1
|
Liu J, Liu J, Liu S, Xiao P, Du C, Zhan J, Chen Z, Chen L, Li K, Huang W, Lei Y. Cascade targeting selenium nanoparticles-loaded hydrogel microspheres for multifaceted antioxidant defense in osteoarthritis. Biomaterials 2025; 318:123195. [PMID: 39965424 DOI: 10.1016/j.biomaterials.2025.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/01/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Selenium (Se) deficiency is a critical factor contributing to the imbalance of redox homeostasis in chondrocytes and the progression of osteoarthritis (OA). However, traditional selenium supplements face challenges such as a narrow therapeutic window and lack of targeting. To address this, we designed hyaluronic acid (HA)-modified selenium nanoparticles (HA-SeNPs) and developed a cascade-targeted delivery system (HA-SeNPs@AHAMA-HMs) based on a nano-micron combined strategy. The system involves loading HA-SeNPs into aldehyde-functionalized hydrogel microspheres prepared via microfluidic technology. Through Schiff base reactions between the aldehyde groups of the microspheres and amino groups of the cartilage, the system selectively adheres to the surface of damaged cartilage, achieving micron-scale targeting while continuously releasing HA-SeNPs. Then, HA-SeNPs achieve nanoscale targeting by binding to CD44, which is highly expressed on OA chondrocyte membranes, via their HA surface. Once taken up by the cells, HA-SeNPs exert their effects by directly scavenging ROS and promoting selenoprotein synthesis through the generation of selenite, forming a multifaceted antioxidant defense system. This effectively alleviates oxidative stress and optimizes mitochondrial function. In vivo and in vitro results demonstrated that this system significantly improved the oxidative phosphorylation pathway associated with mitochondrial function, which markedly reduced joint space narrowing and cartilage matrix degradation, and delayed the progression of OA. In summary, this study suggests that the cascade-targeting hydrogel microspheres designed and constructed based on a nano-micron combined strategy represent a promising prospective approach for precise Se supplementation and OA treatment.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jingdi Zhan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Lu Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing, 400016, China; Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing, 400016, China; Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, 999077, China.
| |
Collapse
|
2
|
Faustini B, Lettner T, Wagner A, Tempfer H, Cesur NP, Lehner C, Brouwer C, Roelofs K, Mykhailyk O, Plank C, Rip J, Gehwolf R, Traweger A. Improved tendon repair with optimized chemically modified mRNAs: Combined delivery of Pdgf-BB and IL-1Ra using injectable nanoparticles. Acta Biomater 2025; 195:451-466. [PMID: 39938707 DOI: 10.1016/j.actbio.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Tendon injuries, common in both athletic and non-athletic populations, present significant challenges due to their slow healing and the formation of scar tissue, which impairs function and potentially increases the risk of (re-)rupture. Conventional treatments often yield suboptimal functional and structural repair. This study investigates the potential of mRNA-based therapeutics to enhance tendon healing by targeting 2 distinct pathways via the delivery of chemically modified ARCA-capped mRNAs (cmRNAs) encoding Interleukin-1 receptor antagonist (IL1RA) and Platelet-Derived Growth Factor-BB (PDGF-BB) using injectable nanoparticle (NP) carriers. In vitro experiments demonstrate successful cmRNA delivery and translation, resulting in increased tendon cell proliferation, migration, and anti-inflammatory responses. In vivo, cmRNA treatment notably enhances tendon repair in a rat patellar tendon defect model, by reducing pro-inflammatory cytokines and fibrotic markers while enhancing repair tissue structure. These findings suggest that NP-based cmRNA delivery represents a promising therapeutic strategy for improving tendon healing, offering better outcomes over existing treatments by targeting both inflammatory and regenerative pathways. STATEMENT OF SIGNIFICANCE: In this study, we investigate an mRNA-based therapeutic approach aimed at enhancing tendon healing in a small animal model. Utilizing bioreducible poly(amidoamine)-based polymeric nanoparticles (PAA PNPs) for the delivery of cmRNAs encoding Interleukin-1 receptor antagonist (IL1RA) and Platelet-Derived Growth Factor-BB (PDGF-BB), we demonstrate effective delivery and protein translation in vitro and ex vivo, resulting in enhanced tendon cell proliferation, migration, and robust anti-inflammatory responses. By combining these therapeutic cmRNAs, we show improved tendon repair in vivo, with accelerated tissue regeneration, better collagen fiber organization, and signs of reduced fibrotic scarring. These findings highlight the potential of nanoparticle-mediated cmRNA delivery targeting two distinct pathways to improve tendon healing, offering a promising alternative to current treatments that often yield suboptimal results.
Collapse
Affiliation(s)
- Bettina Faustini
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Thomas Lettner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andrea Wagner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Herbert Tempfer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Nevra Pelin Cesur
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Christine Lehner
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | | | - Karin Roelofs
- 20Med Therapeutics B.V., 2333BD Leiden, the Netherlands
| | | | | | - Jaap Rip
- 20Med Therapeutics B.V., 2333BD Leiden, the Netherlands
| | - Renate Gehwolf
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University, 5020 Salzburg, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| |
Collapse
|
3
|
Yang Z, Yin G, Sun S, Xu P. Medical applications and prospects of polylactic acid materials. iScience 2024; 27:111512. [PMID: 39759018 PMCID: PMC11699620 DOI: 10.1016/j.isci.2024.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Polylactic acid (PLA) is a biodegradable and bio-based polymer that has gained significant attention as an environmentally friendly alternative to traditional petroleum-based plastics. In clinical treatment, biocompatible and non-toxic PLA materials enhance safety and reduce tissue reactions, while the biodegradability allows it to breakdown over time naturally, avoiding a second surgery. With the emergence of nanotechnology and three-dimensional (3D) printing, medical utilized-PLA has been produced with more structural and biological properties at both micro and macro scales for clinical therapy. This review summarizes current applications of the PLA-based biomaterials in drug delivery systems, orthopedic treatment, tissue regenerative engineering, and surgery and medical devices, providing viewpoints regarding the prospective medical utilization.
Collapse
Affiliation(s)
- Zhenqi Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shuyang Sun
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Asia Pacific Graduate Institute of Shanghai Jiao Tong University, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
4
|
Wang X, Tan Y, Gao L, Gao H. Study on ultrasound-enhanced molecular transport in articular cartilage. Drug Deliv Transl Res 2024; 14:3621-3639. [PMID: 39145819 DOI: 10.1007/s13346-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Local intra-articular administration with minimal side effects and rapid efficacy is a promising strategy for treating osteoarthritis(OA). Most drugs are rapidly cleared from the joint space by capillaries and lymphatic vessels before free diffusion into cartilage. Ultrasound, as a non-invasive therapy, enhances molecular transport within cartilage through the mechanisms of microbubble cavitation and thermal effects. This study investigated the mass transfer behavior of solute molecules with different molecular weights (479 Da, 40 kDa, 150 kDa) within porcine articular cartilage under low-frequency ultrasound conditions of 40 kHz and ultrasound intensities of 0.189 W/cm2 and 0.359 W/cm2. The results revealed that under the conditions of 0.189 W/cm2 ultrasound intensity, the mass transfer concentration of solute molecules were higher compared to passive diffusion, and with an increase in ultrasound intensity to 0.359 W/cm2, the mass transfer effect within the cartilage was further enhanced. Ultrasound promotes molecular transport in different layers of cartilage. Under static conditions, after 2 h of mass transfer, the concentration of small molecules in the superficial layer is lower than that in the middle layer. After applying ultrasound at 0.189 W/cm2, the molecular concentration in the superficial layer significantly increases. Under conditions of 0.359 W/cm2, after 12 h of mass transfer, the concentration of medium and large molecules in the deep layer region increased by more than two times. In addition, this study conducted an assessment of damage to porcine articular cartilage under ultrasound exposure, revealing the significant potential of low-frequency, low-intensity ultrasound in drug delivery and treatment of OA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yansong Tan
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300382, China.
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300382, China.
| | - Hong Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
5
|
Jin Y, Hu C, Xia J, Xie D, Ye L, Ye X, Jiang L, Song H, Zhu Y, Jiang S, Li W, Qi W, Yang Y, Hu Z. Bimetallic clusterzymes-loaded dendritic mesoporous silica particle regulate arthritis microenvironment via ROS scavenging and YAP1 stabilization. Bioact Mater 2024; 42:613-627. [PMID: 39314862 PMCID: PMC11417149 DOI: 10.1016/j.bioactmat.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Clusterzymes are synthetic enzymes exhibiting substantial catalytic activity and selectivity, which are uniquely driven by single-atom constructs. A dramatic increase in antioxidant capacity, 158 times more than natural trolox, is noted when single-atom copper is incorporated into gold-based clusterzymes to form Au24Cu1. Considering the inflammatory and mildly acidic microenvironment characteristic of osteoarthritis (OA), pH-dependent dendritic mesoporous silica nanoparticles (DMSNs) coupled with PEG have been employed as a delivery system for the spatial-temporal release of clusterzymes within active articular regions, thereby enhancing the duration of effectiveness. Nonetheless, achieving high therapeutic efficacy remains a significant challenge. Herein, we describe the construction of a Clusterzymes-DMSNs-PEG complex (CDP) which remarkably diminishes reactive oxygen species (ROS) and stabilizes the chondroprotective protein YAP by inhibiting the Hippo pathway. In the rabbit ACLT (anterior cruciate ligament transection) model, the CDP complex demonstrated inhibition of matrix metalloproteinase activity, preservation of type II collagen and aggregation protein secretion, thus prolonging the clusterzymes' protective influence on joint cartilage structure. Our research underscores the efficacy of the CDP complex in ROS-scavenging, enabled by the release of clusterzymes in response to an inflammatory and slightly acidic environment, leading to the obstruction of the Hippo pathway and downstream NF-κB signaling pathway. This study illuminates the design, composition, and use of DMSNs and clusterzymes in biomedicine, thus charting a promising course for the development of novel therapeutic strategies in alleviating OA.
Collapse
Affiliation(s)
- Yang Jin
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Chuan Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Jiechao Xia
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Dingqi Xie
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Lin Ye
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Xinyi Ye
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Honghai Song
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Yutao Zhu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Sicheng Jiang
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Weiqing Li
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiming Qi
- Zhejiang Center for Medical Device Evaluation, Zhejiang Medical Products Administration Hangzhou 310009, Zhejiang, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
- South Australian ImmunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
6
|
Lee H, Lim Y, Lee SH. Rapid-acting pain relief in knee osteoarthritis: autologous-cultured adipose-derived mesenchymal stem cells outperform stromal vascular fraction: a systematic review and meta-analysis. Stem Cell Res Ther 2024; 15:446. [PMID: 39568086 PMCID: PMC11580442 DOI: 10.1186/s13287-024-04034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Knee osteoarthritis (OA) is a leading cause of disability, with current treatment options often falling short of providing satisfactory outcomes. Autologous-cultured adipose-derived mesenchymal stem cells (ADMSCs) and stromal vascular fractions (SVFs) have emerged as potential regenerative therapies. METHODS A comprehensive search was conducted among multiple databases for studies up to June 2023. The risk of bias was assessed in randomized and non-randomized studies, adhering to PRISMA guidelines. The study has been registered with PROSPERO (CRD 42023433160). RESULTS Our analysis encompassed 31 studies involving 1,406 patients, of which, 19 studies with 958 patients were included in a meta-analysis, examining both SVF and autologous-cultured ADMSC methods. Significant pain reduction was observed with autologous-cultured ADMSCs starting at 3 months (MD = -2.43, 95% CI, -3.99, -0.86), whereas significant pain mitigation in response to SVF therapy was found to start at 12 months (MD = -2.13, 95% CI, -3.06, -1.21). Both autologous-cultured ADMSCs and SVF provided significant improvement in knee function starting at 12 months (MD = -9.19, 95% CI, -12.48, -5.90 vs. MD = -9.09, 95% CI, -12.67, -5.51, respectively). We found no evidence of severe adverse events linked directly to ADMSC therapy. CONCLUSION Autologous-cultured ADMSCs offer a promising alternative for more rapid pain relief in knee OA, with both ADMSCs and SVF demonstrating substantial long-term benefits in joint function and cartilage regeneration, in the absence of any severe ADMSC-related adverse events.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Youngeun Lim
- Department of Physical Therapy, College of Medical Science, Gachon University, Incheon, Korea
| | - Seon-Heui Lee
- College of Nursing, Research Institute of AI and Nursing Science, Gachon University, Incheon, Korea.
| |
Collapse
|
7
|
Gong H, Hua Y, Wang Y, Zhang X, Wang H, Zhao Z, Zhang Y. Fabrication of a novel macrophage-targeted biomimetic delivery composite hydrogel with multiple-sensitive properties for tri-modal combination therapy of rheumatoid arthritis. Int J Pharm 2024; 665:124708. [PMID: 39284423 DOI: 10.1016/j.ijpharm.2024.124708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
In this study, a porous polydopamine (PDA) nanoparticle-decorated β-glucan microcapsules (GMs) nanoplatform (PDA/GMs) were developed with macrophage-targeted biomimetic features and a carriers-within-carriers structure. Indocyanine green (ICG) and catalase (CAT) were subsequently co-encapsulated within the PDA/GMs to create a multifunctional nanotherapeutic agent, termed CIPGs. Furthermore, CIPGs and sinomenine (SIN) were co-loaded within a thermo-sensitive hydrogel to design an injectable delivery system, termed CIPG/SH, with potential for multi-modal therapy of rheumatoid arthritis (RA). Photothermal studies indicated that the CIPGs hold excellent photothermal conversion ability and thermal stability, as they combined the photothermal performance of both PDA and ICG. Meanwhile, the CIPGs displayed favorable oxygen self-supplying and photodynamic performance. The CIPGs showed near-infrared (NIR)-induced phototoxicity, effectively inhibiting macrophage proliferation and displaying remarkable antibacterial activity. In vitro drug release from the prepared CIPG/SH showed a controlled release pattern. Animal experiments conducted on an RA mice model confirmed that the formulated CIPG/SH exhibited significant therapeutic effects. By integrating the biological advantages, photothermal/photodynamic performance of the CIPGs, and controlled drug release performance of the thermo-sensitive hydrogels in a single delivery system, the prepared injectable CIPG/SH represents a novel versatile delivery system with great potential for multi-modal combination targeting therapy in RA.
Collapse
Affiliation(s)
- Haoyang Gong
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yabing Hua
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yicheng Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xinyi Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Hospital of TCM, Xuzhou 221000, China.
| | - Ziming Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yanzhuo Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Ye Q, Zhang M, Li S, Liu W, Xu C, Li Y, Xie R. Controlled Stimulus-Responsive Delivery Systems for Osteoarthritis Treatment. Int J Mol Sci 2024; 25:11799. [PMID: 39519350 PMCID: PMC11545989 DOI: 10.3390/ijms252111799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA), a common and disabling degenerative joint disease, affects millions of people worldwide and imposes a considerable burden on patients and society due to its high prevalence and economic costs. The pathogenesis of OA is closely related to the progressive degradation of articular cartilage and the accompany inflammation; however, articular cartilage itself cannot heal and modulate the inflammation due to the lack of nerves, blood vessels, and lymph-vessels. Therefore, reliable and effective methods to treat OA remain highly desired. Local administration of drugs or bioactive materials by intra-articular injection of the delivery system represents a promising approach to treat OA, especially considering the prolonged joint retention, cartilage or chondrocytes targeting, and stimuli-responsive release to achieve precision OA therapy. This article summarizes and discusses the advances in the currently used delivery systems (nanoparticle, hydrogel, liposome, and microsphere) and then focuses on their applications in OA treatment from the perspective of endogenous stimulus (redox reactions, pH, enzymes, and temperature) and exogenous stimulus (near-infrared, magnetic, and ultrasound)-responsive release. Finally, the challenges and potential future directions for the development of nano-delivery systems are summarized.
Collapse
Affiliation(s)
- Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuyue Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Wenyue Liu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.); (S.L.); (W.L.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
9
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
10
|
Zhou D, Wei Y, Sheng S, Wang M, Lv J, Zhao B, Chen X, Xu K, Bai L, Wu Y, Song P, Cao L, Zhou F, Zhang H, Shi Z, Su J. MMP13-targeted siRNA-loaded micelles for diagnosis and treatment of posttraumatic osteoarthritis. Bioact Mater 2024; 37:378-392. [PMID: 38689658 PMCID: PMC11059470 DOI: 10.1016/j.bioactmat.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Posttraumatic osteoarthritis (PTOA) patients are often diagnosed by X-ray imaging at a middle-late stage when drug interventions are less effective. Early PTOA is characterized by overexpressed matrix metalloprotease 13 (MMP13). Herein, we constructed an integrated diagnosis and treatment micelle modified with MMP13 enzyme-detachable, cyanine 5 (Cy5)-containing PEG, black hole quencher-3 (BHQ3), and cRGD ligands and loaded with siRNA silencing MMP13 (siM13), namely ERMs@siM13. ERMs@siM13 could be cleaved by MMP13 in the diseased cartilage tissues to detach the PEG shell, causing cRGD exposure. Accordingly, the ligand exposure promoted micelle uptake by the diseased chondrocytes by binding to cell surface αvβ3 integrin, increasing intracellular siM13 delivery for on-demand MMP13 downregulation. Meanwhile, the Cy5 fluorescence was restored by detaching from the BHQ3-containing micelle, precisely reflecting the diseased cartilage state. In particular, the intensity of Cy5 fluorescence generated by ERMs@siM13 that hinged on the MMP13 levels could reflect the PTOA severity, enabling the physicians to adjust the therapeutic regimen. Finally, in the murine PTOA model, ERMs@siM13 could diagnose the early-stage PTOA, perform timely interventions, and monitor the OA progression level during treatment through a real-time detection of MMP13. Therefore, ERMs@siM13 represents an appealing approach for early-stage PTOA theranostics.
Collapse
Affiliation(s)
- Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Shihao Sheng
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- Department of Rehabilitation Medicine, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Jiajing Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Bowen Zhao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
| | - Liehu Cao
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, 201908, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Hao Zhang
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhongmin Shi
- Department of Orthopedics, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai), Shanghai University, Shanghai, 200444, China
- Department of Orthopedic, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
11
|
Wu YZ, Chen WY, Zeng Y, Ji QL, Yang Y, Guo XL, Wang X. Inflammation-Responsive Mesoporous Silica Nanoparticles with Synergistic Anti-inflammatory and Joint Protection Effects for Rheumatoid Arthritis Treatment. Pharm Res 2024; 41:1493-1505. [PMID: 38918308 DOI: 10.1007/s11095-024-03732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.
Collapse
Affiliation(s)
- Ye-Zhen Wu
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Wen-Yu Chen
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Ying Zeng
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Qi-Lin Ji
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Yue Yang
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China
| | - Xu-Liang Guo
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
| | - Xiu Wang
- The Faculty of Pharmacy, Bengbu Medical University, Bengbu Anhui, 233030, P. R. China.
| |
Collapse
|
12
|
Liu S, Chen L, Shi Q, Fang Y, Da W, Xue C, Li X. Efficacy of manual therapy on shoulder pain and function in patients with rotator cuff injury: A systematic review and meta‑analysis. Biomed Rep 2024; 20:89. [PMID: 38682089 PMCID: PMC11046180 DOI: 10.3892/br.2024.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
To critically evaluate the effects of manual therapy (MT) on pain and functional improvement in patients with rotator cuff injury (RCI), a systematic review of all randomized controlled trials (RCTs) on MT for RCI was conducted in the following databases: PubMed, Cochrane Central Register of Controlled Trials, Embase, Web of Science, Physiotherapy Evidence Database, Chinese National Knowledge Infrastructure, Wan-fang Data, Chinese Scientific Journal Database, and Chinese Biomedical Literature database from inception to March 28, 2023. A total of 1,110 participants from 24 eligible RCTs were included in the analysis. Compared with placebo, MT could not effectively relieve pain [standardized mean difference (SMD)=-0.25; 95% CI: -0.51 to 0.01; P=0.06], although its impact on functional improvement appears limited (SMD=0.20; 95% CI: -0.09 to 0.49; P=0.18). Combining MT with exercise had significant advantages over exercise alone, as combined therapy contributed to both pain reduction (SMD=0.36; 95% CI: 0.08 to 0.64; P=0.01) and functional enhancement (SMD=0.32; 95% CI: 0.11 to 0.52; P=0.002). Furthermore, MT combined with multimodal physiotherapy showed additional benefits in pain reduction (mean difference=1.57; 95% CI: 0.18 to 2.96; P=0.03) and functional improvement (SMD=0.77; 95% CI: 0.43 to 1.12; P<0.0001) compared with multimodal physiotherapy alone. These findings highlight the superior pain alleviation and functional improvement provided by MT when combined with exercise or physiotherapy. Consequently, MT has emerged as a pivotal component of therapeutic intervention for RCI.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Lin Chen
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Qi Shi
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yide Fang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Weiwei Da
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chunchun Xue
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xiaofeng Li
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
13
|
Xie Y, Shao F, Ji Y, Feng D, Wang L, Huang Z, Wu S, Sun F, Jiang H, Miyamoto A, Wang H, Zhang C. Network Analysis of Osteoarthritis Progression Using a Steiner Minimal Tree Algorithm. J Inflamm Res 2024; 17:3201-3209. [PMID: 38779430 PMCID: PMC11110812 DOI: 10.2147/jir.s438407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/09/2023] [Indexed: 05/25/2024] Open
Abstract
Purpose To provide a comprehensive analysis of associated genes with osteoarthritis (OA). Here, we reported a network analysis of OA progression by using a Steiner minimal tree algorithm. Methods We collected the OA-related genes through screening the publications in MEDLINE. We performed functional analysis to analyze the associated biochemical pathways of the OA-related genes. Pathway crosstalk analysis was constructed to explore interactions of the enriched pathways. Steiner minimal tree algorithm was used to analyze molecular pathway networks. The average clustering coefficient was compared with the corresponding values of the Osteoarthritis-specific network. The new finding RNA was compared with former single-cell RNA-seq analysis results. Results A gene set with 177 members reported to be significantly associated with Osteoarthritis was collected from 187 studies. Functional enrichment analysis revealed a specific related-OA gene including skeletal system development, cytokine-mediated signaling pathway, inflammatory response, cartilage development, and extracellular matrix organization. We performed a pathway crosstalk analysis among the 72 significantly enriched pathways. A total of 151 of the 177 genes in the Osteoarthritis gene set were included in the human interactome network. There were 31 genes in the former single-cell RNA-seq analysis results. The CLU, ENO1, SRRM1, UBC, HMGB1, NR3C1, NOTCH2NL, and CBX5 have significantly increased expression in seven molecularly defined populations of OA cartilage. Conclusion The Steiner tree-based approach finds new biological molecules associated with OA genes.
Collapse
Affiliation(s)
- Yujie Xie
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fanglin Shao
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuxiu Ji
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Dechao Feng
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ling Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, Sichuan, People’s Republic of China
| | - Zonghai Huang
- School of Information and Communication Engineering, University of Electronic Science and Technology, Chengdu, Sichuan, People’s Republic of China
| | - Shengjian Wu
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fuhua Sun
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hong Jiang
- Rehabilitation Medicine Department, Xichong County People’s hospital, Nanchong, Sichuan, People’s Republic of China
| | - Akira Miyamoto
- Faculty of Rehabilitation, Nishikyushu University, Kansaitama, Japan
| | - Haiming Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Chi Zhang
- Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
14
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
15
|
Hu Y, Yang R, Liu S, Song Z, Wang H. The Emerging Roles of Nanocarrier Drug Delivery System in Treatment of Intervertebral Disc Degeneration-Current Knowledge, Hot Spots, Challenges and Future Perspectives. Drug Des Devel Ther 2024; 18:1007-1022. [PMID: 38567254 PMCID: PMC10986407 DOI: 10.2147/dddt.s448807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Low back pain (LBP) is a common condition that has substantial consequences on individuals and society, both socially and economically. The primary contributor to LBP is often identified as intervertebral disc degeneration (IVDD), which worsens and leads to significant spinal problems. The conventional treatment approach for IVDD involves physiotherapy, drug therapy for pain management, and, in severe cases, surgery. However, none of these treatments address the underlying cause of the condition, meaning that they cannot fundamentally reverse IVDD or restore the mechanical function of the spine. Nanotechnology and regenerative medicine have made significant advancements in the field of healthcare, particularly in the area of nanodrug delivery systems (NDDSs). These approaches have demonstrated significant potential in enhancing the efficacy of IVDD treatments by providing benefits such as high biocompatibility, biodegradability, precise drug delivery to targeted areas, prolonged drug release, and improved therapeutic results. The advancements in different NDDSs designed for delivering various genes, cells, proteins and therapeutic drugs have opened up new opportunities for effectively addressing IVDD. This comprehensive review provides a consolidated overview of the recent advancements in the use of NDDSs for the treatment of IVDD. It emphasizes the potential of these systems in overcoming the challenges associated with this condition. Meanwhile, the insights and ideas presented in this review aim to contribute to the advancement of precise IVDD treatment using NDDSs.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Rui Yang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Sanmao Liu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| | - Zefeng Song
- School of Graduates, Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
| | - Hong Wang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, Dalian City, Liaoning Province, People’s Republic of China
- School of Graduates, Dalian Medical University, Dalian City, Liaoning Province, People’s Republic of China
| |
Collapse
|
16
|
Zhao Y, Yang Y, Cui Y, Zhao Z, Chen X. Liposomes modified with a multivalent glutamic hexapeptide: A novel and effective way to promote bone targeting. Arch Pharm (Weinheim) 2024; 357:e2300620. [PMID: 38133558 DOI: 10.1002/ardp.202300620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
It is well known that bone-related diseases are difficult to treat due to the relatively low blood flow. Therefore, targeting the delivery of drugs to bone may not only improve the therapeutic effect but also reduce the dose. To prepare liposomes, a series of novel multivalent glutamic hexapeptide derivatives were designed and synthesized as liposome ligands, which can effectively deliver paclitaxel (PTX) to bone. The liposomes were prepared and their encapsulation efficiency, particle size, stability, zeta potential, hemolysis, and release behavior were characterized. The results indicated that the coated liposomes, PTX-Glu61 -Lip, PTX-Glu62 -Lip, PTX-Glu63 -Lip, and PTX-Glu65 -Lip, showed remarkable bone-targeting activity. Compared with the other coated liposomes, PTX-Glu65 -Lip showed prominent targeting ability and anti-bone metastasis activity on the basis of in vitro and in vivo evaluations. Our study may contribute to the field of design of bone-targeting drugs.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yamin Cui
- Zhengzhou Immuno Bio-Tech Co., Ltd, Zhengzhou, China
| | - Ze Zhao
- Department of Orthopedics, the First Affiliated Hospital of Henan Polytechnic University (the Second People's Hospital of Jiaozuo City), Jiaozuo, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
18
|
Singh V, Bansal K, Bhati H, Bajpai M. New Insights into Pharmaceutical Nanocrystals for the Improved Topical Delivery of Therapeutics in Various Skin Disorders. Curr Pharm Biotechnol 2024; 25:1182-1198. [PMID: 37921127 DOI: 10.2174/0113892010276223231027075527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Nanotechnology has provided nanostructure-based delivery of drugs, among which nanocrystals have been investigated and explored for feasible topical drug delivery. Nanocrystals are nano-sized colloidal carriers, considered pure solid particles with a maximum drug load and a very small amount of stabilizer. The size or mean diameter of the nanocrystals is less than 1 μm and has a crystalline character. Prominent synthesis methods include the utilization of microfluidic- driven platforms as well as the milling approach, which is both adaptable and adjustable. Nanocrystals have shown a high capacity for loading drugs, utilization of negligible amounts of excipients, greater chemical stability, lower toxic effects, and ease of scale-up, as well as manufacturing. They have gained interest as drug delivery platforms, and the significantly large surface area of the skin makes it a potential approach for topical therapeutic formulations for different skin disorders including fungal and bacterial infections, psoriasis, wound healing, and skin cancers, etc. This article explores the preparation techniques, applications, and recent patents of nanocrystals for treating various skin conditions.
Collapse
Affiliation(s)
- Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
19
|
Bao R, Mao Y, Zhang Y, Chai J, Zhang Y, Luo C, Zhang K, Jiang G, He X. Fabrication of injectable alginate hydrogels with sustained release of 4-octyl itaconate for articular anti-inflammatory. Biomed Mater Eng 2024; 35:475-485. [PMID: 39150826 DOI: 10.3233/bme-240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and degenerative joint disease that remains a great challenge in treatment due to the lack of effective therapies. 4-octyl itaconate (4-OI) is a novel and potent modulator of inflammation for the treatment of inflammatory disease. However, the clinical usage of 4-OI is limited due to its poor solubility and low bioavailability. As a promising drug delivery strategy, injectable hydrogels offers an effective approach to address these limitations of 4-OI. OBJECTIVE The aim of the study was to verify that the composite 4-OI/SA hydrogels could achieve a controlled release of 4-OI and reduce damage to articular cartilage in the group of osteoarthritic rats treated with the system. METHODS In this study, an injectable composite hydrogel containing sodium alginate (SA) and 4-octyl itaconate (4-OI) has been developed for continuous intra-articular administration in the treatment of OA. RESULTS After intra-articular injection in arthritic rats, the as-prepared 4-OI/SA hydrogel containing of 62.5 μM 4-OI effectively significantly reduced the expression of TNF-α, IL-1β, IL-6 and MMP3 in the ankle fluid. Most importantly, the as-prepared 4-OI/SA hydrogel system restored the morphological parameters of the ankle joints close to normal. CONCLUSION 4-OI/SA hydrogel shows a good anti-inflammatory activity and reverse cartilage disruption, which provide a new strategy for the clinical treatment of OA.
Collapse
Affiliation(s)
- Ronghua Bao
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Yifan Mao
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Yuliang Zhang
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Junlei Chai
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Yuanbin Zhang
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Cheng Luo
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Kailong Zhang
- Department of Medical Research, Zhejiang Zhongwei Medical Research Co., Ltd, Hangzhou, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaodan He
- Department of Orthopedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| |
Collapse
|
20
|
Verma A, Chauhan A, Awasthi A. Transcending Molecules: Paving the Way from Lab to Life in Drug Transport Innovation. Curr Drug Targets 2024; 25:445-448. [PMID: 38639289 DOI: 10.2174/0113894501305312240414073623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Abhishek Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Abhishek Chauhan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
21
|
Li J, Zhang W, Liu X, Li G, Gu Y, Zhang K, Shen F, Wu X, Jiang Y, Zhang Q, Zhou F, Xu K, Su J. Endothelial Stat3 activation promotes osteoarthritis development. Cell Prolif 2023; 56:e13518. [PMID: 37309689 PMCID: PMC10693181 DOI: 10.1111/cpr.13518] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
The mechanism of the balance between subchondral angiogenesis and articular damage within osteoarthritis (OA) progression remains a mystery. However, the lack of specific drugs leads to limited clinical treatment options for OA, frequently failing to prevent eventual joint destruction in patients. Increasing evidence suggests that subchondral bone angiogenesis precedes cartilage injury, while proliferating endothelial cells (ECs) induce abnormal bone formation. Signal transducer and activator of transcription 3 (Stat3) is triggered by multiple cytokines in the OA microenvironment. Here, we observed elevated Stat3 activation in subchondral bone H-type vessels. Endothelial Stat3 activation will lead to stronger cell proliferation, migration and angiogenesis by simulating ECs in OA. In contrast, either Stat3 activation inhibition or knockdown of Stat3 expression could relieve such alterations. More interestingly, blocking Stat3 in ECs alleviated angiogenesis-mediated osteogenic differentiation and chondrocyte lesions. Stat3 inhibitor reversed surgically induced subchondral bone H-type vessel hyperplasia in vivo, significantly downregulating vessel volume and vessel number. Due to the reduced angiogenesis, subchondral bone deterioration and cartilage loss were alleviated. Overall, our data suggest that endothelial Stat3 activation is an essential trigger for OA development. Therefore, targeted Stat3 blockade is a novel promising therapeutic regimen for OA.
Collapse
Affiliation(s)
- Jiadong Li
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Wencai Zhang
- Department of Orthopedics, First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Xinru Liu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Guangfeng Li
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Kun Zhang
- Department of Orthopedics, Honghui HospitalXi'an Jiao Tong UniversityXi'anChina
| | - Fuming Shen
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Xiang Wu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Yingying Jiang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Qin Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Fengjin Zhou
- Department of Orthopedics, Honghui HospitalXi'an Jiao Tong UniversityXi'anChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopaedicsXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Zheng H, Xie X, Ling H, You X, Liang S, Lin R, Qiu R, Hou H. Transdermal drug delivery via microneedles for musculoskeletal systems. J Mater Chem B 2023; 11:8327-8346. [PMID: 37539625 DOI: 10.1039/d3tb01441j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
As the population is ageing and lifestyle is changing, the prevalence of musculoskeletal (MSK) disorders is gradually increasing with each passing year, posing a serious threat to the health and quality of the public, especially the elderly. However, currently prevalent treatments for MSK disorders, mainly administered orally and by injection, are not targeted to the specific lesion, resulting in low efficacy along with a series of local and systemic adverse effects. Microneedle (MN) patches loaded with micron-sized needle array, combining the advantages of oral administration and local injection, have become a potentially novel strategy for the administration and treatment of MSK diseases. In this review, we briefly introduce the basics of MNs and focus on the main characteristics of the MSK systems and various types of MN-based transdermal drug delivery (TDD) systems. We emphasize the progress and broad applications of MN-based transdermal drug delivery (TDD) for MSK systems, including osteoporosis, nutritional rickets and some other typical types of arthritis and muscular damage, and in closing summarize the future prospects and challenges of MNs application.
Collapse
Affiliation(s)
- Haibin Zheng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xuankun Xie
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Haocong Ling
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xintong You
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Siyu Liang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Rurong Lin
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| |
Collapse
|
23
|
Pan L, Zhang C, Zhang H, Ke T, Bian M, Yang Y, Chen L, Tan J. Osteoclast-Derived Exosomal miR-5134-5p Interferes with Alveolar Bone Homeostasis by Targeting the JAK2/STAT3 Axis. Int J Nanomedicine 2023; 18:3727-3744. [PMID: 37441084 PMCID: PMC10335290 DOI: 10.2147/ijn.s413692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background In chronic periodontitis, exosomes transport various informative substances between osteoclasts and osteoblasts in alveolar bone. Herein, we aimed to investigate the effect of exosomal micro-ribonucleic acid (miRNA/miR)-5134-5p derived from osteoclasts on osteoblastic proliferation and differentiation and the development of periodontitis in vivo and in vitro. Methods The effects of OC-Exos on the proliferation and differentiation of osteoblasts were identified by Real-time quantitative reverse polymerase chain reaction (qRT-PCR), Western blot(WB), alkaline phosphatase(ALP) staining, etc. Exosomal miRNA expression was analyzed by sequencing. The sites of miRNA action were predicted through TargetScan and tested by double luciferase assay. After transfecting miR-5134-5p mimic/inhibitor into osteoblasts, we measured the proliferation and differentiation of osteoblasts by ALP staining and WB, etc. Furthermore, OC-Exos were injected into the gingival sulcus at the ligation site. Inflammation was observed by Hematoxylin-eosin (H&E) staining, the expression of inflammatory factors were detected by qRT-PCR, the resorption of alveolar bone was observed by Micro CT. Results Osteoblastic proliferation and differentiation were negatively regulated by OC-Exos in vitro. miRNA sequencing analysis revealed that miR-5134-5p expression was significantly elevated in OC-Exos, which also increased in osteoblasts following OC-Exo intervention. The dual-luciferase assay revealed that miR-5134-5p and Janus kinase 2 (JAK2) had binding sites. miR-5134-5p-mimics could upregulate miR-5134-5p expression in osteoblasts while downregulating Runt-related transcription factor 2(Runx2), phosphorylated-JAK2 (p-JAK2), and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3) expression and inhibited osteogenic differentiation. However, miR-5134-5p-inhibitor had the opposite effect. In vivo, the OC-Exo group demonstrated morphological disruption of periodontal tissue, massive inflammatory cell infiltration, upregulation of inflammatory factors mRNA expression, a significant decrease in BV/TV, and an increase in the cementoenamel junction and alveolar bone crest distance. Conclusion Osteoclast-derived exosomal miR-5134-5p inhibits osteoblastic proliferation and differentiation via the JAK2/STAT3 pathway. OC-Exos exacerbate periodontal tissue inflammation and accelerate alveolar bone resorption in mice with experimental periodontitis.
Collapse
Affiliation(s)
- Lai Pan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Chenyi Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Haizheng Zhang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Ting Ke
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Mengyao Bian
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Yuxuan Yang
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| | - Jingyi Tan
- Department of Periodontology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, People’s Republic of China
| |
Collapse
|
24
|
Yuan S, Li G, Zhang J, Chen X, Su J, Zhou F. Mesenchymal Stromal Cells-Derived Extracellular Vesicles as Potential Treatments for Osteoarthritis. Pharmaceutics 2023; 15:1814. [PMID: 37514001 PMCID: PMC10385170 DOI: 10.3390/pharmaceutics15071814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints characterized by cartilage damage and severe pain. Despite various pharmacological and surgical interventions, current therapies fail to halt OA progression, leading to high morbidity and an economic burden. Thus, there is an urgent need for alternative therapeutic approaches that can effectively address the underlying pathophysiology of OA. Extracellular Vesicles (EVs) derived from mesenchymal stromal cells (MSCs) represent a new paradigm in OA treatment. MSC-EVs are small membranous particles released by MSCs during culture, both in vitro and in vivo. They possess regenerative properties and can attenuate inflammation, thereby promoting cartilage healing. Importantly, MSC-EVs have several advantages over MSCs as cell-based therapies, including lower risks of immune reactions and ethical issues. Researchers have recently explored different strategies, such as modifying EVs to enhance their delivery, targeting efficiency, and security, with promising results. This article reviews how MSC-EVs can help treat OA and how they might work. It also briefly discusses the benefits and challenges of using MSC-EVs and talks about the possibility of allogeneic and autologous MSC-EVs for medical use.
Collapse
Affiliation(s)
- Shunling Yuan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guangfeng Li
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jinbo Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin 300110, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| |
Collapse
|
25
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|