1
|
Kuno S, Pakpian N, Muanprasat C. The potential role of PD-1/PD-L1 small molecule inhibitors in colorectal cancer with different mechanisms of action. Eur J Pharmacol 2025; 992:177351. [PMID: 39922421 DOI: 10.1016/j.ejphar.2025.177351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide, with increasing incidence in younger ages highlighting the need for new or alternative therapy, of which is immune checkpoint inhibitors. Antibody-based immune checkpoint inhibitors targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have revolutionized cancer treatment, including CRC. However, the low response rate in CRC highlights the need for additional research and innovative therapies. Small molecule inhibitors have risen as another strategy worth exploring, considering their potential to target a wide array of PD-1/PD-L1-related pathways. This review focuses on the potential of small molecule inhibitors targeting the PD-1/PD-L1 axis in CRC. Exploring various classes of small molecule inhibitors, including those that directly block the PD-1/PD-L1 interaction and others that target upstream regulators or downstream signaling pathways involved in PD-1/PD-L1-mediated immune suppression. Additionally, modulation of post-transcriptional and post-translational processes, thereby influencing the expression, stability, or localization of PD-1/PD-L1 proteins to enhance antitumor immunity, provides a multifaceted treatment approach. By disrupting these pathways, these inhibitors can restore immune system activity against tumor cells, offering new hope for overcoming resistance and improving outcomes in CRC patients who do not respond to conventional immune checkpoint inhibitors (ICIs). Integrating these small molecules into CRC treatment strategies could represent a promising advancement in the battle against the challenging disease.
Collapse
Affiliation(s)
- Suhaibee Kuno
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Nattaporn Pakpian
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand.
| |
Collapse
|
2
|
Zhang H, Pang Y, Yi L, Wang X, Wei P, Wang H, Lin S. Epigenetic regulators combined with tumour immunotherapy: current status and perspectives. Clin Epigenetics 2025; 17:51. [PMID: 40119465 PMCID: PMC11929245 DOI: 10.1186/s13148-025-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitor therapy, has demonstrated clinical benefits in solid tumours. Despite its satisfactory clinical efficacy, it still faces several issues, such as limited eligibility, low response rates and cytotoxicity. Cancer epigenetics implies that tumour cells exhibit unique phenotypes because of their unique characteristics, thus reprogramming of the epigenome holds promise for cancer therapy. Epigenetic regulation plays an important role in regulating gene expression during tumour development and maintenance. Epigenetic regulators induce cancer cell cycle arrest, apoptosis and differentiation of cancer cells, thereby exerting anti-tumour effects. Recent studies have revealed a significant correlation between epigenetic regulatory factors and immune checkpoint therapy. Epigenetics can modulate various aspects of the tumour immune microenvironment and immune response to enhance the sensitivity of immunotherapy, such as lowering the concentration required and mitigating cytotoxicity. This review primarily discusses DNA methyltransferase inhibitors, histone deacetylase inhibitors, enhancer of zeste homolog 2 inhibitors and lysine-specific demethylase 1 inhibitors, which are associated with transcriptional repression. This repression alters the expression of genes involved in the immune checkpoint, thereby enhancing the effectiveness of immunotherapy. We also discuss the potential and challenges of tumour immunotherapy and highlight its advantages, application challenges and clinical research on integrating epigenetic regulatory factors with tumour immunotherapy.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Yutong Pang
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Ling Yi
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China.
| | - Shuye Lin
- Department of Gastroenterology, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
3
|
Timmins P. Industry Update: the latest developments in the field of therapeutic delivery, July 2024. Ther Deliv 2024; 15:911-920. [PMID: 39569828 DOI: 10.1080/20415990.2024.2414732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
- Peter Timmins
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield86, HD1 3DH, UK
| |
Collapse
|
4
|
Li Z, Yu X, Yuan Z, Li L, Yin P. New horizons in the mechanisms and therapeutic strategies for PD-L1 protein degradation in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189152. [PMID: 38992509 DOI: 10.1016/j.bbcan.2024.189152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Programmed death-ligand 1 (PD-L1) has become a crucial focus in cancer immunotherapy considering it is found in many different cells. Cancer cells enhance the suppressive impact of programmed death receptor 1 (PD-1) through elevating PD-L1 expression, which allows them to escape immune detection. Although there have been significant improvements, the effectiveness of anti-PD-1/PD-L1 treatment is still limited to a specific group of patients. An important advancement in cancer immunotherapy involves improving the PD-L1 protein degradation. This review thoroughly examined the processes by which PD-L1 breaks down, including the intracellular pathways of ubiquitination-proteasome and autophagy-lysosome. In addition, the analysis revealed changes that affect PD-L1 stability, such as phosphorylation and glycosylation. The significant consequences of these procedures on cancer immunotherapy and their potential role in innovative therapeutic approaches are emphasised. Our future efforts will focus on understanding new ways in which PD-L1 degradation is controlled and developing innovative treatments, such as proteolysis-targeting chimeras designed specifically to degrade PD-L1. It is crucial to have a thorough comprehension of these pathways in order to improve cancer immunotherapy strategies and hopefully improve therapeutic effectiveness.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
5
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Klimek J, Kruc O, Ceklarz J, Kamińska B, Musielak B, van der Straat R, Dӧmling A, Holak TA, Muszak D, Kalinowska-Tłuścik J, Skalniak Ł, Surmiak E. C2-Symmetrical Terphenyl Derivatives as Small Molecule Inhibitors of Programmed Cell Death 1/Programmed Death Ligand 1 Protein-Protein Interaction. Molecules 2024; 29:2646. [PMID: 38893521 PMCID: PMC11173618 DOI: 10.3390/molecules29112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein.
Collapse
Affiliation(s)
- Joanna Klimek
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Oskar Kruc
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Joanna Ceklarz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| | - Beata Kamińska
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza St. 11, 30-348 Cracow, Poland
| | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| | - Robin van der Straat
- Department of Drug Design, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Alexander Dӧmling
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Palackӯ University in Olomouc, Křížkovského 511/8, 779 00 Olomouc, Czech Republic;
| | - Tad A. Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| | - Damian Muszak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| | - Justyna Kalinowska-Tłuścik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| | - Łukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa St. 2, 30-387 Cracow, Poland; (J.K.); (O.K.); (B.K.); (B.M.); (T.A.H.); (D.M.); (J.K.-T.)
| |
Collapse
|
7
|
Abstract
BACKGROUND Thyroid carcinoma (THCA) is the most common malignant endocrine tumor with low mortality and a relatively good prognosis. Immune genes have attracted much attention as molecular markers of THCA prognosis and potential targets of immunotherapy. METHODS Our study analyzed the transcriptome and clinical data of immune-related genes (IRGs) of THCA in gene expression omnibus, the cancer genome atlas-THCA, and ImmPort databases. By univariate Cox regression analysis, 15 genes were significantly correlated with the survival of patients with THCA. Five IRGs ( NMU, UBE2C, CDKN2A, COL19A1, and GPM6A ) were selected by LASSO regression analysis as independent prognostic factors to construct a disease-free survival-related prognostic risk model. RESULTS Kaplan-Meier survival analysis showed that there was a significant difference in disease-free survival between high and low-risk groups. The higher the risk score, the worse the survival of patients. Clinical correlation analysis showed that age and Stage stage of patients were correlated with risk score ( P < 0.05). Quantitative real-time polymerase chain reaction confirmed that there were differences in the expression of 5 IRGs between tumor tissues and normal thyroid tissues. Spearman correlation analysis indicated that the relative expression levels of NMU, CDKN2A, UBE2C, COL19A1 , and GPM6A were positively correlated with programmed death-ligand 1 and recombinant a disintegrin and metalloproteinase with thrombospondin 1. CONCLUSION Based on the bioinformatics method, we constructed a prognosis evaluation model and risk score system of IRGs in THCA, which provided a reference for predicting the prognosis of patients with THCA.
Collapse
Affiliation(s)
- Jinze Li
- Department of Gastrointestinal Surgery, The Third People's Hospital of Hubei Province, Wuhan
| | - Zhenjun Li
- Department of Thyroid and Breast Surgery, Jingmen N0.2 People's Hospital, Jingmen, China
| | - Ping Zhao
- Department of Thyroid and Breast Surgery, Jingmen N0.2 People's Hospital, Jingmen, China
| |
Collapse
|
8
|
Fallarini S, Cerofolini L, Salobehaj M, Rizzo D, Gheorghita GR, Licciardi G, Capialbi DE, Zullo V, Sodini A, Nativi C, Fragai M. Site-Selective Functionalized PD-1 Mutant for a Modular Immunological Activity against Cancer Cells. Biomacromolecules 2023; 24:5428-5437. [PMID: 37902625 PMCID: PMC10646970 DOI: 10.1021/acs.biomac.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Targeting immune checkpoints is a well-established strategy in cancer therapy, and antibodies blocking PD-1/PD-L1 interactions to restore the immunological activity against cancer cells have been clinically validated. High-affinity mutants of the PD-1 ectodomain have recently been proposed as an alternative to antibodies to target PD-L1 on cancer cells, shedding new light on this research area. In this dynamic scenario, the PD-1 mutant, here reported, largely expands the chemical space of nonantibody and nonsmall-molecule inhibitor therapeutics that can be used to target cancer cells overexpressing PD-L1 receptors. The polyethylene glycol moieties and the immune response-stimulating carbohydrates, used as site-selective tags, represent the proof of concept for future applications.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department
of Pharmaceutical Sciences, DSF, University
of Piemonte Orientale, Largo Donegani 2, Novara (NO) 28100, Italy
| | - Linda Cerofolini
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto
Fiorentino (FI) 50019, Italy
| | - Maria Salobehaj
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto
Fiorentino (FI) 50019, Italy
| | - Domenico Rizzo
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto
Fiorentino (FI) 50019, Italy
| | - Giulia Roxana Gheorghita
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto
Fiorentino (FI) 50019, Italy
- Giotto
Biotech, S.R.L, Via Madonna
del Piano 6, Sesto Fiorentino (FI) 50019, Italy
| | - Giulia Licciardi
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto
Fiorentino (FI) 50019, Italy
| | - Daniela Eloisa Capialbi
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
| | - Valerio Zullo
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
| | - Andrea Sodini
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
| | - Cristina Nativi
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
| | - Marco Fragai
- Department
of Chemistry, DICUS, University of Florence, Via della Lastruccia 3,13, Sesto Fiorentino (FI) 50019, Italy
- CeRM/CIRMMP, University of Florence, Via L. Sacconi 6, Sesto
Fiorentino (FI) 50019, Italy
| |
Collapse
|
9
|
Donati G, D’Amore VM, Russomanno P, Cerofolini L, Amato J, Marzano S, Salobehaj M, Rizzo D, Assoni G, Carotenuto A, La Pietra V, Arosio D, Seneci P, Fragai M, Brancaccio D, Di Leva FS, Marinelli L. Theoretical and experimental studies on the interaction of biphenyl ligands with human and murine PD-L1: Up-to-date clues for drug design. Comput Struct Biotechnol J 2023; 21:3355-3368. [PMID: 37384351 PMCID: PMC10293680 DOI: 10.1016/j.csbj.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Today it is widely recognized that the PD-1/PD-L1 axis plays a fundamental role in escaping the immune system in cancers, so that anti-PD-1/PD-L1 antibodies have been evaluated for their antitumor properties in more than 1000 clinical trials. As a result, some of them have entered the market revolutionizing the treatment landscape of specific cancer types. Nonetheless, a new era based on the development of small molecules as anti PD-L1 drugs has begun. There are, however, some limitations to advancing these compounds into clinical stages including the possible difficulty in counteracting the PD-1/PD-L1 interaction in vivo, the discrepancy between the in vitro IC50 (HTFR assay) and cellular EC50 (immune checkpoint blockade co-culture assay), and the differences in ligands' affinity between human and murine PD-L1, which can affect their preclinical evaluation. Here, an extensive theoretical study, assisted by MicroScale Thermophoresis binding assays and NMR experiments, was performed to provide an atomistic picture of the binding event of three representative biphenyl-based compounds in both human and murine PD-L1. Structural determinants of the species' specificity were unraveled, providing unprecedented details useful for the design of next generation anti-PD-L1 molecules.
Collapse
Affiliation(s)
- Greta Donati
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Maria D’Amore
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Pasquale Russomanno
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Maria Salobehaj
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Domenico Rizzo
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Giulia Assoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Povo I-38123, Trento, Italy
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Via C. Golgi 19, Milan 20133, Italy
| | - Pierfausto Seneci
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Marco Fragai
- Magnetic Resonance Center and Department of Chemistry, University of Florence and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
10
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
11
|
Hu P, Ma J, Chen J. A systematic and comprehensive analysis of T cell exhaustion related to therapy in lung adenocarcinoma tumor microenvironment. Front Pharmacol 2023; 14:1126916. [PMID: 36814485 PMCID: PMC9939659 DOI: 10.3389/fphar.2023.1126916] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Background: T cell exhaustion (TEX) is an important immune escape mechanism, and an in-depth understanding of it can help improve cancer immunotherapy. However, the prognostic role of TEX in malignant lung adenocarcinoma (LUAD) remains unclear. Methods: Through TCGA and GEO datasets, we enrolled a total of 498 LUAD patients. The patients in TCGA-LUAD were unsupervised clustered into four clusters according to TEX signaling pathway. WGCNA analysis, survival random forest analysis and lasso regression analysis were used to select five differentially expressed genes among different clusters to construct a TEX risk model. The risk model was subsequently validated with GEO31210. By analyzing signaling pathways, immune cells and immune checkpoints using GSEA, GSVA and Cibersortx, the relationship between TEX risk score and these variables was evaluated. In addition, we further analyzed the expression of CCL20 at the level of single-cell RNA-seq and verified it in cell experiments. Results: According to TEX signaling pathway, people with better prognosis can be distinguished. The risk model constructed by CD109, CCL20, DKK1, TNS4, and TRIM29 genes could further accurately identify the population with poor prognosis. Subsequently, it was found that dendritic cells, CD44 and risk score were closely related. The final single-cell sequencing suggested that CCL2O is a potential therapeutic target of TEX, and the interaction between TEX and CD8 + T is closely related. Conclusion: The classification of T cell depletion plays a crucial role in the clinical decision-making of lung adenocarcinoma and needs to be further deepened.
Collapse
Affiliation(s)
- Peipei Hu
- Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahao Ma
- Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,Key Laboratory of Nano-carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, School of Pharmacy, Xinxiang University, Xinxiang, China,*Correspondence: Jiahao Ma, ; Jinjian Chen,
| | - Jinjian Chen
- Department of General Medicine, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,*Correspondence: Jiahao Ma, ; Jinjian Chen,
| |
Collapse
|