EGFR positive tumors. Nucl Med Biol 2014; 41:749-57. [PMID: 25066021 DOI: 10.1016/j.nucmedbio.2014.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/04/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Afatinib is an irreversible ErbB family blocker that was approved for the treatment of EGFR mutated non-small cell lung cancer in 2013. Positron emission tomography (PET) with fluorine-18 labeled afatinib provides a means to obtain improved understanding of afatinib tumor disposition in vivo. PET imaging with [(18)F]afatinib may also provide a method to select treatment responsive patients. The aim of this study was to label afatinib with fluorine-18 and evaluate its potential as TKI-PET tracer in tumor bearing mice. METHODS A radiochemically novel coupling, using peptide coupling reagent BOP, was explored and optimized to synthesize [(18)F]afatinib, followed by a metabolite analysis and biodistribution studies in two clinically relevant lung cancer cell lines, xenografted in nude mice. RESULTS A reliable [(18)F]afatinib radiosynthesis was developed and the tracer could be produced in yields of 17.0 ± 2.5% calculated from [(18)F]F(-) and >98% purity. The identity of the product was confirmed by co-injection on HPLC with non-labeled afatinib. Metabolite analysis revealed a moderate rate of metabolism, with >80% intact tracer in plasma at 45 min p.i. Biodistribution studies revealed rapid tumor accumulation and good retention for a period of at least 2 hours, while background tissues showed rapid clearance of the tracer. CONCLUSION We have developed a method to synthesize [(18)F]afatinib and related fluorine-18 labeled 4-anilinoquinazolines. [(18)F]Afatinib showed good stability in vivo, justifying further evaluation as a TKI-PET tracer.
Collapse
|
40
|
|
41
|
Wulkersdorfer B, Wanek T, Bauer M, Zeitlinger M, Müller M, Langer O. Using positron emission tomography to study transporter-mediated drug-drug interactions in tissues. Clin Pharmacol Ther 2014; 96:206-13. [PMID: 24682030 PMCID: PMC4153445 DOI: 10.1038/clpt.2014.70] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/21/2014] [Indexed: 01/08/2023]
Abstract
Drug disposition is highly regulated by membrane transporters. Some transporter-mediated drug–drug interactions (DDIs) may not manifest themselves in changes in systemic exposure but rather in changes in tissue exposure of drugs. To better assess the impact of transporter-mediated DDIs in tissues, positron emission tomography (PET)—a noninvasive imaging method—plays an increasingly important role. In this article, we provide examples of how PET can be used to assess transporter-mediated DDIs in different organs.
Collapse
Affiliation(s)
- B Wulkersdorfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - T Wanek
- Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - M Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - M Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - M Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - O Langer
- 1] Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria [2] Health and Environment Department, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
42
|
Tolmachev V, Varasteh Z, Honarvar H, Hosseinimehr SJ, Eriksson O, Jonasson P, Frejd FY, Abrahmsen L, Orlova A. Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591. J Nucl Med 2014; 55:294-300. [PMID: 24408895 DOI: 10.2967/jnumed.113.121814] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED The overexpression and excessive signaling of platelet-derived growth factor receptor β (PDGFRβ) has been detected in cancers, atherosclerosis, and a variety of fibrotic diseases. Radionuclide in vivo visualization of PDGFRβ expression might help to select PDGFRβ targeting treatment for these diseases. The goal of this study was to evaluate the feasibility of in vivo radionuclide imaging of PDGFRβ expression using an Affibody molecule, a small nonimmunoglobulin affinity protein. METHODS The PDGFRβ-binding Z09591 Affibody molecule was site-specifically conjugated with a maleimido derivative of DOTA and labeled with (111)In. Targeting of the PDGFRβ-expressing U-87 MG glioblastoma cell line using (111)In-DOTA-Z09591 was evaluated in vitro and in vivo. RESULTS DOTA-Z09591 was stably labeled with (111)In with preserved specific binding to PDGFRβ-expressing cells in vitro. The dissociation constant for (111)In-DOTA-Z09591 binding to U-87 MG cells was determined to be 92 ± 10 pM. In mice bearing U-87 MG xenografts, the tumor uptake of (111)In-DOTA-Z09591 was 7.2 ± 2.4 percentage injected dose per gram and the tumor-to-blood ratio was 28 ± 14 at 2 h after injection. In vivo receptor saturation experiments demonstrated that targeting of U-87 MG xenografts in mice was PDGFRβ-specific. U-87 MG xenografts were clearly visualized using small-animal SPECT/CT at 3 h after injection. CONCLUSION This study demonstrates the feasibility of in vivo visualization of PDGFRβ-expressing xenografts using an Affibody molecule. Further development of radiolabeled Affibody molecules might provide a useful clinical imaging tool for PDGFRβ expression during various pathologic conditions.
Collapse
Affiliation(s)
- Vladimir Tolmachev
- Division of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wei L, Shi J, Afari G, Bhattacharyya S. Preparation of clinical-grade (89) Zr-panitumumab as a positron emission tomography biomarker for evaluating epidermal growth factor receptor-targeted therapy. J Labelled Comp Radiopharm 2014; 57:25-35. [PMID: 24448743 PMCID: PMC3982615 DOI: 10.1002/jlcr.3134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/19/2013] [Accepted: 09/19/2013] [Indexed: 12/19/2022]
Abstract
Panitumumab is a fully human monoclonal antibody approved for the treatment of epidermal growth factor receptor (EGFR) positive colorectal cancer. Recently, panitumumab has been radiolabeled with (89) Zr and evaluated for its potential to be used as immuno-positron emission tomography (PET) probe for EGFR positive cancers. Interesting preclinical results published by several groups of researchers have prompted us to develop a robust procedure for producing clinical-grade (89) Zr-panitumumab as an immuno-PET probe to evaluate EGFR-targeted therapy. In this process, clinical-grade panitumumab is bio-conjugated with desferrioxamine chelate and subsequently radiolabeled with (89) Zr resulting in high radiochemical yield (>70%, n = 3) and purity (>98%, n = 3). All quality control (QC) tests were performed according to United States Pharmacopeia specifications. QC tests showed that (89) Zr-panitumumab met all specifications for human injection. Herein, we describe a step-by-step method for the facile synthesis and QC tests of (89) Zr-panitumumab for medical use. The entire process of bioconjugation, radiolabeling, and all QC tests will take about 5 h. Because the synthesis is fully manual, two rapid, in-process QC tests have been introduced to make the procedure robust and error free.
Collapse
Affiliation(s)
- Ling Wei
- ADRD, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jianfeng Shi
- ADRD, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Afari
- ADRD, SAIC-Frederick, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | |
Collapse
|
44
|
Bernard-Gauthier V, Boudjemeline M, Rosa-Neto P, Thiel A, Schirrmacher R. Towards tropomyosin-related kinase B (TrkB) receptor ligands for brain imaging with PET: radiosynthesis and evaluation of 2-(4-[(18)F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one and 2-(4-([N-methyl-(11)C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one. Bioorg Med Chem 2013; 21:7816-29. [PMID: 24183588 DOI: 10.1016/j.bmc.2013.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/01/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
Abstract
The interaction of tropomyosin-related kinase B (TrkB) with the cognate ligand brain-derived neurotrophic factor (BDNF) mediates fundamental pathways in the development of the nervous system. TrkB signaling alterations are linked to numerous neurodegenerative diseases and conditions. Herein we report the synthesis, biological evaluation and radiosynthesis of the first TrkB radioligands based on the recently identified 7,8-dihydroxyflavone chemotype. 2-(4-[(18)F]fluorophenyl)-7,8-dihydroxy-4H-chromen-4-one ([(18)F]10b) was synthesized in high radiochemical yields via an efficient SNAr radiofluorination involving a para-Michael acceptor substituted aryl followed by BBr3-promoted double demethylation. Selective N-[(11)C]methylation afforded 2-(4-([N-methyl-(11)C]-dimethylamino)phenyl)-7,8-dihydroxy-4H-chromen-4-one ([(11)C]10c) from the fully deprotected catechol-bearing normethyl precursor 13 with [(11)C]MeOTf. In vitro autoradiography of [(18)F]10b with transverse rat brain sections revealed high specific binding in the cortex, striatum, hippocampus and thalamus in accordance with expected TrkB distribution. Blockade experiments with both 7,8-dihydroxyflavone (1a) and TrkB cognate ligand, BDNF, led to decreases of 80% and 85% of radioligand binding strongly supporting the hypothesis that 7,8-dihydroxyflavones exert their effect on TrkB phosphorylation via direct TrkB extracellular domain (ECD) binding. Positron emission tomography (PET) studies revealed that [(18)F]10b and [(11)C]10c brain uptake is minimal and that they are rapidly eliminated from the plasma (effective plasma half-life 5-10 min) via hepatic secretion. Nevertheless, the high specific binding and TrkB specificity derived from in vitro experiments suggests that the 7,8-disubstituted flavone chemotype represents a promising scaffold for the development of TrkB radiotracers for PET.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Department of Chemistry, Université de Montréal, PO Box 6128, Station Downtown, QC H3C 3J7, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
45
|
Izar B, Rotow J, Gainor J, Clark J, Chabner B. Pharmacokinetics, clinical indications, and resistance mechanisms in molecular targeted therapies in cancer. Pharmacol Rev 2013; 65:1351-95. [PMID: 24092887 DOI: 10.1124/pr.113.007807] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The strategy for discovery and development of new cancer drugs has shifted the field from cytotoxic agents to therapies that selectively target oncogenic drivers. In the last decade, a number of targeted cancer therapies have been discovered and proven effective in a variety of hematological and solid malignancies. In this article, we review clinical pharmacokinetic characteristics of the U.S. Food and Drug Administration-approved targeted therapies and provide an overview of key clinical trials that led to approval of these drugs. The major limiting factor of targeted treatment is the development of resistance. We describe general principles of resistance and specific, clinically confirmed mechanisms of resistance to several therapies in different malignancies.
Collapse
|
46
|
Eckelman WC, Jones AG, Duatti A, Reba RC. Progress using Tc-99m radiopharmaceuticals for measuring high capacity sites and low density sites. Drug Discov Today 2013; 18:984-91. [DOI: 10.1016/j.drudis.2013.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/14/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
|
47
|
van der Veldt AAM, Smit EF, Lammertsma AA. Cancer therapy: could a novel test predict the amount of drug that reaches its target? Expert Rev Anticancer Ther 2013; 13:377-9. [PMID: 23560831 DOI: 10.1586/era.13.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Teng FF, Meng X, Sun XD, Yu JM. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine 2013; 8:3703-13. [PMID: 24124361 PMCID: PMC3794840 DOI: 10.2147/ijn.s51264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future.
Collapse
Affiliation(s)
- Fei-Fei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
49
|
van der Veldt AAM, Smit EF, Lammertsma AA. Positron Emission Tomography as a Method for Measuring Drug Delivery to Tumors in vivo: The Example of [(11)C]docetaxel. Front Oncol 2013; 3:208. [PMID: 23986880 PMCID: PMC3742054 DOI: 10.3389/fonc.2013.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/30/2013] [Indexed: 01/26/2023] Open
Abstract
Systemic anticancer treatments fail in a substantial number of patients. This may be caused by inadequate uptake and penetration of drugs in malignant tumors. Consequently, improvement of drug delivery to solid tumors may enhance its efficacy. Before evaluating strategies to enhance drug uptake in tumors, better understanding of drug delivery to human tumors is needed. Positron emission tomography (PET) is an imaging technique that can be used to monitor drug pharmacokinetics non-invasively in patients, based on radiolabeling these drugs with short-lived positron emitters. In this mini review, principles and potential applications of PET using radiolabeled anticancer drugs will be discussed with respect to personalized treatment planning in oncology. In particular, it will be discussed how these radiolabeled anticancer drugs could help to develop strategies for improved drug delivery to solid tumors. The development and clinical implementation of PET using radiolabeled anticancer drugs will be illustrated by validation studies of carbon-11 labeled docetaxel ([(11)C]docetaxel) in lung cancer patients.
Collapse
Affiliation(s)
- Astrid A M van der Veldt
- Department of Internal Medicine, VU University Medical Center , Amsterdam , Netherlands ; Department of Radiology and Nuclear Medicine, VU University Medical Center , Amsterdam , Netherlands
| | | | | |
Collapse
|
50
|
Poot AJ, van der Wildt B, Stigter-van Walsum M, Rongen M, Schuit RC, Hendrikse NH, Eriksson J, van Dongen GAMS, Windhorst AD. [¹¹C]Sorafenib: radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. Nucl Med Biol 2013; 40:488-97. [PMID: 23522977 DOI: 10.1016/j.nucmedbio.2013.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/07/2013] [Accepted: 02/02/2013] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKIs) like sorafenib are important anticancer therapeutics with thus far limited treatment response rates in cancer patients. Positron emission tomography (PET) could provide the means for selection of patients who might benefit from TKI treatment, if suitable PET tracers would be available. The aim of this study was to radiolabel sorafenib (1) with carbon-11 and to evaluate its potential as TKI-PET tracer in vivo. METHODS Synthetic methods were developed in which sorafenib was labeled at two different positions, followed by a metabolite analysis in rats and a PET imaging study in tumor-bearing mice. RESULTS [methyl-(11)C]-1 and [urea-(11)C]-1 were synthesized in yields of 59% and 53%, respectively, with a purity of >99%. The identity of the products was confirmed by coinjection on HPLC with reference sorafenib. In an in vivo metabolite analysis [(11)C]sorafenib proved to be stable. The percentage of intact product in blood-plasma after 45 min was 90% for [methyl-(11)C]-1 and 96% for [urea-(11)C]-1, respectively. Due to the more reliable synthesis, further research regarding PET imaging was performed with [methyl-(11)C]-1 in nude mice bearing FaDu (head and neck cancer), MDA-MB-231 (breast cancer) or RXF393 (renal cancer) xenografts. Highest tracer accumulation at a level of 2.52 ± 0.33%ID/g was observed in RXF393, a xenograft line extensively expressing the sorafenib target antigen Raf-1 as assessed by immunohistochemistry. CONCLUSION In conclusion, we have synthesized [(11)C]sorafenib as PET tracer, which is stable in vivo and has the capability to be used as PET tracer for imaging in tumor-bearing mice.
Collapse
Affiliation(s)
- Alex J Poot
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|