1
|
Trinh TC, Falson P, Tran-Nguyen VK, Boumendjel A. Ligand-Based Drug Discovery Leveraging State-of-the-Art Machine Learning Methodologies Exemplified by Cdr1 Inhibitor Prediction. J Chem Inf Model 2025; 65:4027-4042. [PMID: 40241349 DOI: 10.1021/acs.jcim.5c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Artificial intelligence (AI) is revolutionizing drug discovery with unprecedented speed and efficiency. In computer-aided drug design, structure-based and ligand-based methodologies are the main driving forces for innovation. In cases where no experimental structure or high-confidence homology/AlphaFold-predicted model of the target is available in 3D, ligand-based strategies are generally preferable. Here, we aim to develop and evaluate new predictive AI models for ligand-based drug discovery. To illustrate our workflow, we propose, as an example, an ensemble classification model for Cdr1 inhibitor prediction. We leverage target-specific experimental data from different sources, various molecular feature types, and multiple state-of-the-art machine learning (ML) algorithms alongside a multi-instance 3D graph neural network (multiple conformations of a single molecule are considered). Bayesian hyperparameter tuning, stacked generalization, and soft voting are involved in our workflow. The final target-specific ensemble model benefits from the classification and screening power of those constituting it. On an external test set structurally dissimilar to the training data, its average precision is 0.755, its F1-score is 0.714, the area under the receiver operating characteristic curve is 0.884, and the balanced accuracy is 0.799. It gives a low false positive rate of 0.1236 on another test set outside the training chemical space, indicating its ability to avoid false positives. The present work highlights the potential of stacking ensemble ML and offers a rigorous general workflow to build ligand-based predictive AI models for other targets.
Collapse
Affiliation(s)
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, CNRS-Lyon 1 University Laboratory, UMR 5086, IBCP, 69367 CEDEX Lyon 07, France
| | | | | |
Collapse
|
2
|
Franko O, Čižmáriková M, Kello M, Michalková R, Wesołowska O, Środa-Pomianek K, Marques SM, Bednář D, Háziková V, Liška TJ, Habalová V. Acridine-Based Chalcone 1C and ABC Transporters. Int J Mol Sci 2025; 26:4138. [PMID: 40362377 PMCID: PMC12071533 DOI: 10.3390/ijms26094138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Chalcones, potential anticancer agents, have shown promise in the suppression of multidrug resistance due to the inhibition of drug efflux driven by certain adenosine triphosphate (ATP)-binding cassette (ABC) transporters. The gene and protein expression of chosen ABC transporters (multidrug resistance protein 1, ABCB1; multidrug resistance-associated protein 1, ABCC1; and breast cancer resistance protein, ABCG2) in human colorectal cancer cells (COLO 205 and COLO 320, which overexpress active ABCB1) was mainly studied in this work under the influence of a novel synthetic acridine-based chalcone, 1C. While gene expression dropped just at 24 h, compound 1C selectively suppressed colorectal cancer cell growth and greatly lowered ABCB1 protein levels in COLO 320 cells at 24, 48, and 72 h. It also reduced ABCC1 protein levels after 48 h. Molecular docking and ATPase tests show that 1C probably acts as an allosteric modulator of ABCB1. It also lowered galectin-1 (GAL1) expression in COLO 205 cells at 24 h. Functional tests on COLO cells revealed ABCB1 and ABCC1/2 to be major contributors to multidrug resistance in both. Overall, 1C transiently lowered GAL1 in COLO 205 while affecting important functional ABC transporters, mostly ABCB1 and to a lesser extent ABCC1 in COLO 320 cells. COLO 320's absence of GAL1 expression points to a possible yet unknown interaction between GAL1 and ABCB1.
Collapse
Affiliation(s)
- Ondrej Franko
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martina Čižmáriková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Olga Wesołowska
- Department of Biophysics and Neurobiology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neurobiology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Sérgio M. Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - David Bednář
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Viktória Háziková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Tomáš Ján Liška
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| | - Viera Habalová
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
3
|
Prasad R. Cdr1 in focus: a personal reflection on multidrug transporter research. FEMS Yeast Res 2025; 25:foaf003. [PMID: 39883094 PMCID: PMC11781190 DOI: 10.1093/femsyr/foaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Drug resistance mechanisms in human pathogenic Candida species are constantly evolving. Over time, these species have developed diverse strategies to counter the effects of various drug classes, making them a significant threat to human health. In addition to well-known mechanisms such as drug target modification, overexpression, and chromosome duplication, Candida species have also developed permeability barriers to antifungal drugs through reduced drug import or increased efflux. The genomes of Candida species contain a multitude of drug resistance genes, many of which encode membrane efflux transporters that actively expel drugs, preventing their toxic accumulation inside the cells and contributing to multidrug resistance. This brief personal retrospective piece for the "Thematic Issue on Celebrating 30 Years of Cdr1 Research: new trends in antifungal therapy and drug resistance" looks back as to how antifungal research has shifted focus since the identification of the first multidrug transporter gene, CDR1 (Candida Drug Resistance 1), leading to new insights into how reduced azole permeability across Candida cell membranes influences antifungal susceptibility.
Collapse
Affiliation(s)
- Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity University Haryana, Gurugram, 122413, India
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, 122413, India
| |
Collapse
|
4
|
Kumar P, Kumari I, Prasad R, Ray S, Banerjee A, Prakash A. Elucidating the binding specificity of interactive compounds targeting ATP-binding cassette subfamily G member 2 (ABCG2). Mol Divers 2025:10.1007/s11030-024-11078-2. [PMID: 39786520 DOI: 10.1007/s11030-024-11078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
The ATP-binding cassette transporter superfamily plays a pivotal role in cellular detoxification and drug efflux. ATP-binding cassette subfamily G member 2 (ABCG2) referred to as the Breast cancer resistance protein has emerged as a key member involved in multidrug resistance displayed by cancer cells. Understanding the molecular basis of substrate and inhibitor recognition, and binding within the transmembrane domain of ABCG2 is crucial for the development of effective therapeutic strategies. Herein, utilizing state-of-the-art molecular docking algorithms and molecular dynamic (MD) simulations, molecular binding of substrates and inhibitors with ABCG2 are defined, distinctly. We performed extensive virtual screening of Drugbank to identify the potential candidates, and MD simulations of docked complexes were carried out in POPC lipid bilayer. Further, the binding affinities of compounds were estimated by free binding energy employing MM-GBSA. To gain deeper insight into the binding affinities and molecular characteristics contributing to inhibitory potential of certain substrates, we included some well-known inhibitors, like Imatinib, Tariquidar, and Ko 143, in our analysis. Docking results show three compounds, Docetaxel > Tariquidar > Tezacaftor having the highest binding affinities (≤ 12.00 kcal/mol) for ABCG2. Remarkably, MM-GBSA results suggest the most stable binding of Tariquidar with ABCG2 as compared to the other inhibitors. Furthermore, our results suggested that Docetaxel, Ozanimod, Pitavastatin, and Tezacaftor have the strongest affinity for the drug-binding site(s) of ABCG2. These results provide valuable insights into the key residues that may govern substrate/inhibitor recognition, shedding light on the molecular determinants influencing substrate specificity, transport kinetics, and ABCG2-mediated drug efflux.
Collapse
Affiliation(s)
- Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Indu Kumari
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
- Data Science, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India
| | - Atanu Banerjee
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, India.
| | - Amresh Prakash
- Data Science, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
| |
Collapse
|
5
|
Lu XY, Jin H. MiRNAs function in the development of resistance against doxorubicin in cancer cells: targeting ABC transporters. Front Pharmacol 2024; 15:1486783. [PMID: 39679367 PMCID: PMC11638538 DOI: 10.3389/fphar.2024.1486783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
Resistance to chemotherapeutic agents poses a significant challenge in cancer treatment, particularly with doxorubicin, a widely used drug for various cancers, including breast cancer, leukaemia, osteosarcoma, and gastrointestinal cancers. This review aims to elucidate the critical role of microRNAs (miRNAs) in the development of doxorubicin resistance, focusing on their interactions with ATP-binding cassette (ABC) transporters. Despite extensive research, the molecular mechanisms governing doxorubicin resistance still need to be completed, particularly regarding the regulatory influence of miRNAs on ABC transporter expression. By analyzing current literature, this review identifies a notable gap: the lack of comprehensive insight into how specific miRNAs modulate the expression and activity of ABC transporters in cancer cells, contributing to doxorubicin resistance. We systematically examine recent findings on the interplay between miRNAs and ABC transporters, providing a detailed assessment of potential therapeutic strategies that leverage miRNA modulation to overcome drug resistance. Ultimately, this review underscores the significance of integrating miRNA research into existing therapeutic frameworks to enhance the efficacy of doxorubicin in cancer treatment.
Collapse
Affiliation(s)
- Xin-Yan Lu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Lu Q, Ambudkar SV, Yang DH. Editorial: ABC transporters and drug resistance. Drug Resist Updat 2024; 77:101135. [PMID: 39178712 DOI: 10.1016/j.drup.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Affiliation(s)
- Qisi Lu
- The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola 11501, USA.
| |
Collapse
|
7
|
Yang R, Yang Y, Yuan Y, Zhang B, Liu T, Shao Z, Li Y, Yang P, An J, Cao Y. MsABCG1, ATP-Binding Cassette G transporter from Medicago Sativa, improves drought tolerance in transgenic Nicotiana Tabacum. PHYSIOLOGIA PLANTARUM 2024; 176:e14446. [PMID: 39092508 DOI: 10.1111/ppl.14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive. Here, we report that MsABCG1, a WBC-type transporter highly conserved in legumes, is critical for the response to drought in alfalfa. MsABCG1 is localized on the plasma membrane, with the highest expression observed in roots under normal conditions, and its expression is induced by drought, NaCl and ABA signalling. In transgenic tobacco, overexpression of MsABCG1 enhanced drought tolerance, evidenced by increased osmotic regulatory substances and reduced lipid peroxidation. Additionally, drought stress resulted in reduced ABA accumulation in tobacco overexpressing MsABCG1, demonstrating that overexpression of MsABCG1 enhanced drought tolerance was not via an ABA-dependent pathway. Furthermore, transgenic tobacco exhibited increased stomatal density and reduced stomatal aperture under drought stress, indicating that MsABCG1 has the potential to participate in stomatal regulation during drought stress. In summary, these findings suggest that MsABCG1 significantly enhances drought tolerance in plants and provides a foundation for developing efficient drought-resistance strategies in crops.
Collapse
Affiliation(s)
- Rongchen Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yeyan Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yinying Yuan
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Benzhong Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Ting Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Zitong Shao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuanying Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jie An
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yuman Cao
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Yang Y, Zhu J, Feng R, Han M, Chen F, Hu Y. Altered vaginal cervical microbiota diversity contributes to HPV-induced cervical cancer via inflammation regulation. PeerJ 2024; 12:e17415. [PMID: 38881859 PMCID: PMC11179633 DOI: 10.7717/peerj.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/28/2024] [Indexed: 06/18/2024] Open
Abstract
Background Cancer has surpassed infectious diseases and heart ailments, taking the top spot in the disease hierarchy. Cervical cancer is a significant concern for women due to high incidence and mortality rates, linked to the human papillomavirus (HPV). HPV infection leads to precancerous lesions progressing to cervical cancer. The cervix's external os, near the vagina, hosts various microorganisms. Evidence points to the link between vaginal microbiota and HPV-induced cervical cancer. Cervical cancer onset aligns with an imbalanced Th1/Th2 immune response, but the role of vaginal microbiota in modulating this imbalance is unclear. Methods In this study, we collected vaginal samples from 99 HPV-infected patients across varying degrees of lesions, alongside control groups. These samples underwent bacterial DNA sequencing. Additionally, we employed Elisa kits to quantify the protein expression levels of Th1/Th2 cytokines IL2, IL12, IL5, IL13, and TNFa within the centrifuged supernatant of vaginal-cervical secretions from diverse research subjects. Subsequently, correlation analyses were conducted between inflammatory factors and vaginal microbiota. Results Our findings highlighted a correlation between decreased Lactobacillus and increased Gardenerella presence with HPV-induced cervical cancer. Functionally, our predictive analysis revealed the predominant enrichment of the ABC transporter within the vaginal microbiota of cervical cancer patients. Notably, these microbiota alterations exhibited correlations with the production of Th1/Th2 cytokines, which are intimately tied to tumor immunity. Conclusions This study suggests the potential involvement of vaginal microbiota in the progression of HPV-induced cervical cancer through Th1/Th2 cytokine regulation. This novel insight offers a fresh perspective for early cervical cancer diagnosis and future prevention strategies.
Collapse
Affiliation(s)
- Yiheng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jufan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renqian Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengfei Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Yan Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
10
|
Bo L, Sun H, Li YD, Zhu J, Wurpel JND, Lin H, Chen ZS. Combating antimicrobial resistance: the silent war. Front Pharmacol 2024; 15:1347750. [PMID: 38420197 PMCID: PMC10899355 DOI: 10.3389/fphar.2024.1347750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Once hailed as miraculous solutions, antibiotics no longer hold that status. The excessive use of antibiotics across human healthcare, agriculture, and animal husbandry has given rise to a broad array of multidrug-resistant (MDR) pathogens, posing formidable treatment challenges. Antimicrobial resistance (AMR) has evolved into a pressing global health crisis, linked to elevated mortality rates in the modern medical era. Additionally, the absence of effective antibiotics introduces substantial risks to medical and surgical procedures. The dwindling interest of pharmaceutical industries in developing new antibiotics against MDR pathogens has aggravated the scarcity issue, resulting in an exceedingly limited pipeline of new antibiotics. Given these circumstances, the imperative to devise novel strategies to combat perilous MDR pathogens has become paramount. Contemporary research has unveiled several promising avenues for addressing this challenge. The article provides a comprehensive overview of these innovative therapeutic approaches, highlighting their mechanisms of action, benefits, and drawbacks.
Collapse
Affiliation(s)
- Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haidong Sun
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jonathan Zhu
- Carle Place Middle and High School, Carle Place, NY, United States
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Hanli Lin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| |
Collapse
|