1
|
Abstract
AbstractThe druggable genome is limited by structural features that can be targeted by small molecules in disease-relevant proteins. While orthosteric and allosteric protein modulators have been well studied, they are limited to antagonistic/agonistic functions. This approach to protein modulation leaves many disease-relevant proteins as undruggable targets. Recently, protein-protein interaction modulation has emerged as a promising therapeutic field for previously undruggable protein targets. Molecular glues and heterobifunctional degraders such as PROTACs can facilitate protein interactions and bring the proteasome into proximity to induce targeted protein degradation. In this review, we discuss the function and rational design of molecular glues, heterobifunctional degraders, and hydrophobic tag degraders. We also review historic and novel molecular glues and targets and discuss the challenges and opportunities in this new therapeutic field.
Collapse
|
2
|
Zhan X, Lu M, Yang L, Yang J, Zhan X, Zheng S, Guo Y, Li B, Wen S, Li J, Li N. Ubiquitination-mediated molecular pathway alterations in human lung squamous cell carcinomas identified by quantitative ubiquitinomics. Front Endocrinol (Lausanne) 2022; 13:970843. [PMID: 36187110 PMCID: PMC9520991 DOI: 10.3389/fendo.2022.970843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal ubiquitination is extensively associated with cancers. To investigate human lung cancer ubiquitination and its potential functions, quantitative ubiquitinomics was carried out between human lung squamous cell carcinoma (LSCC) and control tissues, which characterized a total of 627 ubiquitin-modified proteins (UPs) and 1209 ubiquitinated lysine sites. Those UPs were mainly involved in cell adhesion, signal transduction, and regulations of ribosome complex and proteasome complex. Thirty three UPs whose genes were also found in TCGA database were significantly related to overall survival of LSCC. Six significant networks and 234 hub molecules were obtained from the protein-protein interaction (PPI) analysis of those 627 UPs. KEGG pathway analysis of those UPs revealed 47 statistically significant pathways, and most of which were tumor-associated pathways such as mTOR, HIF-1, PI3K-Akt, and Ras signaling pathways, and intracellular protein turnover-related pathways such as ribosome complex, ubiquitin-mediated proteolysis, ER protein processing, and proteasome complex pathways. Further, the relationship analysis of ubiquitination and differentially expressed proteins shows that ubiquitination regulates two aspects of protein turnover - synthesis and degradation. This study provided the first profile of UPs and molecular networks in LSCC tissue, which is the important resource to insight into new mechanisms, and to identify new biomarkers and therapeutic targets/drugs to treat LSCC.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- *Correspondence: Xianquan Zhan,
| | - Miaolong Lu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xiaohan Zhan
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Shu Zheng
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Biao Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Wen
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Maksoud S. The Role of the Ubiquitin Proteasome System in Glioma: Analysis Emphasizing the Main Molecular Players and Therapeutic Strategies Identified in Glioblastoma Multiforme. Mol Neurobiol 2021; 58:3252-3269. [PMID: 33665742 PMCID: PMC8260465 DOI: 10.1007/s12035-021-02339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
Gliomas constitute the most frequent tumors of the brain. High-grade gliomas are characterized by a poor prognosis caused by a set of attributes making treatment difficult, such as heterogeneity and cell infiltration. Additionally, there is a subgroup of glioma cells with properties similar to those of stem cells responsible for tumor recurrence after treatment. Since proteasomal degradation regulates multiple cellular processes, any mutation causing disturbances in the function or expression of its elements can lead to various disorders such as cancer. Several studies have focused on protein degradation modulation as a mechanism of glioma control. The ubiquitin proteasome system is the main mechanism of cellular proteolysis that regulates different events, intervening in pathological processes with exacerbating or suppressive effects on diseases. This review analyzes the role of proteasomal degradation in gliomas, emphasizing the elements of this system that modulate different cellular mechanisms in tumors and discussing the potential of distinct compounds controlling brain tumorigenesis through the proteasomal pathway.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Wang F, Wang X, Li N, Liu J, Zhang L, Hui L, Feng A, Wang Z, Wang Y. Prolonged unfolded protein reaction is involved in the induction of chronic myeloid leukemia cell death upon oprozomib treatment. Cancer Sci 2020; 112:133-143. [PMID: 33067904 PMCID: PMC7780017 DOI: 10.1111/cas.14696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
To select the most efficient chemical to induce apoptosis in leukemia cells, a multidrug screen was applied on bone marrow mononuclear cells from chronic myeloid leukemia (CML) patients. Oprozomib (Cpd 21) was chosen for the subsequent experiments. The isobaric tags for relative and absolute quantitation (iTRAQ) was then performed to identify the responsible pathway relative to apoptosis and the results showed that endoplasmic reticulum (ER) chaperones were upregulated. Apoptosis was attributed to a joint effect of calcium leakage andPERK and IRE1α phosphorylation. The PERK branch was responsible for the first wave of cell death that occurred within 24 hours. The later wave of apoptosis was mediated by IRE1α, which transmit apoptotic signals through the ASK-JNK-BIM axis. Release of Ca2+ from ER into cytosol resulted in activation of calpain, which, in turn, cleaved caspase-12. Our data also explained the selective killing effects of oprozomib on CML cells, which relied on proteasome activity. The present study demonstrated that prolonged inhibition of proteasome to trigger unfolded protein response could be an alternative strategy for treating CML in light of tyrosine kinase inhibitors resistance.
Collapse
Affiliation(s)
- Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Wang
- Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lingyun Hui
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ai Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhonglin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yawen Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Biobank, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Proteotoxic Stress and Cell Death in Cancer Cells. Cancers (Basel) 2020; 12:cancers12092385. [PMID: 32842524 PMCID: PMC7563887 DOI: 10.3390/cancers12092385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
To maintain proteostasis, cells must integrate information and activities that supervise protein synthesis, protein folding, conformational stability, and also protein degradation. Extrinsic and intrinsic conditions can both impact normal proteostasis, causing the appearance of proteotoxic stress. Initially, proteotoxic stress elicits adaptive responses aimed at restoring proteostasis, allowing cells to survive the stress condition. However, if the proteostasis restoration fails, a permanent and sustained proteotoxic stress can be deleterious, and cell death ensues. Many cancer cells convive with high levels of proteotoxic stress, and this condition could be exploited from a therapeutic perspective. Understanding the cell death pathways engaged by proteotoxic stress is instrumental to better hijack the proliferative fate of cancer cells.
Collapse
|
6
|
Roeten MSF, Cloos J, Jansen G. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 2018; 81:227-243. [PMID: 29184971 PMCID: PMC5778165 DOI: 10.1007/s00280-017-3489-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/13/2022]
Abstract
Targeting of the protein degradation pathway, in particular, the ubiquitin-proteasome system, has emerged as an attractive novel cancer chemotherapeutic modality. Although proteasome inhibitors have been most successfully applied in the treatment of hematological malignancies, they also received continuing interest for the treatment of solid tumors. In this review, we summarize the current positioning of proteasome inhibitors in the treatment of common solid malignancies (e.g., lung, colon, pancreas, breast, and head and neck cancer), addressing topics of their mechanism(s) of action, predictive factors and molecular mechanisms of resistance.
Collapse
Affiliation(s)
- Margot S F Roeten
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Location VUmc, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Telonis AG, Rigoutsos I. Race Disparities in the Contribution of miRNA Isoforms and tRNA-Derived Fragments to Triple-Negative Breast Cancer. Cancer Res 2017; 78:1140-1154. [PMID: 29229607 DOI: 10.1158/0008-5472.can-17-1947] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is a breast cancer subtype characterized by marked differences between White and Black/African-American women. We performed a systems-level analysis on datasets from The Cancer Genome Atlas to elucidate how the expression patterns of mRNAs are shaped by regulatory noncoding RNAs (ncRNA). Specifically, we studied isomiRs, that is, isoforms of miRNAs, and tRNA-derived fragments (tRF). In normal breast tissue, we observed a marked cohesiveness in both the ncRNA and mRNA layers and the associations between them. This cohesiveness was widely disrupted in TNBC. Many mRNAs become either differentially expressed or differentially wired between normal breast and TNBC in tandem with isomiR or tRF dysregulation. The affected pathways included energy metabolism, cell signaling, and immune responses. Within TNBC, the wiring of the affected pathways with isomiRs and tRFs differed in each race. Multiple isomiRs and tRFs arising from specific miRNA loci (e.g., miR-200c, miR-21, the miR-17/92 cluster, the miR-183/96/182 cluster) and from specific tRNA loci (e.g., the nuclear tRNAGly and tRNALeu, the mitochondrial tRNAVal and tRNAPro) were strongly associated with the observed race disparities in TNBC. We highlight the race-specific aspects of transcriptome wiring by discussing in detail the metastasis-related MAPK and the Wnt/β-catenin signaling pathways, two of the many key pathways that were found differentially wired. In conclusion, by employing a data- and knowledge-driven approach, we comprehensively analyzed the normal and cancer transcriptomes to uncover novel key contributors to the race-based disparities of TNBC.Significance: This big data-driven study comparing normal and cancer transcriptomes uncovers RNA expression differences between Caucasian and African-American patients with triple-negative breast cancer that might help explain disparities in incidence and aggressive character. Cancer Res; 78(5); 1140-54. ©2017 AACR.
Collapse
Affiliation(s)
- Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Mainolfi N, Rasmusson T. Targeted Protein Degradation. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1016/bs.armc.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Teicher BA, Tomaszewski JE. Proteasome inhibitors. Biochem Pharmacol 2015; 96:1-9. [PMID: 25935605 DOI: 10.1016/j.bcp.2015.04.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
Abstract
Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications.
Collapse
Affiliation(s)
- Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, United States.
| | - Joseph E Tomaszewski
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, United States
| |
Collapse
|
10
|
Bozaykut P, Ozer NK, Karademir B. Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 2014; 77:195-209. [PMID: 25236750 DOI: 10.1016/j.freeradbiomed.2014.08.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/11/2014] [Accepted: 08/11/2014] [Indexed: 12/19/2022]
Abstract
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin-proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Ozer
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Genetic and Metabolic Diseases Research and Investigation Center, Department of Biochemistry, Faculty of Medicine, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
11
|
Langlands FE, Dodwell D, Hanby AM, Horgan K, Millican-Slater RA, Speirs V, Verghese ET, Smith L, Hughes TA. PSMD9 expression predicts radiotherapy response in breast cancer. Mol Cancer 2014; 13:73. [PMID: 24673853 PMCID: PMC4230020 DOI: 10.1186/1476-4598-13-73] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/24/2014] [Indexed: 01/02/2023] Open
Abstract
Background More than 50% of cancer patients are recommended to receive radiotherapy. Recommendations are based mainly on clinical and pathological factors and not intrinsic tumour radio-sensitivity. Use of radiotherapy according to predictive markers would potentially reduce costly over-treatment, and improve the treatment risk-benefit ratio and cancer outcomes. Tumour expression of the 26S proteasome has been reported to predict radiotherapy response: low expression was associated with higher rates of local recurrence after radiotherapy, suggesting that low proteasome expression and activity was associated with radio-resistance. However, this conclusion is at odds with the emerging use of proteasome inhibitors as radio-sensitizers. Our aim was to further analyse the relevance of 26S proteasome expression, focussing specifically on the PSMD9 subunit, in the largest clinical cohort to date, and to investigate the functional role of PSMD9 in radio-sensitivity in breast cancer cell lines. Methods We examined expression of PSMD9 using immunohistochemistry in a cohort of 157 breast cancer patients, including 32 cases (20.4%) that subsequently developed local recurrences. The value of expression as a prognostic or radiotherapy predictive marker was tested using Kaplan-Meier and Cox regression analyses. PSMD9 function was examined in breast cancer cell lines MCF7 and MDA-MB-231 using siRNA knock-downs and colony forming assays after irradiation. Results Low tumour PSMD9 expression was significantly associated with a reduced incidence of local recurrence in patients receiving adjuvant radiotherapy (univariate log rank p = 0.02; multivariate regression p = 0.009), but not in those treated without radiotherapy, suggesting that low PSMD9 expression was associated with relative tumour radio-sensitivity. In support of this, reduction of PSMD9 expression using siRNA in breast cancer cell lines in vitro sensitized cells to radiotherapy. Conclusions We conclude that PSMD9 expression may predict radiotherapy benefit, with low expression indicative of relative radio-sensitivity, the opposite of previous reports relating to 26S proteasome expression. Our conclusion is compatible with use of proteasome inhibitors as radio-sensitizers, and highlights PSMD9 as a potential target for radio-sensitizing drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura Smith
- Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK.
| | | |
Collapse
|
12
|
Zhou Y, Peng Y, Mao QQ, Li X, Chen MW, Su J, Tian L, Mao NQ, Long LZ, Quan MF, Liu F, Zhou SF, Zhao YX. Casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells. ASIAN PAC J TROP MED 2014; 6:372-8. [PMID: 23608376 DOI: 10.1016/s1995-7645(13)60041-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/15/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To assess if casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells. METHODS Human non-small-cell lung carcinoma cell lines H460, A549 and H157 were cultured in vitro. The cytotoxic activities were determined using MTT assay. The apoptotic cells death was examined by flow cytometry using PI staining and DNA agarose gel electrophoresis. The activities of caspase-3, -8 and -9 were measured via ELISA. Cellular fractionation was determined by flow cytometry to assess release of cytochrome c and the mitochondrial transmembrane potential. Bcl-2/Bcl-XL/XIAP/Bid/DR5 and DR4 proteins were analyzed using western blot. RESULTS The concentrations required for a 50% decrease in cell growth (IC(50)) ranged from 1.8 to 3.2 μM. Casticin induced rapid apoptosis and triggered a series of effects associated with apoptosis by way of mitochondrial pathway, including the depolarization of the mitochondrial membrane, release of cytochrome c from mitochondria, activation of procaspase-9 and -3, and increase of DNA fragments. Moreover, the pan caspase inhibitor zVAD-FMK and the caspase-3 inhibitor zDEVD-FMK suppressed casticin-induced apoptosis. In addition, casticin induced XIAP and Bcl-XL down-regulation, Bax upregulation and Bid clearage. In H157 cell line, casticin increased expression of DR5 at protein levels but not affect the expression of DR4. The pretreatment with DR5/Fc chimera protein effectively attenuated casticin-induced apoptosis in H157 cells. No correlation was found between cell sensitivity to casticin and that to p53 status, suggesting that casticin induce a p53-independent apoptosis. CONCLUSIONS Our results demonstrate that casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Pharmacology of Medical College, Hunan Normal University, Changsha, Hunan 410013, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tsang PS, Cheuk AT, Chen QR, Song YK, Badgett TC, Wei JS, Khan J. Synthetic lethal screen identifies NF-κB as a target for combination therapy with topotecan for patients with neuroblastoma. BMC Cancer 2012; 12:101. [PMID: 22436457 PMCID: PMC3364855 DOI: 10.1186/1471-2407-12-101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 03/21/2012] [Indexed: 01/05/2023] Open
Abstract
Background Despite aggressive multimodal treatments the overall survival of patients with high-risk neuroblastoma remains poor. The aim of this study was to identify novel combination chemotherapy to improve survival rate in patients with high-risk neuroblastoma. Methods We took a synthetic lethal approach using a siRNA library targeting 418 apoptosis-related genes and identified genes and pathways whose inhibition synergized with topotecan. Microarray analyses of cells treated with topotecan were performed to identify if the same genes or pathways were altered by the drug. An inhibitor of this pathway was used in combination with topotecan to confirm synergism by in vitro and in vivo studies. Results We found that there were nine genes whose suppression synergized with topotecan to enhance cell death, and the NF-κB signaling pathway was significantly enriched. Microarray analysis of cells treated with topotecan revealed a significant enrichment of NF-κB target genes among the differentially altered genes, suggesting that NF-κB pathway was activated in the treated cells. Combination of topotecan and known NF-κB inhibitors (NSC 676914 or bortezomib) significantly reduced cell growth and induced caspase 3 activity in vitro. Furthermore, in a neuroblastoma xenograft mouse model, combined treatment of topotecan and bortezomib significantly delayed tumor formation compared to single-drug treatments. Conclusions Synthetic lethal screening provides a rational approach for selecting drugs for use in combination therapy and warrants clinical evaluation of the efficacy of the combination of topotecan and bortezomib or other NF-κB inhibitors in patients with high risk neuroblastoma.
Collapse
Affiliation(s)
- Patricia S Tsang
- Oncogenomics Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Xiao G, Tang X, Yao C, Wang C. Potentiation of arsenic trioxide-induced apoptosis by 8-bromo-7-methoxychrysin in human leukemia cells involves depletion of intracellular reduced glutathione. Acta Biochim Biophys Sin (Shanghai) 2011; 43:712-21. [PMID: 21785114 DOI: 10.1093/abbs/gmr065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The novel chrysin analog 8-bromo-7-methoxychrysin (BrMC) has been reported to induce apoptosis of various cancer cell lines. Arsenic trioxide (ATO) treatment induces clinical remission in acute promyelocytic leukemia patients. The combination of ATO with other agents has been shown to improve therapeutic effectiveness in vitro and in vivo. In this report, the mechanism of apoptosis induced by treatment with ATO alone or in combination with BrMC was studied in U937, HL-60, and Jurkat cells. Our results demonstrated that BrMC cooperated with ATO to induce apoptosis in human leukemia cells. This co-treatment caused mitochondrial transmembrane potential dissipation and stimulated the mitochondrial apoptotic pathway, as evidenced by cytochrome c release, down-regulation of X-linked inhibitor of apoptosis (XIAP) and Bcl-XL, and up-regulation of Bax. BrMC alone or in combination with ATO, decreased Akt phosphorylation as well as intracellular reduced glutathione (GSH) content. The thiol antioxidant N-acetylcysteine and exogenous GSH restored GSH content and attenuated apoptosis induced by co-treatment with ATO plus BrMC. In contrast, the non-thiol antioxidant butylated hydroxyanisole and mannitol failed to do so. These findings suggest that GSH depletion explains at least in part the potentiation of ATO-induced apoptosis by BrMC.
Collapse
Affiliation(s)
- Guangfen Xiao
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | | | | | | |
Collapse
|
15
|
Potu H, Sgorbissa A, Brancolini C. Identification of USP18 as an important regulator of the susceptibility to IFN-alpha and drug-induced apoptosis. Cancer Res 2010; 70:655-65. [PMID: 20068173 DOI: 10.1158/0008-5472.can-09-1942] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene products that modify the apoptotic susceptibility of cancer cells may offer novel drug response markers or therapeutic targets. In this study, we probed the contribution of 53 different isopeptidases to apoptosis triggered by bortezomib and etoposide. USP18, a type I IFN-induced protein that deconjugates the ubiquitin-like modifier ISG15 from target proteins, was found to limit apoptotic susceptibility to IFN-alpha or bortezomib. Ablating USP18 in cells treated with IFN-alpha increased tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) production; upregulated expression of transcription factors IFN-regulatory factor (IRF)-1, IRF-7, and IRF-9; and promoted the extrinsic pathway of apoptosis. The proapoptotic effects of ablating USP18 were abrogated by FLIP overexpression or TRAIL silencing. However, in bortezomib-treated cells, weak spontaneous signaling from type I IFNs was implicated in the proapoptotic effect of USP18 ablation. Ectopic USP18 repressed apoptotic signaling by IFN-alpha, TRAIL, or bortezomib. Similar effects were produced by a catalytically inactive USP18 mutant, indicating that the antiapoptotic function of USP18 is independent of its catalytic activity. These findings suggest that USP18 may significantly limit operation of the extrinsic apoptotic pathway triggered by type I IFN and drugs.
Collapse
Affiliation(s)
- Harish Potu
- Dipartimento di Scienze e Tecnologie Biomediche, Universita' di Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
16
|
Foti C, Florean C, Pezzutto A, Roncaglia P, Tomasella A, Gustincich S, Brancolini C. Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system. Mol Cancer Ther 2009; 8:3140-50. [PMID: 19887551 DOI: 10.1158/1535-7163.mct-09-0431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The regulation of the necrotic death and its relevance in anticancer therapy are largely unknown. Here, we have investigated the proapoptotic and pronecrotic activities of two ubiquitin-proteasome system inhibitors: bortezomib and G5. The present study points out that the glioblastoma cell lines U87MG and T98G are useful models to study the susceptibility to apoptosis and necrosis in response to ubiquitin-proteasome system inhibitors. U87MG cells show resistance to apoptosis induced by bortezomib and G5, but they are more susceptible to necrosis induced by G5. Conversely, T98G cells are more susceptible to apoptosis induced by both inhibitors but show some resistance to G5-induced necrosis. No overt differences in the induction of Noxa and Mcl-1 or in the expression levels of other components of the apoptotic machinery were observed between U87MG and T98G cells. Instead, by comparing the transcriptional profiles of the two cell lines, we have found that the resistance to G5-induced necrosis could arise from differences in glutathione synthesis/utilization and in the microenvironment. In particular, collagen IV, which is highly expressed in T98G cells, and fibronectin, whose adhesive function is counteracted by tenascin-C in U87MG cells, can restrain the necrotic response to G5. Collectively, our results provide an initial characterization of the molecular signals governing cell death by necrosis in glioblastoma cell lines.
Collapse
Affiliation(s)
- Carmela Foti
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia Universita' di Udine, Udine, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Huang WC, Hung MC. Induction of Akt activity by chemotherapy confers acquired resistance. J Formos Med Assoc 2009; 108:180-94. [PMID: 19293033 DOI: 10.1016/s0929-6646(09)60051-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Resistance to chemotherapy is a major cause of treatment failure in human cancer. Accumulating evidence has indicated that the acquisition of resistance to chemotherapeutic drugs involves the activation of the PI3K/Akt pathway. Modulating Akt activity in response to chemotherapy has been observed often in chemoresistant cancers. The potential molecular mechanisms by which chemotherapeutic agents activate the PI3K/Akt pathway are emerging. Activation of this pathway evades the cytotoxic effects of chemotherapeutic agents via regulation of essential cellular functions such as protein synthesis, antiapoptosis, survival and proliferation in cancer. How chemotherapeutic agents induce Akt activation and how activated Akt confers chemoresistance through regulation of signaling networks are discussed in this review. Combining PI3K/Akt inhibitors with standard chemotherapy has been successful in increasing the efficacy of chemotherapeutic agents both in vivo and in vitro. Several small molecules have been developed to specifically target PI3K/Akt and other components of this pathway, which in combination with chemotherapy may be a valid approach to overcome therapeutic resistance. We propose several feedback and feedforward regulatory mechanisms of signaling networks for maintenance of the Akt activity for cell survival. These regulatory mechanisms may limit the efficacy of PI3K/Akt-targeted therapy; therefore, disruption of these mechanisms may be an effective strategy for development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Wei-Chien Huang
- Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, and Department of Biotechnology, Asia University, Taichung, Taiwan.
| | | |
Collapse
|
18
|
De Souza AG, MacCormack TJ, Wang N, Li L, Goss GG. Large-Scale Proteome Profile of the Zebrafish (Danio rerio) Gill for Physiological and Biomarker Discovery Studies. Zebrafish 2009; 6:229-38. [DOI: 10.1089/zeb.2009.0591] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrea G. De Souza
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Tyson J. MacCormack
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nan Wang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part I: targeting p53, Mdm2, GADD153/CHOP, GRP78/BiP and heat shock proteins. Expert Opin Drug Discov 2009; 4:799-821. [PMID: 23496268 DOI: 10.1517/17460440903052559] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In eukaryotes, endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are coordinately regulated to maintain steady-state levels and activities of various cellular proteins to ensure cell survival. OBJECTIVE This review (Part I of II) focuses on specific ERS and UPR signalling regulators, their expression in the cancer phenotype and apoptosis, and proposes how their implication in these processes can be rationalised into proteasome inhibition, apoptosis induction and the development of more efficacious targeted molecular cancer therapies. METHOD In this review, we contextualise many ERS and UPR client proteins that are deregulated or mutated in cancers and show links between ERS and the UPR, their implication in oncogenic transformation, tumour progression and escape from immune surveillance, apoptosis inhibition, angiogenesis, metastasis, acquired drug resistance and poor cancer prognosis. CONCLUSION Evasion of programmed cell death or apoptosis is a hallmark of cancer that enables tumour cells to proliferate uncontrollably. Successful eradication of cancer cells through targeting ERS- and UPR-associated proteins to induce apoptosis is currently being pursued as a central tenet of anticancer drug discovery.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 21 959 1563 ;
| | | |
Collapse
|
20
|
Fontanini A, Foti C, Potu H, Crivellato E, Maestro R, Bernardi P, Demarchi F, Brancolini C. The Isopeptidase Inhibitor G5 Triggers a Caspase-independent Necrotic Death in Cells Resistant to Apoptosis: A COMPARATIVE STUDY WITH THE PROTEASOME INHIBITOR BORTEZOMIB. J Biol Chem 2009; 284:8369-81. [PMID: 19139105 DOI: 10.1074/jbc.m806113200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Inhibitors of the ubiquitin-proteasome system (UPSIs) promote apoptosis of cancer cells and show encouraging anti-tumor activities in vivo. In this study, we evaluated the death activities of two different UPSIs: bortezomib and the isopeptidase inhibitor G5. To unveil whether these compounds elicit different types of death, we compared their effect both on apoptosis-proficient wild type mouse embryo fibroblasts and on cells defective for apoptosis (double-deficient Bax/Bak mouse embryo fibroblasts) (double knockout; DKO). We have discovered that (i) both inhibitors induce apoptosis in a Bax and Bak-dependent manner, (ii) both inhibitors elicit autophagy in WT and DKO cells, and (iii) only G5 can kill apoptosis-resistant DKO cells by activating a necrotic response. The induction of necrosis was confirmed by different experimental approaches, including time lapse analysis, HMGB1 release, and electron microscopy studies. Neither treatment with antinecrotic agents, such as antioxidants, poly(ADP-ribose) polymerase and JNK inhibitors, necrostatin, and the intracellular Ca(2+) chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, nor overexpression of Bcl-2 and Bcl-xL prevented necrosis induced by G5. This necrotic death is characterized by the absence of protein oxidation and by the rapid cyclosporin A-independent dissipation of the mitochondrial membrane potential. Notably, a peculiar feature of the G5-induced necrosis is an early and dramatic reorganization of the actin cytoskeleton, coupled to an alteration of cell adhesion. The importance of cell adhesion impairment in the G5-induced necrotic death of DKO cells was confirmed by the antagonist effect of the extracellular matrix-adhesive components, collagen and fibronectin.
Collapse
Affiliation(s)
- Alessandra Fontanini
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia, and MATI Center of Excellence
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The plasticity and instability of the cancer genome is impressive and is characterized by gene amplifications and deletions, rearrangements, and many silent and active mutations. Although targeted therapeutics have had effect in some diseases, there remains a large role for new cytotoxic agents that have the potential to be broadly active across multiple cancers. Platinum-based regimens are the basis for treatment of several common tumors. Satraplatin and picoplatin are newer platinum complexes that form bulkier lesions in DNA than their forerunners. Microtubules are a key target for anticancer agents. Vinca alkaloid and similar compounds fragment these critical structures, whereas taxanes stabilize them. Vinflunine is a new fluorinated Vinca alkaloid derivative with vascular disrupting effects, as well as antitumor effects. Epothilones are a new class of microtubule stabilizers. Mitosis has been targeted directly and indirectly by many anticancer agents. The aurora kinases are new targets in this class. Inhibitors of aurora kinases are likely to be cytotoxic. Finally, protein regulation is essential for cellular integrity. With the approval of bortezomib (Velcade, PS-341), the proteosome, a master protein regulator, has been validated as an anticancer target. The five articles in this issue of CCR Focus present the current status of these next generation cytotoxic agents.
Collapse
|
22
|
Ramos AM, Aller P. Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Biochem Pharmacol 2008; 75:1912-23. [DOI: 10.1016/j.bcp.2008.02.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/30/2008] [Accepted: 02/11/2008] [Indexed: 10/22/2022]
|
23
|
Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat 2007; 10:218-34. [PMID: 18054518 DOI: 10.1016/j.drup.2007.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
The increased incidence of malignant melanoma in the last decades, its high mortality and pronounced therapy resistance pose an enormous challenge. Important therapeutic targets for melanoma are the induction of apoptosis and suppression of survival pathways. Preclinical studies have demonstrated the efficacy of pro-apoptotic Bcl-2 proteins and of death receptor ligands to trigger apoptosis in melanoma cells. In the clinical setting, BH3 domain mimics and death receptor agonists are therefore considered as promising, specific novel treatments to add to the conventional pro-apoptotic strategies such as chemo- or radiotherapy. However, constitutively activated survival pathways, in particular the mitogen-activated protein kinases, protein kinase B/Akt and nuclear factor (NF)-kappaB, all may work in concert to prevent effective therapy. Thus, selective biologicals developed with the aim to inhibit pro-survival signaling are currently tested in melanoma. For highly therapy-resistant tumors such as melanoma, development of novel drug combinations will be essential, and combinations of survival inhibitors and pro-apoptotic mediators appear most promising. The challenge of the near future will be to make a rational choice of the multiple possible combinations and protocols. This review gives a critical overview of proteins involved in melanoma chemoresistance, which are targets for current drug development leading to the best choice for future trials.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
24
|
Russo A, Fratto ME, Bazan V, Schiró V, Agnese V, Cicero G, Vincenzi B, Tonini G, Santini D. Targeting apoptosis in solid tumors: the role of bortezomib from preclinical to clinical evidence. Expert Opin Ther Targets 2007; 11:1571-86. [DOI: 10.1517/14728222.11.12.1571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Smith L, Lind MJ, Drew PJ, Cawkwell L. The putative roles of the ubiquitin/proteasome pathway in resistance to anticancer therapy. Eur J Cancer 2007; 43:2330-8. [PMID: 17888650 DOI: 10.1016/j.ejca.2007.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/09/2007] [Accepted: 07/18/2007] [Indexed: 12/11/2022]
Abstract
The ubiquitin/proteasome (UP) pathway plays a significant role in many important biological functions and alterations in this pathway have been shown to contribute to the pathology of many human diseases, including cancer. Proteasome inhibition has been well established as a rational strategy for the treatment of multiple myeloma and is currently under investigation for the treatment of other haematological malignancies and solid tumours. Recent evidence suggests that proteasome inhibition may also sensitise tumour cells to the actions of both conventional chemotherapy and radiotherapy, suggesting that this pathway may modify clinical response to anticancer therapy. However, conflicting evidence exists as to the roles of the UP pathway in resistance to treatment. This review endeavours to discuss such roles.
Collapse
Affiliation(s)
- Laura Smith
- Cancer Biology Proteomics Group, Postgraduate Medical Institute of the University of Hull, UK
| | | | | | | |
Collapse
|
26
|
BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 2007; 10:207-17. [PMID: 17921043 DOI: 10.1016/j.drup.2007.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 11/22/2022]
Abstract
Tumor cell survival is highly dependent on the expression of certain pro-survival Bcl-2 family proteins. An attractive therapeutic approach is to inhibit these proteins using agents that mimic the Bcl-2 homology 3 (BH3) domains of the proapoptotic Bcl-2 family members, which neutralize these proteins by binding to their surface hydrophobic grooves. A number of BH3 mimetic peptides and small molecules have been described, a few of which have advanced into clinical trials. Recent studies have highlighted ABT-737, a bona fide BH3 mimetic and potent inhibitor of antiapoptotic Bcl-2 family members, as a promising anticancer agent. This review summarizes recent advances in understanding the mechanisms of action of BH3 domains and several classes of BH3 mimetics, as well as the prospects of using these agents to improve cancer therapy.
Collapse
|
27
|
Broxterman HJ, Georgopapadakou NH. Anticancer therapeutics: A surge of new developments increasingly target tumor and stroma. Drug Resist Updat 2007; 10:182-93. [PMID: 17855157 DOI: 10.1016/j.drup.2007.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/10/2007] [Accepted: 07/31/2007] [Indexed: 12/30/2022]
Abstract
The Annual Meeting of the American Association for Cancer Research (AACR) brings together research in fundamental biology, translational science, drug development and clinical testing of emerging anticancer therapies. Among the highlights of the 2007 Annual Meeting were major research themes on drug action, drug resistance and new drug development. Instead of striving for a comprehensive overview, we showcase several trends, concepts and research areas that exemplify the complexity of drug resistance and its reversal as we currently understand it. Many of the studies discussed here deal with the interaction of tumor cells with their stromal microenvironment; structural proteins as well as cellular components, fibroblasts as well as inflammatory cells. Target identification, target validation and dealing with the challenge of resistance are recurring themes. Specific classes of molecules discussed are the taxanes, tyrosine kinase inhibitors, anti-angiogenic, anti-stromal and anti-metastatic agents. In the latter three categories, targets reviewed are delta-like ligand 4 (DLL4), integrins, nodal, galectins, lysyl oxidases and thrombospondins, several of which belong to the p53-tumor suppressor repertoire of secreted proteins. Finally, developments in other inhibitor classes such as PI3K/Akt and Rho GTPase inhibitors and thoughts on possible novel combination therapies are briefly summarized. The report also includes relevant publications to July 2007.
Collapse
Affiliation(s)
- Henk J Broxterman
- Department of Medical Oncology, Vrije Universiteit Medical Center, Cancer Centre Amsterdam (CCA 1-38), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Verma A, Mehta K. Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resist Updat 2007; 10:144-51. [PMID: 17662645 DOI: 10.1016/j.drup.2007.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/08/2007] [Accepted: 06/11/2007] [Indexed: 12/30/2022]
Abstract
Drug resistance and metastasis are major impediments for the successful treatment of cancer. A common feature among drug resistant and metastatic tumor cells is that they exhibit profound resistance to apoptosis. This property enables cancer cells not only to grow and survive in stressful environments (metastasis) but also to display resistance against many anticancer agents. Therefore, perturbation of the intrinsic apoptotic pathways of cancer cells will affect their ability to respond to chemotherapy and to metastasize and survive in distant sites. Recent studies have demonstrated that cancer cells and cancer cell lines selected for resistance against chemotherapeutic drugs or isolated from metastatic sites, express elevated levels of the multifunctional protein, tissue transglutaminase (TG2). TG2 is the most diverse and ubiquitous member of the transglutaminase family of proteins that is implicated to play a role in apoptosis, wound healing, cell migration, cell attachment, cell growth, angiogenesis, and matrix assembly. TG2 can associate with certain beta members of the integrin family of proteins (beta1, beta3, beta4, and beta5) and promote stable interaction between cells and the extracellular matrix (ECM), resulting in increased cell survival, cell migration, and invasion. Additionally, TG2 forms a ternary complex with IkappaB/p65:p50 and results in constitutive activation of the nuclear transcription factor-kappaB (NF-kappaB). Moreover, TG2 expression in cancer cells leads to constitutive activation of the focal adhesion kinase (FAK) and its downstream PI3K/Akt survival pathway. Importantly, the inhibition of endogenous TG2 by small interfering RNA (siRNA) resulted in the reversal of drug resistance and the invasive phenotype. Conversely, ectopic expression of TG2 promoted cell survival, cell motility and invasive functions of cancer cells. This review discusses the current thinking and implications of increased TG2 expression in development of drug resistance and metastasis by cancer cells.
Collapse
Affiliation(s)
- Amit Verma
- Department of Experimental Therapeutics, Unit 362, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States
| | | |
Collapse
|
29
|
Liu B, Han M, Wen JK, Wang L. Livin/ML-IAP as a new target for cancer treatment. Cancer Lett 2007; 250:168-76. [PMID: 17218055 DOI: 10.1016/j.canlet.2006.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/19/2006] [Accepted: 09/28/2006] [Indexed: 11/21/2022]
Abstract
Livin is a member of the inhibitors of apoptosis protein (IAP) gene family, which encodes negative regulatory proteins that prevent cell apoptosis. Livin is selectively expressed in the most common human neoplasms and appears to be involved in tumor cell resistance to chemotherapeutic agents. Several studies in vitro and in vivo have demonstrated that down-regulation of Livin expression increases the apoptotic rate, reduces tumor growth potential and sensitized tumor cells to chemotherapeutic drugs. This review will focus on the role of this protein during cancer development and progression and will demonstrate possible targets for cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Hebei Laboratory of Medical Biotechnology, Institute of Basic Medical Science, Hebei Medical University, Shijiazhuang 050017, PR China
| | | | | | | |
Collapse
|
30
|
Kashkar H, Deggerich A, Seeger JM, Yazdanpanah B, Wiegmann K, Haubert D, Pongratz C, Krönke M. NF-κB–independent down-regulation of XIAP by bortezomib sensitizes HL B cells against cytotoxic drugs. Blood 2006; 109:3982-8. [PMID: 17185461 DOI: 10.1182/blood-2006-10-053959] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe proteasome inhibitor bortezomib has been shown to possess promising antitumor activity and significant efficacy against a variety of malignancies. Different studies demonstrated that bortezomib breaks the chemoresistance in different tumor cells basically by altering nuclear factor–κB (NF-κB) activity. NF-κB has been shown to be constitutively active in most primary Hodgkin-Reed-Sternberg (H-RS) cells in lymph node sections and in Hodgkin lymphoma (HL) cell lines and was suggested to be a central molecular switch in apoptosis resistance in HL. Here we report a bimodal effect of bortezomib in HL cells. Whereas high-dose bortezomib induced direct cytotoxicity that correlated with decreased NF-κB activity, low-dose bortezomib sensitized HL cells against a variety of cytotoxic drugs without altering NF-κB action. Strikingly, bortezomib induced marked XIAP down-regulation at the posttranslational level that was independent of the NF-κB status. Similarly, RNA interference (RNAi)–mediated XIAP down-regulation generated susceptibility to cytostatic agents. The results identify XIAP as an NF-κB–independent target of bortezomib action that controls the chemoresistant phenotype of HL cells.
Collapse
Affiliation(s)
- Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Goldenfelsstrasse 19-21, 50935 Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Aleo E, Henderson CJ, Fontanini A, Solazzo B, Brancolini C. Identification of New Compounds That Trigger Apoptosome-Independent Caspase Activation and Apoptosis. Cancer Res 2006; 66:9235-44. [PMID: 16982768 DOI: 10.1158/0008-5472.can-06-0702] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identification of alternative pathways of caspase activation is an important step to develop new antitumor treatments. We report here the result of a screening with a small chemical library, the Developmental Therapeutics Program-National Cancer Institute "challenge set," on cells expressing mutated caspase-9. We have identified two molecules capable of activating an apoptosome-independent apoptotic pathway. These compounds, named F6 and G5, target the ubiquitin-proteasome system by inhibiting the ubiquitin isopeptidases. We have shown that F6 and G5 induce a rather unique apoptotic pathway, which includes a Bcl-2-dependent but apoptosome-independent mitochondrial pathway with up-regulation of the BH3-only protein Noxa, stabilization of the inhibitor of apoptosis antagonist Smac, but also the involvement of the death receptor pathway. Noxa plays an important role in the induction of mitochondrial fragmentation and caspase activation, whereas the death receptor pathway becomes critical in the absence of a functional apoptosome. This study suggests that screening of chemical libraries on cancer cells with defined mutations in apoptotic key elements can lead to the identification of compounds that are useful to characterize alternative pathways of caspase activation.
Collapse
Affiliation(s)
- Emanuela Aleo
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Biologia and MATI Center of Excellence, Universita' di Udine, Udine, Italy
| | | | | | | | | |
Collapse
|