1
|
Hamid ARAH, Luna-Velez MV, Dudek AM, Jansen CFJ, Smit F, Aalders TW, Verhaegh GW, Schaafsma E, Sedelaar JPM, Schalken JA. Molecular Phenotyping of AR Signaling for Predicting Targeted Therapy in Castration Resistant Prostate Cancer. Front Oncol 2021; 11:721659. [PMID: 34490120 PMCID: PMC8417043 DOI: 10.3389/fonc.2021.721659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is defined by resistance of the tumor to androgen deprivation therapy (ADT). Several molecular changes, particularly in the AR signaling cascade, have been described that may explain ADT resistance. The variety of changes may also explain why the response to novel therapies varies between patients. Testing the specific molecular changes may be a major step towards personalized treatment of CRPC patients. The aim of our study was to evaluate the molecular changes in the AR signaling cascade in CRPC patients. We have developed and validated several methods which are easy to use, and require little tissue material, for exploring AR signaling pathway changes simultaneously. We found that the AR signaling pathway is still active in the majority of our CRPC patients, due to molecular changes in AR signaling components. There was heterogeneity in the molecular changes observed, but we could classify the patients into 4 major subgroups which are: AR mutation, AR amplification, active intratumoral steroidogenesis, and combination of AR amplification and active intratumoral steroidogenesis. We suggest characterizing the AR signaling pathway in CRPC patients before beginning any new treatment, and a recent fresh tissue sample from the prostate or a metastatic site should be obtained for the purpose of this characterization.
Collapse
Affiliation(s)
- Agus Rizal A H Hamid
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Urology, Ciptomangunkusumo Hospital, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Maria V Luna-Velez
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aleksandra M Dudek
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Tilly W Aalders
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ewout Schaafsma
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - John P M Sedelaar
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Rahman A, Pallichankandy S, Thayyullathil F, Galadari S. Critical role of H 2O 2 in mediating sanguinarine-induced apoptosis in prostate cancer cells via facilitating ceramide generation, ERK1/2 phosphorylation, and Par-4 cleavage. Free Radic Biol Med 2019; 134:527-544. [PMID: 30735839 DOI: 10.1016/j.freeradbiomed.2019.01.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Natural products are a major source of potential anticancer agents, and in order to develop improved and more effective cancer treatments, there is an immense need in exploring and elucidating their mechanism of action. Sanguinarine (SNG), a quaternary benzophenanthridine alkaloid, has been shown to induce cytotoxicity in various human cancers and suppresses various pro-tumorigenic processes such as invasion, angiogenesis, and metastasis in different cancers. Lack of understanding the anticancer mechanism(s) of SNG has impeded the development of this molecule as a potential anticancer agent. Earlier, we have reported that SNG induces reactive oxygen species (ROS)-dependent ceramide (Cer) generation and Akt dephosphorylation, leading to the induction of apoptosis in human leukemic cells. In the present study, we demonstrate that SNG has potent anti-proliferative activity against prostate cancer cells. Our data suggest that SNG induces Cer generation via inhibiting acid ceramidase and glucosylceramide synthase, two important enzymes involved in Cer metabolism. Furthermore, we demonstrate that SNG induces ROS-depended extracellular signal-regulated kinase1/2 (ERK1/2) phosphorylation, and prostate apoptosis response-4 (Par-4) cleavage, leading to the induction of apoptosis in human prostate cancer cells. Overall, our findings provide molecular insight into the role of ROS signaling in the anticancer mechanism(s) of SNG. This may provide the basis for its use as a nontoxic and an effective therapeutic agent in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Anees Rahman
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Siraj Pallichankandy
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Faisal Thayyullathil
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| | - Sehamuddin Galadari
- Cell Death Signaling Laboratory, Division of Science, Experimental Research Building, New York University Abu Dhabi, PO Box 129188, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Kumar A, Mastren T, Wang B, Hsieh JT, Hao G, Sun X. Design of a Small-Molecule Drug Conjugate for Prostate Cancer Targeted Theranostics. Bioconjug Chem 2016; 27:1681-9. [PMID: 27248781 DOI: 10.1021/acs.bioconjchem.6b00222] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted therapy has become an effective strategy of precision medicine for cancer treatment. Based on the success of antibody-drug conjugates (ADCs), here we report a theranostic design of small-molecule drug conjugates (T-SMDCs) for targeted imaging and chemotherapy of prostate cancer. The structure of T-SMDCs built upon a polyethylene glycol (PEG) scaffold consists of (i) a chelating moiety for positron emission tomography (PET) imaging when labeled with (68)Ga, a positron-emitting radioisotope; (ii) a prostate specific membrane antigen (PSMA) specific ligand for prostate cancer targeting; and (iii) a cytotoxic drug (DM1) for chemotherapy. For proof-of-concept, such a T-SMDC, NO3A-DM1-Lys-Urea-Glu, was synthesized and evaluated. The chemical modification of Lys-Urea-Glu for the construction of the conjugate did not compromise its specific binding affinity to PSMA. The PSMA-mediated internalization of (68)Ga-labeled NO3A-DM1-Lys-Urea-Glu displayed a time-dependent manner, allowing the desired drug delivery and release within tumor cells. The antiproliferative activity of the T-SMDC showed a positive correlation with the PSMA expression level. Small animal PET imaging with (68)Ga-labeled NO3A-DM1-Lys-Urea-Glu exhibited significantly higher uptake (p < 0.01) in the PSMA positive PC3-PIP tumors (4.30 ± 0.20%ID/g) at 1 h postinjection than in the PSMA negative PC3-Flu tumors (1.12 ± 0.42%ID/g). Taken together, we have successfully designed and synthesized a T-SMDC system for prostate cancer targeted imaging and therapy.
Collapse
Affiliation(s)
| | | | - Bin Wang
- Department of Urology, the First Affiliated Hospital, Medical School of Xi'An Jiaotong University , Xi'An, Shaanxi 710061, P. R. China
| | | | | | | |
Collapse
|
4
|
Frieboes HB, Curtis LT, Wu M, Kani K, Mallick P. Simulation of the Protein-Shedding Kinetics of a Fully Vascularized Tumor. Cancer Inform 2015; 14:163-75. [PMID: 26715830 PMCID: PMC4687979 DOI: 10.4137/cin.s35374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/09/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
Circulating biomarkers are of significant interest for cancer detection and treatment personalization. However, the biophysical processes that determine how proteins are shed from cancer cells or their microenvironment, diffuse through tissue, enter blood vasculature, and persist in circulation remain poorly understood. Since approaches primarily focused on experimental evaluation are incapable of measuring the shedding and persistence for every possible marker candidate, we propose an interdisciplinary computational/experimental approach that includes computational modeling of tumor tissue heterogeneity. The model implements protein production, transport, and shedding based on tumor vascularization, cell proliferation, hypoxia, and necrosis, thus quantitatively relating the tumor and circulating proteomes. The results highlight the dynamics of shedding as a function of protein diffusivity and production. Linking the simulated tumor parameters to clinical tumor and vascularization measurements could potentially enable this approach to reveal the tumor-specific conditions based on the protein detected in circulation and thus help to more accurately manage cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hermann B Frieboes
- Department of Bioengineering, University of Louisville, Louisville, KY, USA. ; James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Louis T Curtis
- Department of Bioengineering, University of Louisville, Louisville, KY, USA
| | - Min Wu
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Chicago, IL, USA
| | - Kian Kani
- Center for Applied Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| |
Collapse
|
5
|
Guo H, Xu Y, Fu Q. Curcumin inhibits growth of prostate carcinoma via miR-208-mediated CDKN1A activation. Tumour Biol 2015; 36:8511-7. [PMID: 26032092 DOI: 10.1007/s13277-015-3592-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer (PC) is a prevalent cancer in aged men. Curcumin is an active ingredient that has been extracted from the rhizome of the plant Curcuma longa. Recently, a potential of Curcumin against PC has been reported in PC, whereas the underlying molecular mechanisms are not completely understood. Here, we studied the effects of low-dose Curcumin on PC cell growth. Curcumin (from 0.2 to 0.8 μmol/l) dose-dependently inhibited the proliferation of PC cells, without affecting cell apoptosis. Further analyses showed that Curcumin dose-dependently increased a cell cycle suppressor CDKN1A at protein levels, but not mRNA levels, in PC cells, suggesting that Curcumin may regulate the translation of CDKN1A, as well as a possible involvement of miRNA intervention. From all CDKN1A-3'-UTR-binding miRNAs, we found that miR-208 was specifically inhibited in PC cells dose-dependently by Curcumin. Moreover, miR-208 was found to bind CDKN1A to suppress its expression. In a loss-of-function experiment, PC cells that overexpressed miR-208 failed to decrease cell proliferation in response to Curcumin. Together, these data suggest that Curcumin inhibits growth of PC via miR-208-mediated CDKN1A activation.
Collapse
Affiliation(s)
- Hui Guo
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yuemin Xu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
6
|
Chen R, Zhao Y, Huang Y, Yang Q, Zeng X, Jiang W, Liu J, Thrasher JB, Forrest ML, Li B. Nanomicellar TGX221 blocks xenograft tumor growth of prostate cancer in nude mice. Prostate 2015; 75:593-602. [PMID: 25620467 PMCID: PMC4376584 DOI: 10.1002/pros.22941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/10/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Combination of androgen ablation along with early detection and surgery has made prostate cancer highly treatable at the initial stage. However, this cancer remains the second leading cause of cancer death among American men due to castration-resistant progression, suggesting that novel therapeutic agents are urgently needed for this life-threatening condition. Phosphatidylinositol 3-kinase p110β is a major cellular signaling molecule and has been identified as a critical factor in prostate cancer progression. In a recent report, we established a nanomicelle-based strategy to deliver p110β-specific inhibitor TGX221 to prostate cancer cells by conjugating the surface of nanomicelles with a RNA aptamer against prostate specific membrane antigen (PSMA) present in all clinical prostate cancers. In this study, we tested this nanomicellar TGX221 for its in vivo anti-tumor effect in mouse xenograft models. METHODS Prostate cancer cell lines LAPC-4, LNCaP, C4-2 and 22RV1 were used to establish subcutaneous xenograft tumors in nude mice. Paraffin sections from xenograft tumor specimens were used in immunohistochemistry assays to detect AKT phosphorylation, cell proliferation marker Ki67 and proliferating cell nuclear antigen (PCNA), as well as 5-bromo-2-deoxyuridine (BrdU) incorporation. Quantitative PCR assay was conducted to determine prostate-specific antigen (PSA) gene expression in xenograft tumors. RESULTS Although systemic delivery of unconjugated TGX221 significantly reduced xenograft tumor growth in nude mice compared to solvent control, the nanomicellar TGX221 conjugates completely blocked tumor growth of xenografts derived from multiple prostate cancer cell lines. Further analyses revealed that AKT phosphorylation and cell proliferation indexes were dramatically reduced in xenograft tumors received nanomicellar TGX221 compared to xenograft tumors received unconjugated TGX221 treatment. There was no noticeable side effect by gross observation or at microscopic level of organ tissue section. CONCLUSION These data strongly suggest that prostate cancer cell-targeted nanomicellar TGX221 is an effective anti-cancer agent for prostate cancer.
Collapse
Affiliation(s)
- Ruibao Chen
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Department of Urology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yunqi Zhao
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Yan Huang
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - Qiuhong Yang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Xing Zeng
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Department of Urology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Wencong Jiang
- Department of Urology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang 524001, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan 430030, China
| | - J. Brantley Thrasher
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS 66160
- Department of Urology, The Affiliated Hospital, Guangdong Medical College, Zhanjiang 524001, China
- Corresponding author: Benyi Li, MD/PhD, KUMC Urology, 3901 Rainbow Blvd, MS 3035, Kansas City, KS 66160. . Tel: 913.588.4773
| |
Collapse
|