1
|
Endukuru CK, Gaur GS, Yerrabelli D, Sahoo J, Vairappan B. Agreement between equation-derived body fat estimator and bioelectrical impedance analysis for body fat measurement in middle-aged southern Indians. Physiol Rep 2024; 12:e70095. [PMID: 39431546 PMCID: PMC11492144 DOI: 10.14814/phy2.70095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Excess body fat (BF) contributes to metabolic syndrome (MetS). The Clínica Universidad de Navarra-Body Adiposity Estimator (CUN-BAE) is an equation-derived body fat estimator proposed to assess BF. However, its efficiency compared to the standard method is unknown. We aimed to compare the efficacy of CUN-BAE with the standard method in estimating BF in southern Indians. We included 351 subjects, with 166 MetS patients and 185 non-MetS subjects. BF was obtained from the standard bioelectrical impedance analysis (BIA) method and measured by CUN-BAE in the same subjects. We compared the efficacy of CUN-BAE in estimating BF with that of BIA via Bland-Altman plots, intraclass correlation coefficients, concordance correlation coefficients and the kappa index. The mean body fat percentage (BF%) values measured by BIA and CUN-BAE in all the subjects were 28.91 ± 8.94 and 29.22 ± 8.63, respectively. We observed significant absolute agreement between CUN-BAE and BIA for BF%. BIA and CUN-BAE showed good reproducibility for BF%. CUN-BAE had accuracy comparable to BIA for detecting MetS using BF%. Our findings indicate that CUN-BAE provides precise BF estimates similar to the BIA method, making it suitable for routine clinical practice when access to BF measurement devices is limited.
Collapse
Affiliation(s)
- Chiranjeevi Kumar Endukuru
- Department of Physiology, School of Medicine and DentistryUniversity of Central LancashirePrestonLancashireUK
| | - Girwar Singh Gaur
- Department of PhysiologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PuducherryIndia
| | - Dhanalakshmi Yerrabelli
- Department of PhysiologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PuducherryIndia
| | - Jayaprakash Sahoo
- Department of EndocrinologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PuducherryIndia
| | - Balasubramaniyan Vairappan
- Department of BiochemistryJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PuducherryIndia
| |
Collapse
|
2
|
Stavres J, Vallecillo-Bustos A, Newsome TA, Aultman RS, Brandner CF, Graybeal AJ. Hemodynamic responses to the cold pressor test in individuals with metabolic syndrome: a case-control study in a multiracial sample of adults. J Hum Hypertens 2024; 38:655-662. [PMID: 39020025 DOI: 10.1038/s41371-024-00938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Previous research shows that exercise pressor and metaboreflex responses are significantly exaggerated in individuals with metabolic syndrome, but it is unclear if these exaggerated responses extend to the cold pressor test (CPT). This study tested the hypothesis that, contrary to previously reported exaggerated responses during exercise, CPT responses would not be significantly exaggerated in individuals with MetS compared to matched controls. Eleven individuals with MetS and eleven control participants matched by age, race, sex, and ethnicity completed a cardiometabolic prescreening and a CPT. Each CPT required participants to immerse their hand in ice water for two minutes while beat-by-beat blood pressure, heart rate (HR), and leg blood flow (LBF) were continuously measured. Leg vascular conductance (LVC) was calculated as LBF divided by mean arterial pressure (MAP). The precent changes in MAP, systolic blood pressure (SBP), diastolic blood pressure (DBP), HR, LBF, and LVC were compared across time (BL vs. Minutes 1 and 2 of CPT) and between groups (MetS vs. Control) using repeated measures analyses of variance. As expected, MAP (f = 32.11, p < 0.001), SBP (f = 23.18, p < 0.001), DBP (f = 40.39, p < 0.001), and HR (f = 31.81, p < 0.001) increased during the CPT, and LBF (f = 4.75, p = 0.014) and LVC (f = 13.88, p < 0.001) decreased. However, no significant main effects of group or group by time interactions were observed (f ≤ 0.391, p ≥ 0.539). These findings indicate that the hemodynamic responses to the CPT are not significantly exaggerated in MetS, and therefore, previous reports of exaggerated exercise pressor and metaboreflex responses in MetS cannot be attributed to generalized sympathetic overexcitability.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA.
| | | | - Ta'Quoris A Newsome
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Ryan S Aultman
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | - Austin J Graybeal
- School of Kinesiology and Nutrition, The University of Southern Mississippi, Hattiesburg, MS, USA
| |
Collapse
|
3
|
Pichot V, Corbier C, Chouchou F, Barthélémy JC, Roche F. CVRanalysis: a free software for analyzing cardiac, vascular and respiratory interactions. Front Physiol 2024; 14:1224440. [PMID: 38250656 PMCID: PMC10797906 DOI: 10.3389/fphys.2023.1224440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction: Simultaneous beat-to-beat R-R intervals, blood pressure and respiration signals are routinely analyzed for the evaluation of autonomic cardiovascular and cardiorespiratory regulations for research or clinical purposes. The more recognized analyses are i) heart rate variability and cardiac coherence, which provides an evaluation of autonomic nervous system activity and more particularly parasympathetic and sympathetic autonomic arms; ii) blood pressure variability which is mainly linked to sympathetic modulation and myogenic vascular function; iii) baroreflex sensitivity; iv) time-frequency analyses to identify fast modifications of autonomic activity; and more recently, v) time and frequency domain Granger causality analyses were introduced for assessing bidirectional causal links between each considered signal, thus allowing the scrutiny of many physiological regulatory mechanisms. Methods: These analyses are commonly applied in various populations and conditions, including mortality and morbidity predictions, cardiac and respiratory rehabilitation, training and overtraining, diabetes, autonomic status of newborns, anesthesia, or neurophysiological studies. Results: We developed CVRanalysis, a free software to analyze cardiac, vascular and respiratory interactions, with a friendly graphical interface designed to meet laboratory requirements. The main strength of CVRanalysis resides in its wide scope of applications: recordings can arise from beat-to-beat preprocessed data (R-R, systolic, diastolic and mean blood pressure, respiration) or raw data (ECG, continuous blood pressure and respiratory waveforms). It has several tools for beat detection and correction, as well as setting of specific areas or events. In addition to the wide possibility of analyses cited above, the interface is also designed for easy study of large cohorts, including batch mode signal processing to avoid running repetitive operations. Results are displayed as figures or saved in text files that are easily employable in statistical softwares. Conclusion: CVRanalysis is freely available at this website: anslabtools.univ-st-etienne.fr. It has been developed using MATLAB® and works on Windows 64-bit operating systems. The software is a standalone application avoiding to have programming skills and to install MATLAB. The aims of this paper area are to describe the physiological, research and clinical contexts of CVRanalysis, to introduce the methodological approach of the different techniques used, and to show an overview of the software with the aid of screenshots.
Collapse
Affiliation(s)
- Vincent Pichot
- SAINBIOSE U1059, Inserm, Saint-Etienne Jean-Monnet University, Clinical Physiology and Exercise, CHU of Saint-Etienne, Saint-Etienne, France
| | - Christophe Corbier
- LASPI EA3059, Saint-Etienne Jean-Monnet University, Roanne Technology University Institute, Roanne, France
| | - Florian Chouchou
- IRISSE EA4075, UFR SHE, University of La Réunion, Le Tampon, France
| | - Jean-Claude Barthélémy
- SAINBIOSE U1059, Inserm, Saint-Etienne Jean-Monnet University, Clinical Physiology and Exercise, CHU of Saint-Etienne, Saint-Etienne, France
| | - Frédéric Roche
- SAINBIOSE U1059, Inserm, Saint-Etienne Jean-Monnet University, Clinical Physiology and Exercise, CHU of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
4
|
Stavres J, Aultman RA, Brandner CF, Newsome TA, Vallecillo-Bustos A, Wise HL, Henderson A, Stanfield D, Mannozzi J, Graybeal AJ. Hemodynamic responses to handgrip and metaboreflex activation are exaggerated in individuals with metabolic syndrome independent of resting blood pressure, waist circumference, and fasting blood glucose. Front Physiol 2023; 14:1212775. [PMID: 37608839 PMCID: PMC10441127 DOI: 10.3389/fphys.2023.1212775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Prior studies report conflicting evidence regarding exercise pressor and metaboreflex responses in individuals with metabolic syndrome (MetS). Purpose: To test the hypotheses that 1) exercise pressor and metaboreflex responses are exaggerated in MetS and 2) these differences may be explained by elevated resting blood pressure. Methods: Blood pressure and heart rate (HR) were evaluated in 26 participants (13 MetS) during 2 min of handgrip exercise followed by 3 min of post-exercise circulatory occlusion (PECO). Systolic (SBP), diastolic (DBP), and mean arterial pressure (MAP), along with HR and a cumulative blood pressure index (BPI), were compared between groups using independent samples t-tests, and analyses of covariance were used to adjust for differences in resting blood pressure, fasting blood glucose (FBG), and waist circumference (WC). Results: ΔSBP (∼78% and ∼54%), ΔMAP (∼67% and ∼55%), and BPI (∼16% and ∼20%) responses were significantly exaggerated in individuals with MetS during handgrip and PECO, respectively (all p ≤ 0.04). ΔDBP, ΔMAP, and BPI responses during handgrip remained significantly different between groups after independently covarying for resting blood pressure (p < 0.01), and after simultaneously covarying for resting blood pressure, FBG, and WC (p ≤ 0.03). Likewise, peak SBP, DBP, MAP, and BPI responses during PECO remained significantly different between groups after adjusting for resting blood pressure (p ≤ 0.03), with peak SBP, MAP, and BPI response remaining different between groups after adjusting for all three covariates simultaneously (p ≤ 0.04). Conclusion: These data suggest that exercise pressor and metaboreflex responses are significantly exaggerated in MetS independent of differences in resting blood pressure, FBG, or WC.
Collapse
Affiliation(s)
- Jon Stavres
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ryan A. Aultman
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Caleb F. Brandner
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ta’Quoris A. Newsome
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | | | - Havens L. Wise
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Alex Henderson
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Diavion Stanfield
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| | - Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Austin J. Graybeal
- School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
5
|
Endukuru CK, Gaur GS, Yerrabelli D, Sahoo J, Vairappan B, Goud AC. Correlation among Poincare plot and traditional heart rate variability indices in adults with different risk levels of metabolic syndrome: a cross-sectional approach from Southern India. J Basic Clin Physiol Pharmacol 2023; 34:519-530. [PMID: 36626361 DOI: 10.1515/jbcpp-2022-0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Heart rate variability (HRV) is an important marker of cardiac autonomic modulation. Metabolic syndrome (MetS) can alter cardiac autonomic modulation, raising the risk of cardiovascular disease (CVD). Poincaré plot analysis (PPA) is a robust scatter plot-based depiction of HRV and carries similar information to the traditional HRV measures. However, no prior studies have examined the relationship between PPA and traditional HRV measures among different risk levels of MetS. We evaluated the association between the Poincare plot and traditional heart rate variability indices among adults with different risk levels of MetS. METHODS We measured anthropometric data and collected fasting blood samples to diagnose MetS. The MetS risk was assessed in 223 participants based on the number of MetS components and was classified as control (n=64), pre-MetS (n=49), MetS (n=56), and severe MetS (n=54). We calculated the Poincaré plot (PP) and traditional HRV measures from a 5 min HRV recording. RESULTS Besides the traditional HRV measures, we found that various HRV indices of PPA showed significant differences among the groups. The severe MetS group had significantly lower S (total HRV), SD1 (short-term HRV), SD2 (long-term HRV), and higher SD2/SD1. The values of S, SD1, SD2, and SD2/SD1 were significantly correlated with most traditional HRV measures. CONCLUSIONS We found gradual changes in HRV patterns as lower parasympathetic and higher sympathetic activity alongside the rising number of MetS components. The HRV indices of PPA integrating the benefits of traditional HRV indices distinguish successfully between different risk levels of MetS and control subjects.
Collapse
Affiliation(s)
- Chiranjeevi Kumar Endukuru
- Department of Physiology, Sri Siddhartha Institute of Medical Sciences & Research Centre, Bengaluru, India
| | - Girwar Singh Gaur
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Dhanalakshmi Yerrabelli
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Alladi Charanraj Goud
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
6
|
Kumar EC, Gaur GS, Yerrabelli D, Sahoo J, Vairappan B, Goud AC. Association between metabolic syndrome components and cardiac autonomic modulation in southern Indian adults with pre-metabolic syndrome: hyperglycemia is the major contributing factor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:49-59. [PMID: 36575933 PMCID: PMC9806641 DOI: 10.4196/kjpp.2023.27.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 12/29/2022]
Abstract
Metabolic syndrome (MetS) involves multi-factorial conditions linked to an elevated risk of type 2 diabetes mellitus and cardiovascular disease. Pre-metabolic syndrome (pre-MetS) possesses two MetS components but does not meet the MetS diagnostic criteria. Although cardiac autonomic derangements are evident in MetS, there is little information on their status in pre-MetS subjects. In this study, we sought to examine cardiac autonomic functions in pre-MetS and to determine which MetS component is more responsible for impaired cardiac autonomic functions. A total of 182 subjects were recruited and divided into healthy controls (n=89) and pre-MetS subjects (n=93) based on inclusion and exclusion criteria. We performed biochemical profiles on fasting blood samples to detect pre-MetS. Using standardized protocols, we evaluated anthropometric data, body composition, baroreflex sensitivity (BRS), heart rate variability (HRV), and autonomic function tests (AFTs). We further examined these parameters in pre-MetS subjects for each MetS component. Compared to healthy controls, we observed a significant cardiac autonomic dysfunction (CAD) through reduced BRS, lower overall HRV, and altered AFT parameters in pre-MetS subjects, accompanied by markedly varied anthropometric, clinical and biochemical parameters. Furthermore, all examined BRS, HRV, and AFT parameters exhibited an abnormal trend and significant correlation toward hyperglycemia. This study demonstrates CAD in pre-MetS subjects with reduced BRS, lower overall HRV, and altered AFT parameters. Hyperglycemia was considered an independent determinant of alterations in all the examined BRS, HRV, and AFT parameters. Thus, hyperglycemia may contribute to CAD in pre-MetS subjects before progressing to MetS.
Collapse
Affiliation(s)
- Endukuru Chiranjeevi Kumar
- Department of Physiology, Sri Siddhartha Institute of Medical Sciences & Research Centre, Bangalore 562123, India
| | - Girwar Singh Gaur
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Dhanalakshmi Yerrabelli
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Balasubramaniyan Vairappan
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| | - Alladi Charanraj Goud
- Department of Dermatology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605008, India
| |
Collapse
|