1
|
Qiu X, Han X, Wang Y, Ding W, Sun Y, Lei H, Zhou Y, Lin F. Sex Differences in Alterations of Brain Functional Network in Tobacco Use Disorder. Nicotine Tob Res 2024; 26:1049-1056. [PMID: 38195240 DOI: 10.1093/ntr/ntae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Many studies have found sex differences in alterations of brain function in cigarette-smoking adults from the perspective of functional activity or connectivity. However, no studies have systematically found different alteration patterns in brain functional topology of cigarette-smoking men and women from three perspectives: nodal and network efficiency and modular connections. AIMS AND METHODS Fifty-six tobacco use disorder (TUD) participants (25 women) and 66 non-TUD participants (28 women) underwent a resting-state functional magnetic resonance imaging scan. The whole-brain functional networks were constructed, and a two-way analysis of covariance with false discovery rate correction (q < 0.05) was performed to investigate whether men and women TUD participants had different alterations in the topological features at global, modular, and nodal levels. RESULTS Compared to non-TUD participants, men but not women TUD participants showed significantly lower global efficiency (lower intermodular connections between the visual and executive control and between the visual and subcortical modules did not pass the correction) and significantly lower nodal global efficiency in the right superior occipital gyrus, bilateral fusiform gyrus, the right pallidum, right putamen, the bilateral paracentral lobule, the postcentral gyrus, and lower nodal local efficiency in the left paracentral lobule. CONCLUSIONS Men and women TUD participants have different topological properties of brain functional network, which may contribute to our understanding of neural mechanisms underlying sex differences in TUD. IMPLICATIONS Compared to non-TUD participants, we found men but not women TUD participants with significantly lower network metrics at global, modular, and nodal levels, which could improve our understanding of neural mechanisms underlying sex differences in TUD and lay a solid foundation for future sex-based TUD prevention and treatment.
Collapse
Affiliation(s)
- Xianxin Qiu
- Institute of Mental Health, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Conti AA, Tolomeo S, Baldacchino A, Steele JD. Blunted midbrain reward activation during smoking withdrawal: a preliminary study. Front Pharmacol 2024; 15:1426506. [PMID: 39015373 PMCID: PMC11250069 DOI: 10.3389/fphar.2024.1426506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Tobacco smoking is the leading preventable cause of death, causing more than six million deaths annually worldwide, mainly due to cardiovascular disease and cancer. Many habitual smokers try to stop smoking but only about 7% are successful, despite widespread knowledge of the risks. Development of addiction to a range of substances is associated with progressive blunting of brain reward responses and sensitisation of stress responses, as described by the allostasis theory of addiction. There is pre-clinical evidence from rodents for a dramatic decrease in brain reward function during nicotine withdrawal. Methods Here we tested the hypothesis that habitual smokers would also exhibit blunted reward function during nicotine withdrawal using a decision-making task and fMRI. Results Our findings supported this hypothesis, with midbrain reward-related responses particularly blunted. We also tested the hypothesis that smokers with a longer duration of smoking would have more pronounced abnormalities. Contrary to expectations, we found that a shorter duration of smoking in younger smokers was associated with the most marked abnormalities, with blunted midbrain reward related activation including the dopaminergic ventral tegmental area. Discussion Given the substantial mortality associated with smoking, and the small percent of people who manage to achieve sustained abstinence, further translational studies on nicotine addiction mechanisms are indicated.
Collapse
Affiliation(s)
- A. A. Conti
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Population and Behavioural Science Division, School of Medicine, University of St Andrews, St. Andrews, United Kingdom
| | - S. Tolomeo
- Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - A. Baldacchino
- Population and Behavioural Science Division, School of Medicine, University of St Andrews, St. Andrews, United Kingdom
| | - J. D. Steele
- Division of Imaging Science and Technology, Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
3
|
Huang X, Qi Y, Zhang R, Pu Y, Chen X, Chen S, Zhao H, He Q. Altered executive control network and default model network topology are linked to acute electronic cigarette use: A resting-state fNIRS study. Addict Biol 2024; 29:e13423. [PMID: 38949205 PMCID: PMC11215790 DOI: 10.1111/adb.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
In recent years, electronic cigarettes (e-cigs) have gained popularity as stylish, safe, and effective smoking cessation aids, leading to widespread consumer acceptance. Although previous research has explored the acute effects of combustible cigarettes or nicotine replacement therapy on brain functional activities, studies on e-cigs have been limited. Using fNIRS, we conducted graph theory analysis on the resting-state functional connectivity of 61 male abstinent smokers both before and after vaping e-cigs. And we performed Pearson correlation analysis to investigate the relationship between alterations in network metrics and changes in craving. E-cig use resulted in increased degree centrality, nodal efficiency, and local efficiency within the executive control network (ECN), while causing a decrease in these properties within the default model network (DMN). These alterations were found to be correlated with reductions in craving, indicating a relationship between differing network topologies in the ECN and DMN and decreased craving. These findings suggest that the impact of e-cig usage on network topologies observed in male smokers resembles the effects observed with traditional cigarettes and other forms of nicotine delivery, providing valuable insights into their addictive potential and effectiveness as aids for smoking cessation.
Collapse
Affiliation(s)
- Xin Huang
- Faculty of Psychology, MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| | - Yawei Qi
- Faculty of Psychology, MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| | - Ran Zhang
- Faculty of Psychology, MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| | - Yu Pu
- Faculty of Psychology, MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| | - Xi Chen
- Institute of Life ScienceShenzhen Smoore Technology LimitedShenzhenChina
| | - Shanping Chen
- Institute of Life ScienceShenzhen Smoore Technology LimitedShenzhenChina
| | - Haichao Zhao
- Faculty of Psychology, MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
| | - Qinghua He
- Faculty of Psychology, MOE Key Laboratory of Cognition and PersonalitySouthwest UniversityChongqingChina
- Collaborative Innovation Center of Assessment toward Basic Education QualitySouthwest University BranchChongqingChina
| |
Collapse
|
4
|
Zhang R, Rolls ET, Cheng W, Feng J. Different cortical connectivities in human females and males relate to differences in strength and body composition, reward and emotional systems, and memory. Brain Struct Funct 2024; 229:47-61. [PMID: 37861743 PMCID: PMC10827883 DOI: 10.1007/s00429-023-02720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Sex differences in human brain structure and function are important, partly because they are likely to be relevant to the male-female differences in behavior and in mental health. To analyse sex differences in cortical function, functional connectivity was measured in 36,531 participants (53% female) in the UK Biobank (mean age 69) using the Human Connectome Project multimodal parcellation atlas with 360 well-specified cortical regions. Most of the functional connectivities were lower in females (Bonferroni corrected), with the mean Cohen's d = - 0.18. Removing these as covariates reduced the difference of functional connectivities for females-males from d = - 0.18 to - 0.06. The lower functional connectivities in females were especially of somatosensory/premotor regions including the insula, opercular cortex, paracentral lobule and mid-cingulate cortex, and were correlated with lower maximum workload (r = 0.17), and with higher whole body fat mass (r = - 0.17). But some functional connectivities were higher in females, involving especially the ventromedial prefrontal cortex and posterior cingulate cortex, and these were correlated with higher liking for some rewards such as sweet foods, higher happiness/subjective well-being, and with better memory-related functions. The main findings were replicated in 1000 individuals (532 females, mean age 29) from the Human Connectome Project. This investigation shows the cortical systems with different functional connectivity between females and males, and also provides for the first time a foundation for understanding the implications for behavior of these differences between females and males.
Collapse
Affiliation(s)
- Ruohan Zhang
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
| | - Edmund T Rolls
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China.
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| |
Collapse
|
5
|
Kheloui S, Jacmin-Park S, Larocque O, Kerr P, Rossi M, Cartier L, Juster RP. Sex/gender differences in cognitive abilities. Neurosci Biobehav Rev 2023; 152:105333. [PMID: 37517542 DOI: 10.1016/j.neubiorev.2023.105333] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sex/gender differences in cognitive sciences are riddled by conflicting perspectives. At the center of debates are clinical, social, and political perspectives. Front and center, evolutionary and biological perspectives have often focused on 'nature' arguments, while feminist and constructivist views have often focused on 'nurture arguments regarding cognitive sex differences. In the current narrative review, we provide a comprehensive overview regarding the origins and historical advancement of these debates while providing a summary of the results in the field of sexually polymorphic cognition. In so doing, we attempt to highlight the importance of using transdisciplinary perspectives which help bridge disciplines together to provide a refined understanding the specific factors that drive sex differences a gender diversity in cognitive abilities. To summarize, biological sex (e.g., birth-assigned sex, sex hormones), socio-cultural gender (gender identity, gender roles), and sexual orientation each uniquely shape the cognitive abilities reviewed. To date, however, few studies integrate these sex and gender factors together to better understand individual differences in cognitive functioning. This has potential benefits if a broader understanding of sex and gender factors are systematically measured when researching and treating numerous conditions where cognition is altered.
Collapse
Affiliation(s)
- Sarah Kheloui
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Silke Jacmin-Park
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Ophélie Larocque
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Philippe Kerr
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Mathias Rossi
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Louis Cartier
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addiction, University of Montreal, Montreal, Quebec, Canada; Department of Psychology, Université du Québec à Montréal, Montreal, Quebec, Canada; Centre de recherche de l'Institut universitaire en santé mentale de Montréal, Canada; Center on Sex⁎Gender, Allostasis and Resilience, Canada.
| |
Collapse
|
6
|
Niu X, Gao X, Lv Q, Zhang M, Dang J, Sun J, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Increased spontaneous activity of the superior frontal gyrus with reduced functional connectivity to visual attention areas and cerebellum in male smokers. Front Hum Neurosci 2023; 17:1153976. [PMID: 37007679 PMCID: PMC10063805 DOI: 10.3389/fnhum.2023.1153976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundChronic smokers have abnormal spontaneous regional activity and disrupted functional connectivity as revealed by previous neuroimaging studies. Combining different dimensions of resting-state functional indicators may help us learn more about the neuropathological mechanisms of smoking.MethodsThe amplitude of low frequency fluctuations (ALFF) of 86 male smokers and 56 male non-smokers were first calculated. Brain regions that displayed significant differences in ALFF between two groups were selected as seeds for further functional connectivity analysis. Besides, we examined correlations between brain areas with abnormal activity and smoking measurements.ResultsIncreased ALFF in left superior frontal gyrus (SFG), left medial superior frontal gyrus (mSFG) and middle frontal gyrus (MFG) as well as decreased ALFF in right calcarine sulcus were observed in smokers compared with non-smokers. In the seed-based functional connectivity analysis, smokers showed attenuated functional connectivity with left SFG in left precuneus, left fusiform gyrus, left lingual gyrus, left cerebellum 4 5 and cerebellum 6 as well as lower functional connectivity with left mSGF in left fusiform gyrus, left lingual gyrus, left parahippocampal gyrus (PHG), left calcarine sulcus, left cerebellum 4 5, cerebellum 6 and cerebellum 8 (GRF corrected, Pvoxel < 0.005, Pcluster<0.05). Furthermore, attenuated functional connectivity with left mSGF in left lingual gyrus and PHG displayed a negative correlation with FTND scores (r = −0.308, p = 0.004; r = −0.326, p = 0.002 Bonferroni corrected).ConclusionOur findings of increased ALFF in SFG with reduced functional connectivity to visual attention areas and cerebellum subregions may shed new light on the pathophysiology of smoking.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qingqing Lv
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Shaoqiang Han,
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- *Correspondence: Yong Zhang,
| |
Collapse
|
7
|
Wen Z, Han X, Wang Y, Ding W, Sun Y, Kang Y, Zhou Y, Lei H, Lin F. Sex-Dependent Alterations of Regional Homogeneity in Cigarette Smokers. Front Psychiatry 2022; 13:874893. [PMID: 35546937 PMCID: PMC9082268 DOI: 10.3389/fpsyt.2022.874893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Biological sex may play a large role in cigarette use and cessation outcomes and neuroimaging studies have demonstrated that cigarette smoking is associated with sex-related differences in brain structure and function. However, less is known about sex-specific alterations in spontaneous brain activity in cigarette smokers. In this study, we investigated the sex-related effects of cigarette smoking on local spontaneous brain activity using regional homogeneity (ReHo) based on resting-state fMRI. Fifty-six smokers (24 females) and sixty-three (25 females) healthy non-smoking controls were recruited. Whole-brain voxelwise 2-way analysis of covariance of ReHo was performed to detect brain regions with sex-dependent alterations on the spontaneous brain activity. Compared to non-smokers, smokers exhibited significant ReHo differences in several brain regions, including the right medial orbitofrontal cortex extended to the ventral striatum/amygdala/parahippocampus, left precuneus, and bilateral cerebellum crus. Smoking and sex interaction analysis revealed that male smokers showed significantly lower ReHo in the right ventral striatum, left cerebellum crus1, and left fusiform gyrus compared to male non-smokers, whereas there are no significant differences between female smokers and non-smokers. Furthermore, the ReHo within the left cerebellum crus1 was negatively correlated with craving scores in male smokers but not in female smokers. Such sex-dependent differences in spontaneous brain activity lays a foundation for further understanding the neural pathophysiology of sex-specific effects of nicotine addiction and promoting more effective health management of quitting smoking.
Collapse
Affiliation(s)
- Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Kang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fuchun Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
von Deneen KM, Hussain H, Waheed J, Xinwen W, Yu D, Yuan K. Comparison of frontostriatal circuits in adolescent nicotine addiction and internet gaming disorder. J Behav Addict 2022; 11:26-39. [PMID: 35049521 PMCID: PMC9109629 DOI: 10.1556/2006.2021.00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, there has been significantly increased participation in online gaming and other addictive behaviors particularly in adolescents. Tendencies to avoid social interaction and become more involved in technology-based activities pose the danger of creating unhealthy addictions. Thus, the presence of relatively immature cognitive control and high risk-taking properties makes adolescence a period of major changes leading to an increased rate of emotional disorders and addiction. AIMS The critical roles of frontostriatal circuits in addiction have become the primary focus associated with reward in the striatum and cognitive control in the PFC. Internet gaming disorder (IGD) and nicotine addiction are currently becoming more and more serious. METHODS In the light of neuroimaging, the similarity between brain mechanisms causing substance use disorder (SUD) and IGD have been described in previous literature. RESULTS In particular, two distinct brain systems affect the way we act accounting for uncharacteristic neural function in addiction: the affective system comprises of the striatum driven by emotional, reward-related, and internal stimuli, and a cognitive system consisting of the prefrontal cortex (PFC) supporting the ventral affective system's actions via inhibitory control. DISCUSSION AND CONCLUSION Therefore, as a novel concept, we focused on the implication of frontostriatal circuits in nicotine addiction and IGD by reviewing the main findings from our studies compared to those of others. We hope that all of these neuroimaging findings can lead to effective intervention and treatment for addiction especially during this critical period.
Collapse
Affiliation(s)
- Karen M. von Deneen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, Peoples R China,Corresponding authors. E-mail: (), ,
| | - Hadi Hussain
- Xi'an Jiaotong University, 74 Yanta Street, Yanta District, Xi'an, Shaanxi 710001, Peoples R China
| | - Junaid Waheed
- Xi'an Jiaotong University, 74 Yanta Street, Yanta District, Xi'an, Shaanxi 710001, Peoples R China
| | - Wen Xinwen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, Peoples R China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, Peoples R China,Corresponding authors. E-mail: (), ,
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, Peoples R China,Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, Peoples R China,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, 710071, Peoples R China,Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, Peoples R China,Corresponding authors. E-mail: (), ,
| |
Collapse
|
9
|
Ghahremani DG, Pochon JB, Perez Diaz M, Tyndale RF, Dean AC, London ED. Functional connectivity of the anterior insula during withdrawal from cigarette smoking. Neuropsychopharmacology 2021; 46:2083-2089. [PMID: 34035468 PMCID: PMC8505622 DOI: 10.1038/s41386-021-01036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Currently available therapies for smoking cessation have limited efficacy, and potential treatments that target specific brain regions are under evaluation, with a focus on the insula. The ventral and dorsal anterior subregions of the insula serve distinct functional networks, yet our understanding of how these subregions contribute to smoking behavior is unclear. Resting-state functional connectivity (RSFC) provides a window into network-level function associated with smoking-related internal states. The goal of this study was to determine potentially distinct relationships of ventral and dorsal anterior insula RSFC with cigarette withdrawal after brief abstinence from smoking. Forty-seven participants (24 women; 18-45 years old), who smoked cigarettes daily and were abstinent from smoking overnight (~12 h), provided self-reports of withdrawal and underwent resting-state fMRI before and after smoking the first cigarette of the day. Correlations between withdrawal and RSFC were computed separately for ventral and dorsal anterior insula seed regions in whole-brain voxel-wise analyses. Withdrawal was positively correlated with RSFC of the right ventral anterior insula and dorsal anterior cingulate cortex (dACC) before but not after smoking. The correlation was mainly due to a composite effect of craving and physical symptoms of withdrawal. These results suggest a role of right ventral anterior insula-dACC connectivity in the internal states that maintain smoking behavior (e.g., withdrawal) and present a specific neural target for brain-based therapies seeking to attenuate withdrawal symptoms in the critical early stages of smoking cessation.
Collapse
Affiliation(s)
- Dara G. Ghahremani
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA
| | - Jean-Baptiste Pochon
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA
| | - Maylen Perez Diaz
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA
| | - Rachel F. Tyndale
- grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON Canada
| | - Andy C. Dean
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Brain Research Institute, University of California, Los Angeles, CA USA
| | - Edythe D. London
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Brain Research Institute, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA USA
| |
Collapse
|
10
|
Lin F, Han X, Wang Y, Ding W, Sun Y, Zhou Y, Lei H. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity. Brain Imaging Behav 2021; 15:1-13. [PMID: 31898088 DOI: 10.1007/s11682-019-00227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have demonstrated sex-specific differences in etiology, course and brain dysfunction that are associated with cigarette smoking. However, little is known about sex-specific differences in subcortical structure and function. In this study, structural and resting-state functional magnetic resonance imaging (fMRI) data were collected from 60 cigarette smokers (25 females) and 67 nonsmokers (28 females). The structural MRI was applied to identify deficits in sex-specific subcortical volume. Using resting-state fMRI, sex-related alterations in resting-state functional connectivity (rsFC) were investigated in subcortical nuclei with volume deficits as seed regions. Compared to nonsmokers, male but not female smokers demonstrated a significantly smaller volume in the left caudate, while female but not male smokers showed a smaller volume in the right amygdala. Resting-state FC analysis revealed that male but not female smokers had increased rsFC between the left caudate and the left prefrontal cortex but decreased rsFC within the bilateral caudate and between the right amygdala and right orbitofrontal cortex (OFC). Furthermore, the right amygdala volume was negatively correlated with the impulsivity score in female but not male smokers. The rsFC of the right amygdala-OFC circuit was negatively associated with the craving score in male but not female smokers. These findings indicate that cigarette smoking may have differential effects on the caudate and amygdala volumes as well as rsFC between men and women, contributing to our knowledge of sex-specific effects of nicotine addiction. Such sex-specific differences in subcortical structure and function may provide a methodological framework for the development of sex-specific relapse prevention therapies.
Collapse
Affiliation(s)
- Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Janes AC, Krantz NL, Nickerson LD, Frederick BB, Lukas SE. Craving and Cue Reactivity in Nicotine-Dependent Tobacco Smokers Is Associated With Different Insula Networks. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:76-83. [PMID: 31706906 DOI: 10.1016/j.bpsc.2019.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 09/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The insula has a well-established role in nicotine dependence and is a node of the salience network, which integrates internal and external information to guide behavior. Recent findings reveal that internal and external processing occurs in the ventral anterior insula (vAI) and dorsal anterior insula (dAI), respectively. Whether vAI/dAI network connectivity differentially reflects internally generated craving and externally triggered smoking cue reactivity was tested. METHODS Thirty-six male and female nicotine-dependent individuals smoked 1 hour before functional magnetic resonance imaging. Baseline craving was measured, followed by resting-state and smoking cue reactivity scans and then another assessment of craving. Craving and cue reactivity interactions were measured by focusing on specific nodes of the salience network: the vAI/dAI and anterior cingulate cortex. RESULTS Resting-state vAI/dAI networks overlapped with the prototypical salience network, yet they possessed distinct patterns, linking the vAI with nodes of the internally focused default mode network and the dAI with nodes of the external, goal-related frontoparietal network. Internally generated baseline craving was associated with enhanced vAI connectivity, whereas rostral anterior cingulate cortex reactivity to external smoking cues was associated with greater dAI connectivity. We also found that cue reactivity in the rostral anterior cingulate cortex was associated with a rise in subjective cue-induced craving, whereas baseline subjective craving did not influence brain cue reactivity. CONCLUSIONS These data show that brain reactivity to smoking cues is associated with a subsequent increase in craving. In addition, separate insula networks have a role in an individual's vulnerability to internally related craving and externally triggered cue reactivity, which could guide the development of new, neurobiologically targeted therapies.
Collapse
Affiliation(s)
- Amy C Janes
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Nathan L Krantz
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Lisa D Nickerson
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Blaise B Frederick
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Scott E Lukas
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
de Lacy N, McCauley E, Kutz JN, Calhoun VD. Multilevel Mapping of Sexual Dimorphism in Intrinsic Functional Brain Networks. Front Neurosci 2019; 13:332. [PMID: 31024243 PMCID: PMC6460937 DOI: 10.3389/fnins.2019.00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Differences in cognitive performance between males and females are well-described, most commonly in certain spatial and language tasks. Sex-related differences in cognition are relevant to the study of the neurotypical brain and to neuropsychiatric disorders, which exhibit prominent disparities in the incidence, prevalence and severity of symptoms between men and women. While structural dimorphism in the human brain is well-described, controversy exists regarding the existence and degree of sex-related differences in brain function. We analyzed resting-state functional MRI from 650 neurotypical young adults matched for age and sex to determine the degree of sexual dimorphism present in intrinsic functional networks. Multilevel modeling was pursued to create 8-, 24-, and 51-network models of whole-brain data to quantify sex-related effects in network activity with increasing resolution. We determined that sexual dimorphism is present in the majority of intrinsic brain networks and affects ∼0.5-2% of brain locations surveyed in the three whole-brain network models. It is particularly common in task-positive control networks and is pervasive among default mode networks. The size of sex-related effects varied by network but can be moderate or even large in size. Female > male effects were on average larger, but male > female effects spread across greater network territory. Using a novel methodology, we mapped dimorphic locations to meta-analytic association test maps derived from task fMRI, demonstrating that the neurocognitive footprint of intrinsic neural correlates is much larger in males. All results were replicated in a motion-matched sub-sample. Our findings argue that sex is an important biological variable in human brain function and suggest that observed differences in neurocognitive performance have identifiable intrinsic neural correlates.
Collapse
Affiliation(s)
- Nina de Lacy
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Elizabeth McCauley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States
| | - Vince D. Calhoun
- Mind Research Network, Albuquerque, NM, United States
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|