1
|
Xu L, Chen G, Wu J, Chen M, Wang W, Chen Z, Lin L, Sun W, Yao X, Zhang J, Chen J, Zhang X. A base-stacking-driven ratiometric electrochemical biosensor using dsDNA-mediated MB-and-cholesterol co-immobilization: A model of hydrophobic versatile platform for biosensing. Biosens Bioelectron 2025; 284:117540. [PMID: 40347597 DOI: 10.1016/j.bios.2025.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/08/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
It remains a huge challenge to integrate the stability, reproducibility, and sensitivity of electrochemical DNA biosensors (E-sensors) for practical applications in a simplistic yet cost-effective way. In this work, we present a versatile and inclusive hexanethiol self-assembled monolayer (HT SAM) platform that strategically recruits cholesterol and methylene blue (MB) through double-stranded DNA (dsDNA) coordination, incorporating immobilization and reference functionalities onto the HT SAM. Systematically augmented anchoring sites substantially enhanced interfacial DNA probe immobilization stability and efficiency. Additionally, co-immobilized MB functions as an intrinsic reference signal, effectively mitigating the precision limitations arising from reproducibility issues inherent in conventional E-sensors. The upright dsDNA and the coaxial base-stacking promote the target-probe interactions and improve both hybridization efficiency and rate for the interface DNA probes. The tightly packed hydrophobic HT SAM facilitates [Fe(CN)6]3‒-mediated cascade electrocatalytic amplification, further increasing E-sensor sensitivity. As a proof-of-concept, the designed base-stacking-driven ratiometric E-sensor using dsDNA-mediated MB-and-cholesterol co-immobilization successfully detected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N gene-related fragments, demonstrates a wide dynamic range (10 fM to 10 nM) with a low detection limit of 1.32 fM, exhibiting excellent reproducibility and selectivity. With its high detection performance, ease of operation and low cost, this E-sensor is well-suited for point-of-care testing in large-scale disease screening. Above all, the hydrophobic HT SAM as a versatile and inclusive platform combined with the ease of modification of DNA structures to recruit functional molecules and maximize their contributions is key to synergistically enhancing the overall performance of E-sensors.
Collapse
Affiliation(s)
- Lilan Xu
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Jiayan Wu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Mingzhu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Wenlu Wang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Zhuhua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Lifang Lin
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Weiming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Xu Yao
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Jianzhong Zhang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, PR China.
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China.
| | - Xi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Innovative Drug Research Institute, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Department of Clinical Pharmacy and Pharmacy Administration, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China.
| |
Collapse
|
2
|
Mostafavi A, Anbia M, Yazdi F. Chitosan and carboxymethyl cellulose coated on NH 2-UiO-66 as green, biocompatible, nontoxic, and pH-stimuli responsive for levofloxacin delivery: A comparative study. Int J Biol Macromol 2025; 308:142501. [PMID: 40154719 DOI: 10.1016/j.ijbiomac.2025.142501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Recently, developing an efficient and green approach to overcoming bacterial resistance in drug delivery systems has remained a significant challenge. This work is supposed to design and create two novel, green, biocompatible nanocarriers by incorporating levofloxacin-loaded NH2-UiO-66 into the chitosan and carboxymethyl cellulose biopolymers. The structural characteristics and antibacterial activity of the synthesized carriers were analyzed using FT-IR, SEM, BET, XRD, TGA-DTA, zeta potential, DLS, swelling analysis, ZOI, MIC, MBC, and MTT techniques. The in vitro release rate of the levofloxacin at acidic and neutral environments from the NH2-UiO-66/levofloxacin/carboxymethyl cellulose was 78±2.1% and 18±1.9% and from the NH2-UiO-66/levofloxacin/chitosan was 86±3.5% and 69±2.9% respectively, over 72 h. Kinetics studies showed that the Corsmeyer-Peppas and Higuchi models predicted the release mechanisms of NH2-UiO-66/levofloxacin/carboxymethyl cellulose (R2=0.97) and NH2-UiO-66/levofloxacin/chitosan nanocarriers R2=0.97, respectively. Additionally, studies of the antibacterial properties showed that two NH2-UiO-66/levofloxacin/carboxymethyl cellulose and NH2-UiO-66/levofloxacin/chitosan nanocarriers were more effective against Staphylococcus aureus bacteria than Escherichia coli bacteria. The MTT assay showed that after 48 h, the NH2-UiO-66/levofloxacin/carboxymethyl cellulose nanocarrier with a concentration of 8 mg/mL exhibited lower cell viability compared to the NH2-UiO-66/levofloxacin/chitosan nanocarrier. Overall, these developed nanocarriers hold promise as advanced drug delivery systems due to their strong antibacterial properties.
Collapse
Affiliation(s)
- Arezoo Mostafavi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran.
| | - Fatemeh Yazdi
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Farjam Street, Narmak, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
3
|
Lu X, Wan X, Lian J, Peng J, Jing P, Guo Q, Liao Y, Jiang Y, Yang C, Jin L, Shi S, Yao Y, Hu WW, Luo J. Antibiotic-based micelles with bone-targeting and pH-responsive properties for infectious osteomyelitis treatment. J Colloid Interface Sci 2025; 685:648-660. [PMID: 39862844 DOI: 10.1016/j.jcis.2025.01.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs). The incorporation of vinylphosphonates imparts bone-targeting and charge-switchable properties of CASMs, creating P-CASMs. These P-CASMs exhibit good biocompatibility at physiological pH and strong adhesion to bone infection sites (pH 5.5) due to electrostatic interactions. They can effectively penetrate bacterial biofilms and release antibiotics in response to the local microenvironment, thereby eradicating bacteria. Compared to previous systems, the P-CASMs show higher drug loading (∼23 %), improved stability, and better biosafety. This innovative system holds substantial potential for clinical applications in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Xinyu Lu
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China; Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China
| | - Xiaohui Wan
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China
| | - Jiali Lian
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China
| | - Jiaoying Peng
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, China
| | - Qiao Guo
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China
| | - Yulong Liao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China
| | - Yuchen Jiang
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China
| | - Chengli Yang
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China
| | - Lunqiang Jin
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China
| | - Shaorui Shi
- Department of Laboratory Medicine, The Second People's Hospital of Yibin, West China Hospital, Yibin Hospital Sichuan University, Yibin 644000 China.
| | - Yongchao Yao
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China.
| | - Wenchuang Walter Hu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041 China.
| | - Jianbin Luo
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China.
| |
Collapse
|
4
|
Zhai M, Sheng J, Zhang R, Cao M, Chen Z, Song Y. Preparation, characterization and tomato preservation applications of gelatin-polyvinyl alcohol composite films with temperature and pH responsive properties. Int J Biol Macromol 2025; 310:143262. [PMID: 40250644 DOI: 10.1016/j.ijbiomac.2025.143262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
In recent years, the construction of responsive nano-antimicrobial films has been a hot topic in reducing microbial resistance and food preservation. However, the non-degradable and mono-responsive nature of most films limits their application. In this study, silica nanoparticles were modified by imine bonding and poly-N-isopropyl acrylamide (PNIPAM), and citral (CIT) was added as an active substance to construct temperature- and pH-responsive nanoparticles (HMSS-NH2-CIT-PNIPAM, abbreviated as HNCP). It was then added to a gelatin (GEL)/polyvinyl alcohol (PVA) film to produce a degradable GP/HNCP composite film. The films were also evaluated for their physical properties, release characteristics, and tomato preservation. The tensile strength of the film was increased by 39.26 % as compared to the control. And the films had a good elongation (253.0 ± 4.53 %). The TGA results showed that the loading of CIT in HNCP was 42 % and the composite membrane could sustain the release for 120 + h under combined pH and temperature (pH 5.8/37 °C) stimulation. In addition, in tomato preservation experiments, tomatoes treated with GP7 composite film extended shelf life by 3-4 days compared with the control group. The biodegradability and good cytocompatibility of the composite membrane were demonstrated by degradation rate and MTT experiments. Therefore, GEL/PVA/HNCP smart response composite film is a smart antimicrobial packaging material with wide application prospects.
Collapse
Affiliation(s)
- Mengge Zhai
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Sheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, China; International Research Centre for Food and Health, China.
| | - Ruxin Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengkai Cao
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ziyi Chen
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yishan Song
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, China.
| |
Collapse
|
5
|
Madineh H, Mansourinia F, Zarrintaj P, Poostchi M, Gnatowski P, Kucinska-Lipka J, Ghaffari M, Hasanin MS, Chapi S, Yazdi MK, Ashrafizadeh M, Bączek T, Saeb MR, Wang G. Stimuli-responsive delivery systems using carbohydrate polymers: A review. Int J Biol Macromol 2025; 310:142648. [PMID: 40174846 DOI: 10.1016/j.ijbiomac.2025.142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Carbohydrate polymers, including Chitosan, Cellulose, Starch, Dextran, Pectin, Alginate, and Hyaluronic Acid, have been considered as stimuli-responsive biopolymers demonstrating significant potential for drug delivery approaches. Relying on the specific design and fabrication, such biopolymers are able to respond to fluctuations in pH, temperature, or enzymatic activity. This review investigates stimuli-responsive biopolymers, known as carbohydrate polymers, mainly chitosan, cellulose, and alginate, utilized as drug delivery approaches, emphasizing that these stimuli-responsive biopolymers accelerate controlled drug release. The pH-responsive delivery systems selectively target acidic tumor microenvironments, while temperature-responsive materials provide precise control for drug release produced by hyperthermia. Light-responsive biopolymers provide spatial and temporal control, providing appropriate for targeted therapy. Redox-responsive structures are especially efficient in responding to elevated glutathione (GSH) in tumor microenvironment, facilitating targeted drug release. Electro- and magnetic-responsive systems provide remote control functionalities, improving the accuracy of drug administration. The incorporation of multi-stimuli-responsive mechanisms implies a remarkable progression in drug delivery, providing a more versatile and adaptable framework for therapeutic applications. Accordingly, the future research on carbohydrate polymer-based stimuli-responsive delivery systems should focus on improving the responsiveness and targeting efficacy through complicated optimization of features and performance of carbohydrate polymers, where the integration of multifunctional moieties facilitates transformation of targeted drugs for broader biological functions.
Collapse
Affiliation(s)
- Hossein Madineh
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mansourinia
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Poostchi
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland; Department of Environmental Toxicology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23A, Gdańsk 80-204, Poland.
| | - Justyna Kucinska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mehdi Ghaffari
- Polymer Group, Faculty of Technical and Engineering, Golestan University, P. O. Box 155, Gorgan, Golestan, Iran
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, 33 El Bohouth St., Cairo 12622, Egypt; Department of Polymer and Biomaterials Science, West Pomeranian University of Technology in Szczecin, Al. Piastow 45, 70-311 Szczecin, Poland
| | - Sharanappa Chapi
- Department of Physics, B.M.S. College of Engineering, Basavanagudi - 560019, Bengaluru, Karnataka, India
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Guizhen Wang
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai 200072, China.
| |
Collapse
|
6
|
Elshobary ME, Badawy NK, Ashraf Y, Zatioun AA, Masriya HH, Ammar MM, Mohamed NA, Mourad S, Assy AM. Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review. Pharmaceuticals (Basel) 2025; 18:402. [PMID: 40143178 PMCID: PMC11944582 DOI: 10.3390/ph18030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, efflux pump overexpression, biofilm formation, target site modifications, and the enzymatic degradation of antibiotics. Specific focus is given to membrane transport systems such as ATP-binding cassette (ABC) transporters, resistance-nodulation-division (RND) efflux pumps, major facilitator superfamily (MFS) transporters, multidrug and toxic compound extrusion (MATE) systems, small multidrug resistance (SMR) families, and proteobacterial antimicrobial compound efflux (PACE) families. Additionally, the review explores the global burden of MDR pathogens and evaluates emerging therapeutic strategies, including quorum quenching (QQ), probiotics, postbiotics, synbiotics, antimicrobial peptides (AMPs), stem cell applications, immunotherapy, antibacterial photodynamic therapy (aPDT), and bacteriophage. Furthermore, this review discusses novel antimicrobial agents, such as animal-venom-derived compounds and nanobiotics, as promising alternatives to conventional antibiotics. The interplay between clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) in bacterial adaptive immunity is analyzed, revealing opportunities for targeted genetic interventions. By synthesizing current advancements and emerging strategies, this review underscores the necessity of interdisciplinary collaboration among biomedical scientists, researchers, and the pharmaceutical industry to drive the development of novel antibacterial agents. Ultimately, this comprehensive analysis provides a roadmap for future research, emphasizing the urgent need for sustainable and cooperative approaches to combat antibiotic resistance and safeguard global health.
Collapse
Affiliation(s)
- Mostafa E. Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Aquaculture Research, Alfred Wegener Institute (AWI)—Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Nadia K. Badawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Asmaa A. Zatioun
- Microbiology and Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22514, Egypt
| | - Hagar H. Masriya
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed M. Ammar
- Microbiology and Biochemistry Program, Faculty of Science, Benha University-Obour Campus, Benha 13518, Egypt
| | | | - Sohaila Mourad
- Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt
| | - Abdelrahman M. Assy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Deng Y, Wang R, Ma Z, Zuo W, Zhu M. S-Alkylated sulfonium betulin derivatives: Synthesis, antibacterial activities, and wound healing applications. Bioorg Chem 2025; 154:108056. [PMID: 39673879 DOI: 10.1016/j.bioorg.2024.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Betulin, a bioactive triterpenoid derived from Betulaceae bark with antimicrobial and anti-inflammatory properties, holds great potential as a therapeutic agent. In this work, cationic sulfonium-modified betulin derivatives were synthesized to enhance their antibacterial efficacy for wound healing application. Mono- and dual S-alkylated sulfonium derivatives significantly outperformed betulin in antibacterial activity against pathogens such as S. aureus, Methicillin-resistant S. aureus (MRSA), and E. coli. S-nonylated sulfonium betulin reduced the minimum inhibitory concentration of betulin against MRSA from 24 to 0.015 mM. The sulfonium modification enhanced cationic interactions, leading to bacterial membrane disruption. The derivatives expedited the process of wound healing by mitigating inflammation and exhibited satisfactory biosafety, proposing a viable approach to the development of antibacterial agents.
Collapse
Affiliation(s)
- Yiding Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
8
|
Munir I, Nazir F, Yesiloz G. Unlocking Nature's Potential: Ferritin as a Universal Nanocarrier for Amplified Cancer Therapy Testing via 3D Microtissues. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70187-70204. [PMID: 39660468 DOI: 10.1021/acsami.4c12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In the existing development of extensive drug screening models, 3D cell cultures outshine conventional 2D monolayer cells by closely imitating the in vivo tumor microenvironment. This makes 3D culture a more physiologically relevant and convenient system in the regime of preclinical drug testing. In the nanomedicinal world, nanoconjugates as nanocarriers are largely hunted due to their capability of precisely binding to target cells and distributing essential dosages of therapeutic drugs with enhanced safety profiles. Thus, for boosted drug availability, the evolution from conventional drug treatment to combination therapies and last switching to drug carriers has gained significant progression in cancer cure. In contrast to conventional engineered nanoparticles, herein, we successfully designed biomolecule (ferritin)-based drug nanoconjugates effective both as a single drug (valproic acid-VPA) and twin-drug (valproic acid/doxorubicin-Dox) carriers, which dramatically enhance the proficiency of the tumor therapeutic modality. To question the reported adjuvant drug property of VPA, we progressed utilizing at first VPA alone as an effective yet exclusive tumor therapy when delivered via some carrier molecule, in particular protein. Subsequently, we paralleled this comprehensive investigation output to compare and test the coloading strategy of drugs and observe the synergistic and/or additive behavior of VPA in conjugation with other anticancer agents (Dox) while given via a carrier molecule. To approach this, VPA and/or Dox molecules were encapsulated into the ferritin (F) cavity using a thermosensitive synthesis method by maintaining the temperature at 60 °C. The successful encapsulation of drugs in the protein nanocage was confirmed through various characterization techniques. The F-VPA/F-VPA-Dox nanoconjugates exhibited similar morphology and structural characteristics to the hollow ferritin cage and showed significant cytotoxicity than the naked drugs when tested on physiologically relevant 3D spheroid models. Precisely, our first designed carrier nanoconjugate, i.e., F-VPA, offered more than a 3-fold increased intratumoral drug concentration than free VPA and significantly suppressed tumor growth after a single-dose treatment. However, our second modeled carrier nanoconjugate, viz. F-VPA-Dox, revealed an extended median survival period and lesser toxicity when administered at a much more effective dose (∼3-5 μM), in 3D tumor spheroid models of various cancer cell lines. All in all, importantly, ferritin nanoconjugates exhibited an enhanced tumor inhibition rate with a single-dose treatment, which further confirms the benefits of the active targeting property of these nanocarriers. Moreover, these nanocarriers also offer to deliver a significant dose of the therapeutic drug into tumor cells, alongside tremendous biocompatibility and safety profiles in numerous tumor 3D spheroid models.
Collapse
Affiliation(s)
- Iqra Munir
- National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye
| | - Faiqa Nazir
- National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya, Ankara, 06800, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM) Bilkent University, Cankaya, Ankara, 06800, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, Cankaya, Ankara, 06800, Türkiye
| |
Collapse
|
9
|
Vasić K, Knez Ž, Leitgeb M. Multifunctional Iron Oxide Nanoparticles as Promising Magnetic Biomaterials in Drug Delivery: A Review. J Funct Biomater 2024; 15:227. [PMID: 39194665 DOI: 10.3390/jfb15080227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
A wide range of applications using functionalized magnetic nanoparticles (MNPs) in biomedical applications, such as in biomedicine as well as in biotechnology, have been extensively expanding over the last years. Their potential is tremendous in delivery and targeting systems due to their advantages in biosubstance binding. By applying magnetic materials-based biomaterials to different organic polymers, highly advanced multifunctional bio-composites with high specificity, efficiency, and optimal bioavailability are designed and implemented in various bio-applications. In modern drug delivery, the importance of a successful therapy depends on the proper targeting of loaded bioactive components to specific sites in the body. MNPs are nanocarrier-based systems that are magnetically guided to specific regions using an external magnetic field. Therefore, MNPs are an excellent tool for different biomedical applications, in the form of imaging agents, sensors, drug delivery targets/vehicles, and diagnostic tools in managing disease therapy. A great contribution was made to improve engineering skills in surgical diagnosis, therapy, and treatment, while the advantages and applicability of MNPs have opened up a large scope of studies. This review highlights MNPs and their synthesis strategies, followed by surface functionalization techniques, which makes them promising magnetic biomaterials in biomedicine, with special emphasis on drug delivery. Mechanism of the delivery system with key factors affecting the drug delivery efficiency using MNPs are discussed, considering their toxicity and limitations as well.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
11
|
Nazir F, Munir I, Yesiloz G. A Microfluidics-Assisted Double-Barreled Nanobioconjugate Synthesis Introducing Aprotinin as a New Moonlight Nanocarrier Protein: Tested toward Physiologically Relevant 3D-Spheroid Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18311-18326. [PMID: 38564228 DOI: 10.1021/acsami.3c16548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Proteins are promising substances for introducing new drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nanoplatforms with manipulable payload release profiles. Here, we report a novel anticancer nanodrug carrier moonlighting protein, Aprotinin, to be used as a newly identified carrier for cytotoxic drugs. The Aprotinin-Doxorubicin (Apr-Dox) nanobioconjugate was prepared via a single-step microfluidics coflow mixing technique, a feasible and simple way to synthesize a carrier-based drug design with a double-barreled approach that can release and actuate two therapeutic agents simultaneously, i.e., Apr-Dox in 1:11 ratio (the antimetastatic carrier drug aprotinin and the chemotherapeutic drug DOX). With a significant stimuli-sensitive (i.e., pH) drug release ability, this nanobioconjugate achieves superior bioperformances, including high cellular uptake, efficient tumor penetration, and accumulation into the acidic tumor microenvironment, besides inhibiting further tumor growth by halting the urokinase plasminogen activator (uPA) involved in metastasis and tumor progression. Distinctly, in healthy human umbilical vein endothelial (HUVEC) cells, drastically lower cellular uptake of nanobioconjugates has been observed and validated compared to the anticancer agent Dox. Our findings demonstrate an enhanced cellular internalization of nanobioconjugates toward breast cancer, prostate cancer, and lung cancer both in vitro and in physiologically relevant biological 3D-spheroid models. Consequently, the designed nanobioconjugate shows a high potential for targeted drug delivery via a natural and biocompatible moonlighting protein, thus opening a new avenue for proving aprotinin in cancer therapy as both an antimetastatic and a drug-carrying agent.
Collapse
Affiliation(s)
- Faiqa Nazir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Iqra Munir
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)- Bilkent University, 06800 Cankaya-Ankara, Türkiye
- Institute of Material Science and Nanotechnology, Bilkent University, 06800 Cankaya-Ankara, Türkiye
| |
Collapse
|
12
|
Mardikasari SA, Katona G, Sipos B, Csóka I. Essential considerations towards development of effective nasal antibiotic formulation: features, strategies, and future directions. Expert Opin Drug Deliv 2024; 21:611-625. [PMID: 38588551 DOI: 10.1080/17425247.2024.2341184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Intranasal antibiotic products are gaining popularity as a promising method of administering antibiotics, which provide numerous benefits, e.g. enhancing drug bioavailability, reducing adverse effects, and potentially minimizing resistance threats. However, some issues related to the antibiotic substances and nasal route challenges must be addressed to prepare effective formulations. AREAS COVERED This review focuses on the valuable points of nasal delivery as an alternative route for administering antibiotics, coupled with the challenges in the nasal cavity that might affect the formulations. Moreover, this review also highlights the application of nasal delivery to introduce antibiotics for local therapy, brain targeting, and systemic effects that have been conducted. In addition, this viewpoint provides strategies to maintain antibiotic stability and several crucial aspects to be considered for enabling effective nasal formulation. EXPERT OPINION In-depth knowledge and understanding regarding various key considerations with respect to the antibiotic substances and nasal route delivery requirement in preparing effective nasal antibiotic formulation would greatly improve the development of nasally administered antibiotic products, enabling better therapeutic outcomes of antibiotic treatment and establishing appropriate use of antibiotics, which in turn might reduce the chance of antibiotic resistance and enhance patient comfort.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
13
|
Hu C, He G, Yang Y, Wang N, Zhang Y, Su Y, Zhao F, Wu J, Wang L, Lin Y, Shao L. Nanomaterials Regulate Bacterial Quorum Sensing: Applications, Mechanisms, and Optimization Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306070. [PMID: 38350718 PMCID: PMC11022734 DOI: 10.1002/advs.202306070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/19/2024] [Indexed: 02/15/2024]
Abstract
Anti-virulence therapy that interferes with bacterial communication, known as "quorum sensing (QS)", is a promising strategy for circumventing bacterial resistance. Using nanomaterials to regulate bacterial QS in anti-virulence therapy has attracted much attention, which is mainly attributed to unique physicochemical properties and excellent designability of nanomaterials. However, bacterial QS is a dynamic and multistep process, and there are significant differences in the specific regulatory mechanisms and related influencing factors of nanomaterials in different steps of the QS process. An in-depth understanding of the specific regulatory mechanisms and related influencing factors of nanomaterials in each step can significantly optimize QS regulatory activity and enhance the development of novel nanomaterials with better comprehensive performance. Therefore, this review focuses on the mechanisms by which nanomaterials regulate bacterial QS in the signal supply (including signal synthesis, secretion, and accumulation) and signal transduction cascade (including signal perception and response) processes. Moreover, based on the two key influencing factors (i.e., the nanomaterial itself and the environment), optimization strategies to enhance the QS regulatory activity are comprehensively summarized. Collectively, applying nanomaterials to regulate bacterial QS is a promising strategy for anti-virulence therapy. This review provides reference and inspiration for further research on the anti-virulence application of nanomaterials.
Collapse
Affiliation(s)
- Chen Hu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Guixin He
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yujun Yang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Ning Wang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yanli Zhang
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Yuan Su
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
- Stomatology CenterShunde HospitalSouthern Medical University (The First People's Hospital of Shunde)Foshan528399China
| | - Fujian Zhao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Junrong Wu
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Linlin Wang
- Hainan General Hospital·Hainan Affiliated Hospital of Hainan medical UniversityHaikou570311China
| | - Yuqing Lin
- Shenzhen Luohu People's HospitalShenzhen518000China
| | - Longquan Shao
- Stomatological Hospital, School of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
14
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
15
|
Jin L, Mao Z. Living virus-based nanohybrids for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1923. [PMID: 37619605 DOI: 10.1002/wnan.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Living viruses characterized by distinctive biological functions including specific targeting, gene invasion, immune modulation, and so forth have been receiving intensive attention from researchers worldwide owing to their promising potential for producing numerous theranostic modalities against diverse pathological conditions. Nevertheless, concerns during applications, such as rapid immune clearance, altering immune activation modes, insufficient gene transduction efficiency, and so forth, highlight the crucial issues of excessive therapeutic doses and the associated biosafety risks. To address these concerns, synthetic nanomaterials featuring unique physical/chemical properties are frequently exploited as efficient drug delivery vehicles or treatments in biomedical domains. By constant endeavor, researchers nowadays can create adaptable living virus-based nanohybrids (LVN) that not only overcome the limitations of virotherapy, but also combine the benefits of natural substances and nanotechnology to produce novel and promising therapeutic and diagnostic agents. In this review, we discuss the fundamental physiochemical properties of the viruses, and briefly outline the basic construction methodologies of LVN. We then emphasize their distinct diagnostic and therapeutic performances for various diseases. Furthermore, we survey the foreseeable challenges and future perspectives in this interdisciplinary area to offer insights. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Shah R, Phatak N, Choudhary A, Gadewar S, Ajazuddin, Bhattacharya S. Exploring the Theranostic Applications and Prospects of Nanobubbles. Curr Pharm Biotechnol 2024; 25:1167-1181. [PMID: 37861011 DOI: 10.2174/0113892010248189231010085827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
Anticancer medications as well as additional therapeutic compounds, have poor clinical effectiveness due to their diverse distribution, non-selectivity for malignant cells, and undesirable off-target side effects. As a result, ultrasound-based targeted delivery of therapeutic compounds carried in sophisticated nanocarriers has grown in favor of cancer therapy and control. Nanobubbles are nanoscale bubbles that exhibit unique physiochemical properties in both their inner core and outer shell. Manufacturing nanobubbles primarily aims to enhance therapeutic agents' bioavailability, stability, and targeted delivery. The small size of nanobubbles allows for their extravasation from blood vessels into surrounding tissues and site-specific release through ultrasound targeting. Ultrasound technology is widely utilized for therapy due to its speed, safety, and cost-effectiveness, and micro/nanobubbles, as ultrasound contrast agents, have numerous potential applications in disease treatment. Thus, combining ultrasound applications with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side effects on other non-cancerous tissues. This paper provides a brief overview of the production processes for nanobubbles, along with their key characteristics and potential therapeutic uses.
Collapse
Affiliation(s)
- Rahul Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Niraj Phatak
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ashok Choudhary
- Department of Quality Assurance, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sakshi Gadewar
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
17
|
Colilla M, Vallet-Regí M. Organically Modified Mesoporous Silica Nanoparticles against Bacterial Resistance. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:8788-8805. [PMID: 38027542 PMCID: PMC10653088 DOI: 10.1021/acs.chemmater.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Bacterial antimicrobial resistance is posed to become a major hazard to global health in the 21st century. An aggravating issue is the stalled antibiotic research pipeline, which requires the development of new therapeutic strategies to combat antibiotic-resistant infections. Nanotechnology has entered into this scenario bringing up the opportunity to use nanocarriers capable of transporting and delivering antimicrobials to the target site, overcoming bacterial resistant barriers. Among them, mesoporous silica nanoparticles (MSNs) are receiving growing attention due to their unique features, including large drug loading capacity, biocompatibility, tunable pore sizes and volumes, and functionalizable silanol-rich surface. This perspective article outlines the recent research advances in the design and development of organically modified MSNs to fight bacterial infections. First, a brief introduction to the different mechanisms of bacterial resistance is presented. Then, we review the recent scientific approaches to engineer multifunctional MSNs conceived as an assembly of inorganic and organic building blocks, against bacterial resistance. These elements include specific ligands to target planktonic bacteria, intracellular bacteria, or bacterial biofilm; stimuli-responsive entities to prevent antimicrobial cargo release before arriving at the target; imaging agents for diagnosis; additional constituents for synergistic combination antimicrobial therapies; and aims to improve the therapeutic outcomes. Finally, this manuscript addresses the current challenges and future perspectives on this hot research area.
Collapse
Affiliation(s)
- Montserrat Colilla
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Departamento
de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación
Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
18
|
Mardikasari SA, Katona G, Budai-Szűcs M, Sipos B, Orosz L, Burián K, Rovó L, Csóka I. Quality by design-based optimization of in situ ionic-sensitive gels of amoxicillin-loaded bovine serum albumin nanoparticles for enhanced local nasal delivery. Int J Pharm 2023; 645:123435. [PMID: 37741560 DOI: 10.1016/j.ijpharm.2023.123435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
A recommended first-line acute bacterial rhinosinusitis (ABR) treatment regimen includes a high dose of orally administered amoxicillin, despite its frequent systemic adverse reactions coupled with poor oral bioavailability. Therefore, to overcome these issues, nasal administration of amoxicillin might become a potential approach for treating ABR locally. The present study aimed to develop a suitable carrier system for improved local nasal delivery of amoxicillin employing the combination of albumin nanoparticles and gellan gum, an ionic-sensitive polymer, under the Quality by Design methodology framework. The application of albumin nanocarrier for local nasal antibiotic therapy means a novel approach by hindering the nasal absorption of the drug through embedding into an in situ gelling matrix, further prolonging the drug release in the nasal cavity. The developed formulations were characterized, including mucoadhesive properties, in vitro drug release and antibacterial activities. Based on the results, 0.3 % w/v gellan gum concentration was selected as the optimal in situ gelling matrix. Essentially, each formulation adequately inhibited the growth of five common nasal pathogens in ABR. In conclusion, the preparation of albumin-based nanoparticles integrated with in situ ionic-sensitive polymer provides promising ability as nanocarrier systems for delivering amoxicillin intranasally for local antibiotic therapy.
Collapse
Affiliation(s)
- Sandra Aulia Mardikasari
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary; Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary.
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| | - László Orosz
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis str. 6, H-6725 Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Tisza Lajos krt. 111, H-6725 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös St. 6, H-6720 Szeged, Hungary
| |
Collapse
|
19
|
Himanshu, Mukherjee R, Vidic J, Leal E, da Costa AC, Prudencio CR, Raj VS, Chang CM, Pandey RP. Nanobiotics and the One Health Approach: Boosting the Fight against Antimicrobial Resistance at the Nanoscale. Biomolecules 2023; 13:1182. [PMID: 37627247 PMCID: PMC10452580 DOI: 10.3390/biom13081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.
Collapse
Affiliation(s)
- Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Jasmina Vidic
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France;
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil
| | | | - Carlos Roberto Prudencio
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, 351, São Paulo 01246-902, SP, Brazil
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| |
Collapse
|
20
|
Zhou J, Li K, Qin H, Xie B, Liao H, Su X, Li C, He X, Chen W, Jiang X. Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy. J Colloid Interface Sci 2023; 637:453-464. [PMID: 36716669 DOI: 10.1016/j.jcis.2023.01.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Programmed response, carrier-free, and multimodal therapy drug delivery systems (DDS) are promising solutions to multidirectional cytotoxic effects, inefficient antitumor, and severe side effects for cancer therapy. Here, three widely used clinical drugs, interferon α1b (IFNα1b), indocyanine green (ICG), and doxorubicin (DOX), were prepared into carrier-free DDS IFNα1b-ICG-DOX (IID) by a simple one-step method without additional any reagents. IID can achieve smart and programmed DDS by combining low pH and near-infrared (NIR) light stimuli-responsive controlled release. In pH = 7.4 environments, our IID is about 380 nm in size with negative charge rounded particles; while they enter into the acid environment (pH < 7), hydrogen ions (H+) trigger DOX release, their size becomes larger and the surface charge turns positive. These larger particles are rapidly disintegrated after exposure to NIR light and then the remaining DOX, IFNα1b, and ICG are released. In vivo, the IID with larger size and positive charge resulting from low pH is is easy to accumulate in tumor tissue. Tumors can be exposed to NIR light when needed to control the release of these three drugs. Hence, DOX, ICG, and IFNα1b can be enriched in the tumor to the high efficiency of combined chemotherapy, photothermal therapy, and immunotherapy.
Collapse
Affiliation(s)
- Jun Zhou
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Kangjing Li
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Hejia Qin
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Beibei Xie
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Haiqin Liao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Xiaoping Su
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Cuiping Li
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Xuan He
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China
| | - Wenxia Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China.
| | - Xinglu Jiang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction College of Stomatology, Hospital of Stomatology, Guangxi Medical University Nanning 530021, China; Conservative Dentistry & Endodontics Department College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Clinical Laboratory Medicine Department, College of Stomatology, Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
21
|
Lokhande AS, Panchal F, Munshi R, Madkaikar M, Malshe VC, Devarajan PV. pH-responsive microparticles of rifampicin for augmented intramacrophage uptake and enhanced antitubercular efficacy. Int J Pharm 2023; 635:122729. [PMID: 36803923 DOI: 10.1016/j.ijpharm.2023.122729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
In this study we present pH-responsive rifampicin (RIF) microparticles comprising lecithin and a biodegradable hydrophobic polymer, polyethylene sebacate (PES), to achieve high intramacrophage delivery and enhanced antitubercular efficacy. PES and PES-lecithin combination microparticles (PL MPs) prepared by single step precipitation revealed average size of 1.5 to 2.7 µm, entrapment efficiency ∼ 60 %, drug loading 12-15 % and negative zeta potential. Increase in lecithin concentration enhanced hydrophilicity. PES MPs demonstrated faster release in simulated lung fluid pH 7.4, while lecithin MPs facilitated faster and concentration dependent release in acidic artificial lysosomal fluid (ALF) pH 4.5 due to swelling and destabilization confirmed by TEM. PES and PL (1:2) MPs exhibited comparable macrophage uptake which was ∼ 5-fold superior than free RIF, in the RAW 264.7 macrophage cells. Confocal microscopy depicted intensified accumulation of the MPs in the lysosomal compartment, with augmented release of coumarin dye from the PL MPs, confirming pH-triggered increased intracellular release. Although, PES MPs and PL (1:2) MPs displayed comparable and high macrophage uptake, antitubercular efficacy against macrophage internalised M. tuberculosis was significantly higher with PL (1:2) MPs. This suggested great promise of the pH-sensitive PL (1:2) MPs for enhanced antitubercular efficacy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Falguni Panchal
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Renuka Munshi
- Department of Clinical Pharmacology, Topiwala National Medical College and B. Y. L. Nair Charitable Hospital, Dr A. L. Nair Road, Mumbai Central, Mumbai 400008, Maharashtra, India
| | - Manisha Madkaikar
- Department of Paediatric Immunology and Leukemia Biology, ICMR-National Institute of Immunohaematology, KEM Hospital campus, Parel, Mumbai 400012, Maharashtra, India
| | - Vinod C Malshe
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
22
|
Resina L, El Hauadi K, Sans J, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C. Electroresponsive and pH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules 2023; 24:1432-1444. [PMID: 36821593 PMCID: PMC10889591 DOI: 10.1021/acs.biomac.2c01442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.
Collapse
Affiliation(s)
- Leonor Resina
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Karima El Hauadi
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Teresa Esteves
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
23
|
Polymeric Gel Systems Cytotoxicity and Drug Release as Key Features for their Effective Application in Various Fields of Addressed Pharmaceuticals Delivery. Pharmaceutics 2023; 15:pharmaceutics15030830. [PMID: 36986691 PMCID: PMC10054608 DOI: 10.3390/pharmaceutics15030830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Modified polymeric gels, including nanogels, which play not only the role of a bioinert matrix, but also perform regulatory, catalytic, and transport functions due to the active fragments introduced into them, can significantly advance the solution to the problem of targeted drug delivery in an organism. This will significantly reduce the toxicity of used pharmaceuticals and expand the range of their therapeutic, diagnostic, and medical application. This review presents a comparative description of gels based on synthetic and natural polymers intended for pharmaceutical-targeted drug delivery in the field of therapy of inflammatory and infectious diseases, dentistry, ophthalmology, oncology, dermatology, rheumatology, neurology, and the treatment of intestinal diseases. An analysis was made of most actual sources published for 2021–2022. The review is focused on the comparative characteristics of polymer gels in terms of their toxicity to cells and the release rate of drugs from nano-sized hydrogel systems, which are crucial initial features for their further possible application in mentioned areas of biomedicine. Different proposed mechanisms of drug release from gels depending on their structure, composition, and application are summarized and presented. The review may be useful for medical professionals, and pharmacologists dealing with the development of novel drug delivery vehicles.
Collapse
|
24
|
Mardikasari SA, Sipos B, Csóka I, Katona G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Dobrovolskaia MA. Lessons learned from immunological characterization of nanomaterials at the Nanotechnology Characterization Laboratory. Front Immunol 2022; 13:984252. [PMID: 36304452 PMCID: PMC9592561 DOI: 10.3389/fimmu.2022.984252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology carriers have become common in pharmaceutical products because of their benefits to drug delivery, including reduced toxicities and improved efficacy of active pharmaceutical ingredients due to targeted delivery, prolonged circulation time, and controlled payload release. While available examples of reduced drug toxicity through formulation using a nanocarrier are encouraging, current data also demonstrate that nanoparticles may change a drug’s biodistribution and alter its toxicity profile. Moreover, individual components of nanoparticles and excipients commonly used in formulations are often not immunologically inert and contribute to the overall immune responses to nanotechnology-formulated products. Said immune responses may be beneficial or adverse depending on the indication, dose, dose regimen, and route of administration. Therefore, comprehensive toxicology studies are of paramount importance even when previously known drugs, components, and excipients are used in nanoformulations. Recent data also suggest that, despite decades of research directed at hiding nanocarriers from the immune recognition, the immune system’s inherent property of clearing particulate materials can be leveraged to improve the therapeutic efficacy of drugs formulated using nanoparticles. Herein, I review current knowledge about nanoparticles’ interaction with the immune system and how these interactions contribute to nanotechnology-formulated drug products’ safety and efficacy through the lens of over a decade of nanoparticle characterization at the Nanotechnology Characterization Laboratory.
Collapse
|