1
|
Niu X, Zhang M, Gao X, Dang J, Sun J, Tao Q, Lang Y, Wang W, Wei Y, Han S, Xu H, Guo Y, Cheng J, Zhang Y. Abnormal Granger causal connectivity based on altered gray matter volume and associated neurotransmitters of adolescents with internet gaming disorder revealed by a multimodal neuroimaging study. Dev Cogn Neurosci 2024; 70:101472. [PMID: 39486388 PMCID: PMC11566705 DOI: 10.1016/j.dcn.2024.101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Although prior studies have revealed alterations in gray matter volume (GMV) among individuals with internet gaming disorder (IGD). The brain's multifaceted functions hinge crucially on the intricate connections and communication among distinct regions. However, the intricate interaction of information between brain regions with altered GMV and other regions, and how they synchronize with various neurotransmitter systems, remains enigmatic. Therefore, we aimed to integrate structural, functional and molecular data to explore the GMV-based Granger causal connectivity abnormalities and their correlated neurotransmitter systems in IGD adolescents. Voxel-based morphometry (VBM) analysis was firstly performed to investigate GMV differences between 37 IGD adolescents and 35 matched controls. Brain regions with altered GMV were selected as seeds for further Granger causality analysis (GCA). Two-sample t tests were performed using the SPM12 toolkit to compare the GMV and Granger causal connectivity between IGD and control groups (GRF corrected, Pvoxel<0.005, Pcluster<0.05). Then, GMV-based Granger causal connectivity was spatially correlated with PET- and SPECT-derived maps covering multifarious neurotransmitter systems. Multiple comparison correction was performed using false discovery rate (FDR). Compared with controls, IGD adolescents showed higher GMV in the caudate nucleus and lingual gyrus. For the GCA, IGD adolescents showed higher Granger causal connectivity from insula, putamen, supplementary motor area (SMA) and middle cingulum cortex (MCC) to the caudate nucleus, and lower Granger causal connectivity from superior/inferior parietal gyrus (SPG/IPG) and middle occipital gyrus (MOG) to the lingual gyrus. Besides, GMV-based Granger causal connectivity of IGD adolescents were associated with the dopaminergic, serotonergic, GABAergic and noradrenaline systems. This study revealed that the caudate nucleus and lingual gyrus may be the key sites of neuroanatomical changes in IGD adolescents, and whole-brain Granger causal connectivity abnormalities based on altered GMV involved large brain networks including reward, cognitive control, and visual attention networks, and these abnormalities are associated with a variety of neurotransmitter systems, which may be associated with higher reward sensitivity, cognitive control, and attention control dysfunction.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China; Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Yan Lang
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China.
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, China; Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, China.
| |
Collapse
|
9
|
Stringer S, Minică CC, Verweij KJH, Mbarek H, Bernard M, Derringer J, van Eijk KR, Isen JD, Loukola A, Maciejewski DF, Mihailov E, van der Most PJ, Sánchez-Mora C, Roos L, Sherva R, Walters R, Ware JJ, Abdellaoui A, Bigdeli TB, Branje SJT, Brown SA, Bruinenberg M, Casas M, Esko T, Garcia-Martinez I, Gordon SD, Harris JM, Hartman CA, Henders AK, Heath AC, Hickie IB, Hickman M, Hopfer CJ, Hottenga JJ, Huizink AC, Irons DE, Kahn RS, Korhonen T, Kranzler HR, Krauter K, van Lier PAC, Lubke GH, Madden PAF, Mägi R, McGue MK, Medland SE, Meeus WHJ, Miller MB, Montgomery GW, Nivard MG, Nolte IM, Oldehinkel AJ, Pausova Z, Qaiser B, Quaye L, Ramos-Quiroga JA, Richarte V, Rose RJ, Shin J, Stallings MC, Stiby AI, Wall TL, Wright MJ, Koot HM, Paus T, Hewitt JK, Ribasés M, Kaprio J, Boks MP, Snieder H, Spector T, Munafò MR, Metspalu A, Gelernter J, Boomsma DI, Iacono WG, Martin NG, Gillespie NA, Derks EM, Vink JM. Genome-wide association study of lifetime cannabis use based on a large meta-analytic sample of 32 330 subjects from the International Cannabis Consortium. Transl Psychiatry 2016; 6:e769. [PMID: 27023175 PMCID: PMC4872459 DOI: 10.1038/tp.2016.36] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 01/15/2023] Open
Abstract
Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences. Individual differences in cannabis initiation are heritable (40-48%). The International Cannabis Consortium was established with the aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts (N=32 330) and four replication samples (N=5627). In addition, we performed a gene-based test of association, estimated single-nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index, processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use. Furthermore, we showed that, combined across the genome, all common SNPs explained 13-20% (P<0.001) of the liability of lifetime cannabis use. Finally, there was a strong genetic correlation (rg=0.83; P=1.85 × 10(-8)) between lifetime cannabis use and lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use.
Collapse
Affiliation(s)
- S Stringer
- Department of Complex Trait Genetics, VU Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam, The Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, The Netherlands
| | - C C Minică
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - K J H Verweij
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
- Department of Developmental Psychology and EMGO Institute for Health and Care Research, VU University, Amsterdam, The Netherlands
| | - H Mbarek
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - M Bernard
- The Hospital for Sick Children Research Institute, Toronto, Canada
| | - J Derringer
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - K R van Eijk
- Department of Human Neurogenetics, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J D Isen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - A Loukola
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - D F Maciejewski
- Department of Developmental Psychology and EMGO Institute for Health and Care Research, VU University, Amsterdam, The Netherlands
| | - E Mihailov
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - P J van der Most
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - C Sánchez-Mora
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - L Roos
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - R Sherva
- Biomedical Genetics Department, Boston University School of Medicine, Boston, MA, USA
| | - R Walters
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - J J Ware
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - A Abdellaoui
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - T B Bigdeli
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - S J T Branje
- Research Centre Adolescent Development, Utrecht University, Utrecht, The Netherlands
| | - S A Brown
- Department of Psychology and Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M Bruinenberg
- The LifeLines Cohort Study, University of Groningen, Groningen, The Netherlands
| | - M Casas
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - T Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - I Garcia-Martinez
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - S D Gordon
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - J M Harris
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - C A Hartman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A K Henders
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A C Heath
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - I B Hickie
- Brain and Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - M Hickman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - C J Hopfer
- Department of Psychiatry, University of Colorado Denver, Aurora, CO, USA
| | - J J Hottenga
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - A C Huizink
- Department of Developmental Psychology and EMGO Institute for Health and Care Research, VU University, Amsterdam, The Netherlands
| | - D E Irons
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - R S Kahn
- Department of Human Neurogenetics, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - T Korhonen
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - H R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - K Krauter
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - P A C van Lier
- Department of Developmental Psychology and EMGO Institute for Health and Care Research, VU University, Amsterdam, The Netherlands
| | - G H Lubke
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - P A F Madden
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - R Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - M K McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - S E Medland
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - W H J Meeus
- Research Centre Adolescent Development, Utrecht University, Utrecht, The Netherlands
- Developmental Psychology, Tilburg University, Tilburg, The Netherlands
| | - M B Miller
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - G W Montgomery
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - M G Nivard
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - I M Nolte
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A J Oldehinkel
- Interdisciplinary Center for Pathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Z Pausova
- The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - B Qaiser
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - L Quaye
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - J A Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - V Richarte
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - R J Rose
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - J Shin
- The Hospital for Sick Children Research Institute, Toronto, Canada
| | - M C Stallings
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - A I Stiby
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - T L Wall
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M J Wright
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - H M Koot
- Department of Developmental Psychology and EMGO Institute for Health and Care Research, VU University, Amsterdam, The Netherlands
| | - T Paus
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Department of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - J K Hewitt
- Department of Psychology and Neuroscience, Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - M Ribasés
- Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
| | - J Kaprio
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - M P Boks
- Department of Human Neurogenetics, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T Spector
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - M R Munafò
- School of Social and Community Medicine, University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies and School of Experimental Psychology, University of Bristol, Bristol, UK
| | - A Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - J Gelernter
- Department of Psychiatry, Genetics, and Neurobiology, Yale University School of Medicine and VA CT, West Haven, CT, USA
| | - D I Boomsma
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - W G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - N G Martin
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - N A Gillespie
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Genetic Epidemiology, Molecular Epidemiology and Neurogenetics Laboratories, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - E M Derks
- Department of Psychiatry, Academic Medical Centre, Amsterdam, The Netherlands
| | - J M Vink
- Department of Biological Psychology/Netherlands Twin Register, VU University, Amsterdam, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|