1
|
Moayedi M, Ahmadi T, Nekouie V, Dehaghani MT, Shojaei S, Benisi SZ, Bakhsheshi-Rad HR. Preparation and assessment of polylactic acid-curcumin nanofibrous wound dressing containing silver nanoparticles for burn wound treatment. Burns 2025; 51:107442. [PMID: 40088691 DOI: 10.1016/j.burns.2025.107442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
This study aims to produce and evaluate nanofibrous wound dressings through the electrospinning method, utilizing polylactic acid (PLA), curcumin (Cur), and silver nanoparticles (AgNPs). For this purpose, five types of wound dressings with PLA, PLA+Cur, PLA+Cur+ 1 %AgNPs, PLA+Cur+ 2 %AgNPs and PLA+Cur+ 3 %AgNPs were produced using the electrospinning method. Analysis of the Fourier transform infrared spectroscopy and scanning electron microscopic observations indicated successful fabrication, with nanometer diameters achieved in all electrospun samples. Examination of water absorption of wound dressings revealed that over 40 h the electrospun samples had variable water absorption between 0 % and 0.25 %. The results of the curcumin release test over one week showed that the nanofibers with PLA+Cur+ 2 %AgNPs exhibited the lowest release rate, while those with PLA+Cur+ 3 %AgNPs showed the highest release. Assessment of mechanical properties revealed that the tensile strength of the nanofibers increased by adding curcumin to polylactic acid, while the addition of a high content of AgNPs led to a decrease in tensile strength. Also, the PLA+Cur dressing demonstrated 84.06 % and the PLA+Cur+ 3 %AgNPs dressing exhibited 99.12 % antibacterial properties. The cell culture test demonstrated that the incorporation of curcumin and AgNPs increasedboth the growth and proliferation, as well as the adhesion on the nanofibrous wound dressing. Thus, the PLA+Cur+ 1 %AgNPs nanofibrous scaffold, as a multipurpose dressing, presented considerable promise for wound healing and burn treatment.
Collapse
Affiliation(s)
- Mehri Moayedi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Tahmineh Ahmadi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Vahid Nekouie
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK; Materials and Engineering Research Institute (MERI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Majid Taghian Dehaghani
- Department of Materials and Metallurgical Engineering, Abadeh Higher Education Centre, Shiraz University, Abadeh, Iran
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Zamalui Benisi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
2
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2025; 14:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
3
|
Dong S, Li X, Pan Q, Wang K, Liu N, Yutao W, Zhang Y. Nanotechnology-based approaches for antibacterial therapy. Eur J Med Chem 2024; 279:116798. [PMID: 39270451 DOI: 10.1016/j.ejmech.2024.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/15/2024]
Abstract
The technique of antimicrobial therapy action is to stop or slow the growth of bacteria that can kill people, animals, and crops. The most widely used antibacterial agents are antibiotics. Even though these antimicrobial medications are quite effective, there are still certain barriers or challenges in using them effectively. To solve these issues, new antimicrobial drug molecules that don't have side effects or resistance are needed. These days, antimicrobial drugs placed in nanosized vehicles, or nanomedicine, made of different metal and metallic oxides as well as of polymer, carbon or lipid-based may be used to address these issues with conventional therapy and delivery techniques. This review focuses on the importance of nanotechnology in antimicrobial therapy, nanoparticles (NPs) used in this therapy, their mode of action, and the recent advancement in nanotechnology for antimicrobial therapy.
Collapse
Affiliation(s)
- Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China
| | - Kangchun Wang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ning Liu
- Department of Rehabilitation, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Wang Yutao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China.
| | - Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of Organ Transplantation in Liaoning Province, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Wu L, Wei S, Cheng X, He N, Kang X, Zhou H, Cai Y, Ye Y, Li P, Liang C. Release of ions enhanced the antibacterial performance of laser-generated, uncoated Ag nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114131. [PMID: 39094211 DOI: 10.1016/j.colsurfb.2024.114131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Identifying the antibacterial mechanisms of elemental silver at the nanoscale remains a significant challenge due to the intertwining behaviors between the particles and their released ions. The open question is which of the above factor dominate the antibacterial behaviors when silver nanoparticles (Ag NPs) with different sizes. Considering the high reactivity of Ag NPs, prior research has primarily concentrated on coated particles, which inevitably hinder the release of Ag+ ions due to additional chemical agents. In this study, we synthesized various Ag NPs, both coated and uncoated, using the laser ablation in liquids (LAL) technique. By analyzing both the changes in particle size and Ag+ ions release, the impacts of various Ag NPs on the cellular activity and morphological changes of gram-negative (E. coil) and gram-positive (S. aureus) bacteria were evaluated. Our findings revealed that for uncoated Ag NPs, smaller particles exhibited greater ions release efficiency and enhanced antibacterial efficacy. Specifically, particles approximately 1.5 nm in size released up to 55 % of their Ag+ ions within 4 h, significantly inhibiting bacterial growth. Additionally, larger particles tended to aggregate on the bacterial cell membrane surface, whereas smaller particles were more likely to be internalized by the bacteria. Notably, treatment with smaller Ag NPs led to more pronounced bacterial morphological changes and elevated levels of intracellular reactive oxygen species (ROS). We proposed that the bactericidal activity of Ag NPs stems from the synergistic effect between particle-cell interaction and the ionic silver, which is dependent on the crucial parameter of particle size.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaohu Cheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Zhou
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| |
Collapse
|
5
|
Li D, Chen L. Solvent-Induced Lignin Conformation Changes Affect Synthesis and Antibacterial Performance of Silver Nanoparticle. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:957. [PMID: 38869582 PMCID: PMC11173806 DOI: 10.3390/nano14110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024]
Abstract
The emergence of antibiotic-resistant bacteria necessitates the development of novel, sustainable, and biocompatible antibacterial agents. This study addresses cytotoxicity and environmental concerns associated with traditional silver nanoparticles (AgNPs) by exploring lignin, a readily available and renewable biopolymer, as a platform for AgNPs. We present a novel one-pot synthesis method for lignin-based AgNPs (AgNPs@AL) nanocomposites, achieving rapid synthesis within 5 min. This method utilizes various organic solvents, demonstrating remarkable adaptability to a wide range of lignin-dissolving systems. Characterization reveals uniform AgNP size distribution and morphology influenced by the chosen solvent. This adaptability suggests the potential for incorporating lignin-loaded antibacterial drugs alongside AgNPs, enabling combined therapy in a single nanocomposite. Antibacterial assays demonstrate exceptional efficacy against both Gram-negative and Gram-positive bacteria, with gamma-valerolactone (GVL)-assisted synthesized AgNPs exhibiting the most potent effect. Mechanistic studies suggest a combination of factors contributes to the antibacterial activity, including direct membrane damage caused by AgNPs and sustained silver ion release, ultimately leading to bacterial cell death. This work presents a straightforward, adaptable, and rapid approach for synthesizing biocompatible AgNPs@AL nanocomposites with outstanding antibacterial activity. These findings offer a promising and sustainable alternative to traditional antibiotics, contributing to the fight against antibiotic resistance while minimizing environmental impact.
Collapse
Affiliation(s)
- Dan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China;
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Liheng Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China;
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Basic Research Center of Excellence for Ecological Security, Green Development in Guangdong-Hong Kong-Marco Greater Bay Area (GBA), Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Yang X, Tang J, Song Z, Li W, Gong X, Liu W. Enhancing the anti-biofouling property of solar evaporator through the synergistic antibacterial effect of lignin and nano silver. Int J Biol Macromol 2024; 268:131953. [PMID: 38685536 DOI: 10.1016/j.ijbiomac.2024.131953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Solar desalination is an effective solution to address the global water scarcity issue. However, biofouling poses a significant challenge for solar evaporators due to the presence of bacteria in seawater. In this study, an anti-biofouling evaporator was constructed using the synergistic antibacterial effect of lignin and silver nanoparticles (AgNPs). The AgNPs were easily synthesized using lignin as reductant under mild reaction conditions. Subsequently, the Lignin-AgNPs solution was integrated into polyacrylamide hydrogel (PAAm) without any purification steps, resulting in the formation of Lignin/AgNPs-PAAm (LAg-PAAm). Under the combined action of AgNPs and the hydroquinone groups present in oxidized lignin, LAg-PAAm achieved over 99 % disinfection efficiency within 1 h, effectively preventing biofilm formation in pore channels of solar evaporators. The anti-biofouling solar evaporator demonstrated an evaporation rate of 1.85 kg m-2 h-1 under 1 sun irradiation, and maintained stable performance for >30 days due to its high efficient bactericidal effect. Furthermore, it also exhibited exceptional salt-rejection capability attributed to its superior hydrophilicity.
Collapse
Affiliation(s)
- Xiaoqin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiebin Tang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Institute for Advanced Interdisciplinary Research (iAIR), School of Chemitry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Wei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xi Gong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
9
|
Yang P, Li Z, Fang B, Liu L. Self-healing hydrogels based on biological macromolecules in wound healing: A review. Int J Biol Macromol 2023; 253:127612. [PMID: 37871725 DOI: 10.1016/j.ijbiomac.2023.127612] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
The complete healing of skin wounds has been a challenge in clinical treatment. Self-healing hydrogels are special hydrogels formed by distinctive physicochemically reversible bonds, and they are considered promising biomaterials in the biomedical field owing to their inherently good drug-carrying capacity as well as self-healing and repair abilities. Moreover, natural polymeric materials have received considerable attention in skin tissue engineering owing to their low cytotoxicity, low immunogenicity, and excellent biodegradation rates. In this paper, we review recent advances in the design of self-healing hydrogels based on natural polymers for skin-wound healing applications. First, we outline a variety of natural polymers that can be used to construct self-healing hydrogel systems and highlight the advantages and disadvantages of different natural polymers. We then describe the principle of self-healing hydrogels in terms of two different crosslinking mechanisms-physical and chemical-and dissect their performance characteristics based on the practical needs of skin-trauma applications. Next, we outline the biological mechanisms involved in the healing of skin wounds and describe the current application strategies for self-healing hydrogels based on these mechanisms. Finally, we analyze and summarize the challenges and prospects of natural-material-based self-healing hydrogels for skin applications.
Collapse
Affiliation(s)
- Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zhen Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
10
|
Liao H, Ye S, Lin P, Pan L, Wang D. In situ growth of lanthanides-doped nanoparticles inside zeolites with enhanced upconversion emission for gallic acid detection. J Colloid Interface Sci 2023; 652:1297-1307. [PMID: 37659302 DOI: 10.1016/j.jcis.2023.08.115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023]
Abstract
The combination of upconversion nanoparticles (UCNPs) with porous zeolites could enable the development of multifunctional composites and extend their optical applications in sensing, detection and biomedical monitoring. Herein, a series of high luminescent UCNPs@Zeolites nano-micro composites were constructed via the in situ growth strategy, by taking the low phonon-energy fluoride nanoparticles of NaLnF4 (Ln = Y, Gd) as doping hosts for Er3+/Yb3+, desilicated FAUY and ZSM-5 as the target zeolites. Benefiting from the formation of tightly combined interfaces between the UCNPs and the target zeolites that effectively passive the surface defects of UCNPs, three orders of magnitude of improved upconversion emission in maximum was obtained under 980 nm excitation through afterward heat treatment at 400 ℃. Moreover, the pre-exchange of Yb3+ into target zeolites before the in situ growth of UCNPs is another feasible approach to drastically improve the upconversion emission intensity of the UCNPs@Zeolites nano-micro composites. By taking NaGdF4:Yb,Er@DSZSM-5/HT as an example probe, the detection of GA was demonstrated and the detection ability of which is super than that of the corresponding bare NaGdF4:Yb,Er UCNPs. This research provided a universal approach to construct the UCNPs@Zeolites nano-micro composites with varied upconversion emission colors simply by choosing activator ions, which therefore indicates wide potential applications.
Collapse
Affiliation(s)
- Huazhen Liao
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Song Ye
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Peixuan Lin
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Ling Pan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
11
|
Yu J, Huang M, Tian H, Xu X. Silver Nanoparticle Sensor Array-Based Meat Freshness Inspection System. Foods 2023; 12:3814. [PMID: 37893707 PMCID: PMC10606817 DOI: 10.3390/foods12203814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
The series of biochemical reactions, metabolic pathways, and regulatory interactions that occur during the storage of meat are the main causes of meat loss and waste. The volatile compounds produced by these reactions, such as hydrogen sulfide, acids, and amines, can directly indicate changes in the freshness of meat during storage and sales. In this study, a one-pot hydrothermal method based on a surface control strategy was used to develop nanoparticles of silver with different reactivities, which were further immobilized in agar powder to develop a colorimetric sensor array. Due to the different chemical interactions with various volatile compounds, the colorimetric sensor array exhibited distinct color changes. The study demonstrates significant differences between 12 different volatile compounds and provides a quantitative and visual method to reveal rich detection indicators. The colorimetric sensor array is an economical and practical multi-analyte identification method. It has many potential applications such as food packaging, anti-counterfeiting, health monitoring, environmental monitoring, and optical filters.
Collapse
Affiliation(s)
- Jiahang Yu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
| | - Huixin Tian
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (M.H.); (H.T.)
| |
Collapse
|
12
|
Chandra J, Molugulu N, Annadurai S, Wahab S, Karwasra R, Singh S, Shukla R, Kesharwani P. Hyaluronic acid-functionalized lipoplexes and polyplexes as emerging nanocarriers for receptor-targeted cancer therapy. ENVIRONMENTAL RESEARCH 2023; 233:116506. [PMID: 37369307 DOI: 10.1016/j.envres.2023.116506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Cancer is an intricate disease that develops as a response to a combination of hereditary and environmental risk factors, which then result in a variety of changes to the genome. The cluster of differentiation (CD44) is a type of transmembrane glycoprotein that serves as a potential biomarker for cancer stem cells (CSC) and viable targets for therapeutic intervention in the context of cancer therapy. Hyaluronic acid (HA) is a linear polysaccharide that exhibits a notable affinity for the CD44 receptor. This characteristic renders it a promising candidate for therapeutic interventions aimed at selectively targeting CD44-positive cancer cells. Treating cancer via non-viral vector-based gene delivery has changed the notion of curing illness through the incorporation of therapeutic genes into the organism. The objective of this review is to provide an overview of various hyaluronic acid-modified lipoplexes and polyplexes as potential drug delivery methods for specific forms of cancer by effectively targeting CD44.
Collapse
Affiliation(s)
- Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nagashekhara Molugulu
- School of Pharmacy, Monash University, Bandar Sunway, Jalan Lagoon Selatan, 47500, Malaysia
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine (CCRUM), Ministry of AYUSH, Government of India, Janakpuri, New Delhi 110058, India
| | - Surender Singh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
13
|
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen ZS, Zhou Y. Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer 2023; 22:98. [PMID: 37344887 DOI: 10.1186/s12943-023-01798-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is a grievous disease whose treatment requires a more efficient, non-invasive therapy, associated with minimal side effects. Gold nanoparticles possessing greatly impressive optical properties have been a forerunner in bioengineered cancer therapy. This theranostic system has gained immense popularity and finds its application in the field of molecular detection, biological imaging, cancer cell targeting, etc. The photothermal property of nanoparticles, especially of gold nanorods, causes absorption of the light incident by the light source, and transforms it into heat, resulting in tumor cell destruction. This review describes the different optical features of gold nanoparticles and summarizes the advance research done for the application of gold nanoparticles and precisely gold nanorods for combating various cancers including breast, lung, colon, oral, prostate, and pancreatic cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Ruiyang Ma
- Department of Otorhinolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, China
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York City, NY, 11439, USA
| | - Yun Zhou
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
14
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|