1
|
Pressman P, Clemens R, Hayes AW. Significant shifts in preclinical and clinical neurotoxicology: a review and commentary. Toxicol Mech Methods 2023; 33:173-182. [PMID: 35920262 DOI: 10.1080/15376516.2022.2109228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The ever-expanding prevalence of adverse neurotoxic reactions of the brain in response to therapeutic and recreational drugs, dietary supplements, environmental hazards, cosmetic ingredients, a spectrum of herbals, health status, and environmental stressors continues to prompt the development of novel cell-based assays to better determine neurotoxic hazard. Neurotoxicants may cause direct and epigenetic damage to the nervous tissue and alter the chemistry, structure, or normal activity of the nervous system. In severe neurotoxicity due to exposure to physical or psychosocial toxicants, neurons are disrupted or killed, and a consistent pattern of clinical neural dysfunction appears. In utero exposure to neurotoxicants can lead to altered development of the nervous system [developmental neurotoxicity (DNT)]. Patients with certain disorders and certain genomic makeup may be particularly susceptible to neurotoxicants. Traditional cytotoxicity measurements, like cell death, are easy to measure, but insufficient at identifying current routine biomarkers of toxicity including functional impairment in cell communication, which often occurs before or even in the absence of cell death. The present paper examines some of the limitations of existing neurotoxicology in light of the increasing need to develop tools to meet the challenges of achieving greater sensitivity in detection and developing and standardizing methods for exploring the toxicologic risk of such neurotoxic entities as engineered nanomaterials and even variables associated with poverty.
Collapse
Affiliation(s)
- Peter Pressman
- Clinical Medicine, Saba University School of Medicine, The Bottom, Caribbean, The Netherlands
| | - Roger Clemens
- School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Jenkinson S, Schmidt F, Rosenbrier Ribeiro L, Delaunois A, Valentin JP. A practical guide to secondary pharmacology in drug discovery. J Pharmacol Toxicol Methods 2020; 105:106869. [PMID: 32302774 DOI: 10.1016/j.vascn.2020.106869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Secondary pharmacological profiling is increasingly applied in pharmaceutical drug discovery to address unwanted pharmacological side effects of drug candidates before entering the clinic. Regulators, drug makers and patients share a demand for deep characterization of secondary pharmacology effects of novel drugs and their metabolites. The scope of such profiling has therefore expanded substantially in the past two decades, leading to the implementation of broad in silico profiling methods and focused in vitro off-target screening panels, to identify liabilities, but also opportunities, as early as possible. The pharmaceutical industry applies such panels at all stages of drug discovery routinely up to early development. Nevertheless, target composition, screening technologies, assay formats, interpretation and scheduling of panels can vary significantly between companies in the absence of dedicated guidelines. To contribute towards best practices in secondary pharmacology profiling, this review aims to summarize the state-of-the art in this field. Considerations are discussed with respect to panel design, screening strategy, implementation and interpretation of the data, including regulatory perspectives. The cascaded, or integrated, use of in silico and off-target profiling allows to exploit synergies for comprehensive safety assessment of drug candidates.
Collapse
Affiliation(s)
- Stephen Jenkinson
- Drug Safety Research and Development, Pfizer Inc., La Jolla, CA 92121, United States of America.
| | - Friedemann Schmidt
- Sanofi, R&D Preclinical Safety, Industriepark Höchst, 65926 Frankfurt/Main, Germany
| | - Lyn Rosenbrier Ribeiro
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Alderley Edge, SK10 4TG, United Kingdom
| | - Annie Delaunois
- UCB BioPharma SRL, Early Solutions, Development Science, Non-Clinical Safety, 1420 Braine L'Alleud, Walloon Region, Belgium
| | - Jean-Pierre Valentin
- UCB BioPharma SRL, Early Solutions, Development Science, Non-Clinical Safety, 1420 Braine L'Alleud, Walloon Region, Belgium
| |
Collapse
|
3
|
Jackson SJ, Authier S, Brohmann H, Goody SM, Jones D, Prior H, Rosch A, Traebert M, Tse K, Valentin JP, Milne A. Neurofunctional test batteries in safety pharmacology – Current and emerging considerations for the drug development process. J Pharmacol Toxicol Methods 2019; 100:106602. [DOI: 10.1016/j.vascn.2019.106602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022]
|
4
|
Response of safety pharmacologists to challenges arising from the rapidly evolving changes in the pharmaceutical industry. J Pharmacol Toxicol Methods 2019; 98:106593. [PMID: 31158459 DOI: 10.1016/j.vascn.2019.106593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/14/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023]
Abstract
This commentary highlights and expands upon the thoughts conveyed in the lecture by Dr. Alan S. Bass, recipient of the 2017 Distinguished Service Award from the Safety Pharmacology Society, given on 27 September 2017 in Berlin, Germany. The lecture discussed the societal, scientific, technological, regulatory and economic events that dramatically impacted the pharmaceutical industry and ultimately led to significant changes in the strategic operations and practices of safety pharmacology. It focused on the emerging challenges and opportunities, and considered the lessons learned from drug failures and the influences of world events, including the financial crisis that ultimately led to a collapse of the world economies from which we are now recovering. Events such as these, which continue to today, challenge the assumptions that form the foundation of our discipline and dramatically affect the way that safety pharmacology is practiced. These include the latest scientific and technological developments contributing to the design and advancement of safe medicines. More broadly, they reflect the philosophical mission of safety pharmacology and the roles and responsibilities served by safety pharmacologists. As the discipline of Safety Pharmacology continues to evolve, develop and mature, the reader is invited to reflect on past experiences as a framework towards a vision of the future of the field.
Collapse
|
5
|
Uteng M, Urban L, Brees D, Muller PY, Kullak-Ublick GA, Bouchard P, Tougas G, Chibout SD. Safety differentiation: emerging competitive edge in drug development. Drug Discov Today 2018; 24:285-292. [PMID: 30244081 DOI: 10.1016/j.drudis.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
With increasing expectations to provide evidence of drug efficacy, safety, and cost-effectiveness, best-in-class drugs are a major value driver for the pharmaceutical industry. Superior safety is a key differentiation criterion that could be achieved through better risk:benefit profiles, safety margins, fewer contraindications, and improved patient compliance. To accomplish this, comparative safety assessments using innovative and adaptive nonclinical and clinical outcome-based approaches should be undertaken, and continuous strategic adjustments must be made as the risk:benefit profiles evolve. Key success criteria include scientific expertise and integration between all disciplines during the full extent of the drug development process.
Collapse
Affiliation(s)
- Marianne Uteng
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Basel, Switzerland.
| | - Laszlo Urban
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Cambridge, MA, USA
| | - Dominique Brees
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Basel, Switzerland
| | | | - Gerd A Kullak-Ublick
- Novartis Pharma AG, Global Drug Development, Chief Medical Office and Patient Safety, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Page Bouchard
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Cambridge, MA, USA
| | - Gervais Tougas
- Novartis Pharma AG, Global Drug Development, Chief Medical Office and Patient Safety, Basel, Switzerland
| | - Salah-Dine Chibout
- Novartis Institutes for Biomedical Research, Translational Medicine, Pre-Clinical Safety, Basel, Switzerland
| |
Collapse
|
6
|
Valentin JP, Guillon JM, Jenkinson S, Kadambi V, Ravikumar P, Roberts S, Rosenbrier-Ribeiro L, Schmidt F, Armstrong D. In vitro secondary pharmacological profiling: An IQ-DruSafe industry survey on current practices. J Pharmacol Toxicol Methods 2018; 93:7-14. [PMID: 30030184 DOI: 10.1016/j.vascn.2018.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 01/05/2023]
Abstract
INTRODUCTION In 2015, IQ DruSafe conducted a survey of its membership to identify industry practices related to in vitro off target pharmacological profiling of small molecules. METHODS An anonymous survey of 20 questions was submitted to IQ-DruSafe representatives. Questions were designed to explore screening strategies, methods employed and experience of regulatory interactions related to in vitro secondary pharmacology profiling. RESULTS The pharmaceutical industry routinely utilizes panels of in vitro assays to detect undesirable off-target interactions of new chemical entities that are deployed at all stages of drug discovery and early development. The formats, approaches and size of panels vary between companies, in particular i) choice of assay technology; ii) test concentration (single vs. multiple concentrations) iii) rationale for targets and panels selection (taking into account organizational experience, primary target, therapeutic area, availability at service providers) iv) threshold level for significant interaction with a target and v) data interpretation. Data are generated during the early phases of drug discovery, principally before in vivo GLP studies (i.e., hit-to-lead, lead optimization, development candidate selection) and used to contextualize in vivo non-clinical and clinical findings. Data were included in regulatory documents, and around half of respondents experienced regulatory questions about the significance of the results. CONCLUSION While it seems that in vitro secondary pharmacological profiling is generally considered valuable across the industry, particularly as a tool in early phases of drug discovery for small molecules, there is only loose consensus on testing paradigm, the required interpretation and suitable follow up strategies to fully understand potential risk.
Collapse
Affiliation(s)
| | | | - Stephen Jenkinson
- Pfizer, Global Safety Pharmacology, Drug Safety Research and Development, San Diego, CA, USA
| | - Vivek Kadambi
- Blueprint Medicines, Nonclinical Development, Cambridge, MA, USA
| | - Peri Ravikumar
- Allergan, Nonclinical and Translational Sciences, Safety Assessment, Madison, NJ, USA
| | - Sonia Roberts
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Lyn Rosenbrier-Ribeiro
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Friedemann Schmidt
- Sanofi-Aventis Deutschland GmbH, Preclinical Safety, R&D, Frankfurt am Main, Germany
| | - Duncan Armstrong
- Novartis Institutes for Biomedical Research, Pre-Clinical Safety, Cambridge, MA, USA
| |
Collapse
|
7
|
Maciejewski M, Lounkine E, Whitebread S, Farmer P, DuMouchel W, Shoichet BK, Urban L. Reverse translation of adverse event reports paves the way for de-risking preclinical off-targets. eLife 2017; 6. [PMID: 28786378 PMCID: PMC5548487 DOI: 10.7554/elife.25818] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 01/06/2023] Open
Abstract
The Food and Drug Administration Adverse Event Reporting System (FAERS) remains the primary source for post-marketing pharmacovigilance. The system is largely un-curated, unstandardized, and lacks a method for linking drugs to the chemical structures of their active ingredients, increasing noise and artefactual trends. To address these problems, we mapped drugs to their ingredients and used natural language processing to classify and correlate drug events. Our analysis exposed key idiosyncrasies in FAERS, for example reports of thalidomide causing a deadly ADR when used against myeloma, a likely result of the disease itself; multiplications of the same report, unjustifiably increasing its importance; correlation of reported ADRs with public events, regulatory announcements, and with publications. Comparing the pharmacological, pharmacokinetic, and clinical ADR profiles of methylphenidate, aripiprazole, and risperidone, and of kinase drugs targeting the VEGF receptor, demonstrates how underlying molecular mechanisms can emerge from ADR co-analysis. The precautions and methods we describe may enable investigators to avoid confounding chemistry-based associations and reporting biases in FAERS, and illustrate how comparative analysis of ADRs can reveal underlying mechanisms. DOI:http://dx.doi.org/10.7554/eLife.25818.001 New treatments are tested in clinical trials before they are licensed for use in patients, but until the drugs are available for prescribing it’s not always possible to identify every side effect. When the drugs enter the clinic, they might be prescribed to patients with multiple medical conditions, or combined with other treatments. The drugs may also be taken for longer periods of time than tested in trials. It is therefore common for new adverse reactions to emerge after a drug is in widespread use. The FDA Adverse Event Reporting System (FAERS) is a surveillance system used in the United States for reporting drug side effects after new treatments have been licensed. Healthcare professionals and patients can submit reports to the database, logging the adverse drug reactions that they have experienced. FAERS currently contains over 8.5 million entries, and is growing all the time. However, Maciejewski et al. show that the database has several shortcomings that are reducing its usefulness. For instance, on average any given drug will have 16 different names in the system; this makes it challenging to group all of the reported side effects so that trends and patterns can be correctly seen. To address this first problem, Maciejewski et al. grouped together drugs according to their active ingredients, rather than their name. This made it much easier to account for subsequent, and more crucial conflating factors such as multiple reports for the same adverse event and patient, or cases where adverse reactions were confused with the diseases that the drugs are trying to treat. For example, diabetes was listed as a side effect for drugs used to treat diabetes. Building on this cleaned-up dataset, Maciejewski et al. monitored how adverse event signals evolve over time and uncovered biases that were hard to see otherwise. For example, side-effects were reported more often when drugs were in the news. More strikingly, this bias affected not only the drug in question, but also other drugs that acted in the same way or on the same molecular target. The computational method developed by Maciejewski et al. allows the data in FAERS to be combined and corrected, making easier to evaluate the safety of different medicines. The link between adverse side effects and the molecular targets of the drug, via the ingredient’s chemical structure, furthermore makes it possible to analyze such clinical data reliably by using chemical and genetic information. In the future, this method could also help to identify previously unknown side effects and the biological mechanisms behind them. This could help researchers to develop new drugs with improved side effect profiles. DOI:http://dx.doi.org/10.7554/eLife.25818.002
Collapse
Affiliation(s)
| | - Eugen Lounkine
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Steven Whitebread
- Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Pierre Farmer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - William DuMouchel
- Oracle Health Sciences, Oracle Health Sciences, Burlington, United States
| | | | - Laszlo Urban
- Novartis Institutes for Biomedical Research, Cambridge, United States
| |
Collapse
|
8
|
Pannirselvam M, Brabham T, Botchway AW, Hodges DB, Traebert M, Pugsley MK. The northeast regional SPS meeting update: Safety pharmacology innovations and applications. J Pharmacol Toxicol Methods 2017; 85:82-86. [DOI: 10.1016/j.vascn.2016.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/21/2023]
|
9
|
Secondary pharmacology: screening and interpretation of off-target activities – focus on translation. Drug Discov Today 2016; 21:1232-42. [DOI: 10.1016/j.drudis.2016.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/22/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
|
10
|
Dambach DM, Misner D, Brock M, Fullerton A, Proctor W, Maher J, Lee D, Ford K, Diaz D. Safety Lead Optimization and Candidate Identification: Integrating New Technologies into Decision-Making. Chem Res Toxicol 2015; 29:452-72. [DOI: 10.1021/acs.chemrestox.5b00396] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Donna M. Dambach
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dinah Misner
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Aaron Fullerton
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - William Proctor
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Jonathan Maher
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dong Lee
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kevin Ford
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Dolores Diaz
- Department of Safety Assessment, Genentech, Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|