1
|
Wang Q, Feng W, Tan Y, Qiao J, Liu H, Liu Q, Wang H, Zhang Q, Tao J, Li Z, Yang B, Xu Z, Wang C, Yang S, Cui L. Antiphospholipid antibodies inhibit the migration and invasion of trophoblast cells by suppressing the JNK/C-Jun/MMP1 signaling pathway. J Transl Med 2025; 23:581. [PMID: 40410845 PMCID: PMC12102791 DOI: 10.1186/s12967-025-06596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Antiphospholipid syndrome (APS) is an autoimmune disease primarily manifested by recurrent thrombosis and pregnancy-related complications. The migration and invasion abilities of trophoblast cells play a crucial role in maintaining normal pregnancy. It is now increasingly recognized that adverse pregnancy outcomes in APS are associated with the disruption of trophoblast function by aPL (antiphospholipid antibodies), rather than thrombotic occlusion of the placental vasculature. Therefore, this article aimed to explore the potential mechanisms by which aPL affect trophoblast cell function. METHOD An APS cell model was established in the HTR-8 trophoblast cell line, followed by RNA sequencing to identify key genes involved in trophoblast cell function. To explore the underlying mechanisms, we employed quantitative real-time PCR, Western blotting, immunohistochemistry, ELISA, plasmid transfection and KEGG pathway enrichment analysis. Functional assays, including migration and invasion tests, were conducted to evaluate trophoblast cell ability. Clinical samples were collected, and the expression levels of target molecules in serum were quantified using ELISA. Additionally, an APS animal pregnancy model was developed to assess pregnancy loss rates and analyze the expression of specific target genes in the placenta. RESULTS Sequencing analysis revealed significant downregulation of MMP1 in the APS model, confirmed by qPCR and Western blotting. Correspondingly, migration and invasion of HTR-8 cells were impaired in the APS group, but MMP1 overexpression restored trophoblast cell function. Serum MMP1 levels were lower in APS patients than in controls. In the animal pregnancy model, the APS group exhibited higher pregnancy loss, with placental immunohistochemistry confirming decreased MMP1 expression. KEGG enrichment analysis of differentially expressed genes between the NC and APS groups revealed a significant difference in the MAPK pathway, with P-JNK showing the most notable reduction. C-Jun, a downstream regulator of JNK, also decreased and modulated MMP1 expression. Notably, Anisomycin treatment increased P-C-Jun, upregulated MMP1, and enhanced trophoblast migration and invasion. CONCLUSION APL downregulated MMP1 expression by suppressing the JNK/C-Jun signaling pathway in trophoblast cells, thereby reducing their migratory and invasive capabilities. This represent a potential pathogenic mechanism contributing to adverse pregnancy outcomes in APS patients, highlighting possible therapeutic targets for intervention in APS management.
Collapse
Affiliation(s)
- Qingchen Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Weimin Feng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Yuan Tan
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Jiao Qiao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Hongchao Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - He Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Qian Zhang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Jingjin Tao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Boxin Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Zhen Xu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Chong Wang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Kolawole E, Duggirala A, Gronow O, Wisniewska A, Hu J, Tan BK. Differential Expression of Maternal Plasma microRNAs and Their Respective Gene Targets Can Predict Early Fetal Growth Restriction. Life (Basel) 2025; 15:167. [PMID: 40003576 PMCID: PMC11856715 DOI: 10.3390/life15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Fetal growth restriction (FGR) is a condition where the fetus does not reach its genetically predetermined size, affecting 1 in 10 pregnancies and contributing to up to 50% of all stillbirths before 34 weeks of gestation. Current diagnostic methods primarily involve ultrasound and Doppler assessments, yet there is growing interest in identifying biomarkers for early diagnosis and improved management. This systematic review examined the role of microRNAs (miRNAs) in the pathogenesis of FGR, focusing on their potential as non-invasive biomarkers. MicroRNAs are small, non-coding RNAs that regulate gene expression. This review systematically assessed studies investigating the differential expression of miRNAs in maternal blood, serum, and plasma samples from FGR-affected pregnancies. A total of nine studies met the inclusion criteria, which showed the differential expression of a total of 48 miRNAs. miR-16-5p was consistently upregulated in multiple studies and trimesters. miR-590-3p and miR-206 were consistently upregulated in multiple trimesters. The common gene targets of these miRNAs are VEGF, PIGF, and MMP9. The downregulation of these genes contributes to impaired angiogenesis, trophoblast invasion, placental function, and fetal growth.
Collapse
Affiliation(s)
- Emmanuel Kolawole
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Aparna Duggirala
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Oscar Gronow
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Agnieszka Wisniewska
- College of Science and Engineering, Biomedical and Clinical Science Research Centre, University of Derby, Derby DE22 1GB, UK; (E.K.)
| | - Jiamiao Hu
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Bee Kang Tan
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
3
|
Geisler HC, Safford HC, Mitchell MJ. Rational Design of Nanomedicine for Placental Disorders: Birthing a New Era in Women's Reproductive Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300852. [PMID: 37191231 PMCID: PMC10651803 DOI: 10.1002/smll.202300852] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/16/2023] [Indexed: 05/17/2023]
Abstract
The placenta is a transient organ that forms during pregnancy and acts as a biological barrier, mediating exchange between maternal and fetal circulation. Placental disorders, such as preeclampsia, fetal growth restriction, placenta accreta spectrum, and gestational trophoblastic disease, originate in dysfunctional placental development during pregnancy and can lead to severe complications for both the mother and fetus. Unfortunately, treatment options for these disorders are severely lacking. Challenges in designing therapeutics for use during pregnancy involve selectively delivering payloads to the placenta while protecting the fetus from potential toxic side effects. Nanomedicine holds great promise in overcoming these barriers; the versatile and modular nature of nanocarriers, including prolonged circulation times, intracellular delivery, and organ-specific targeting, can control how therapeutics interact with the placenta. In this review, nanomedicine strategies are discussed to treat and diagnose placental disorders with an emphasis on understanding the unique pathophysiology behind each of these diseases. Finally, prior study of the pathophysiologic mechanisms underlying these placental disorders has revealed novel disease targets. These targets are highlighted here to motivate the rational design of precision nanocarriers to improve therapeutic options for placental disorders.
Collapse
Affiliation(s)
- Hannah C. Geisler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hannah C. Safford
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19014, USA
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
4
|
Liu L, He D, Zhou W, Guo Z, Ma Y, Liu L, He H, He S, Huang Y. Polymorphisms in myeloperoxidase and tissue inhibitor of metalloproteinase-1 genes and their association with preeclampsia in the Chinese Han population. Heliyon 2024; 10:e36685. [PMID: 39286176 PMCID: PMC11403484 DOI: 10.1016/j.heliyon.2024.e36685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Hypertensive disorders of pregnancy (HDP) are multifaceted syndromes unique to pregnancy, characterized by increased blood pressure, edema, and proteinuria. Patients with HDP exhibit signs of endothelial dysfunction, possibly linked to increased myeloperoxidase (MPO) level and aberrant oxidative stress. Additionally, altered level of tissue inhibitor of metalloproteinase-1 (TIMP1) protein is associated with placental ischemia, hypoxia, and maternal vascular endothelial damage. Preeclampsia (PE) represents a critical stage of HDP that poses severe threats to maternal and fetal safety. This study aimed to determine the relationship between MPO and TIMP1 polymorphisms and the risk of PE in the Chinese Han population. Single nucleotide polymorphisms (SNPs), including MPO rs7208693, MPO rs2243828, and TIMP1 rs6609533, were genotyped in 170 patients with PE and 303 control participants. No significant association was observed between MPO polymorphisms (rs7208693 and rs2243828) and the risk of PE, whereas significant association between the TIMP1 rs6609533 A > G SNP and PE susceptibility was found. Specifically, individuals with the GG or AG genotypes had elevated risk of PE compared to those harboring the AA genotype. Furthermore, in the PE group, patients carrying the G allele were more likely to experience fetal growth restriction (FGR). In the non-PE group, the association between the G allele and the risk of FGR was not evident. In conclusion, the TIMP1 rs6609533 G allele in Chinese Han women was identified as a risk factor for PE. Our results indicated that the TIMP1 rs6609533 SNP can serve as a biomarker for the clinical diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Li Liu
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Dong He
- School of Basic Medical Sciences, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Weilin Zhou
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Zhiyang Guo
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Yue Ma
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Lingjie Liu
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Hong He
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shuqi He
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| | - Yi Huang
- Hospital of Stomatology, The First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
5
|
Ramdin S, Naicker T, Baijnath S, Govender N. Is renal dysfunction amplified in an arginine vasopressin induced rat model of preeclampsia? Reprod Biol 2024; 24:100910. [PMID: 38851025 DOI: 10.1016/j.repbio.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/27/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Renal dysfunction is important in preeclampsia (PE) pathophysiology and has not been fully explored in the arginine vasopressin (AVP) rat model of PE. This study aimed to determine kidney toxicity associated with this model. Female Sprague Dawley rats (n = 24) were subcutaneously infused with AVP or saline for 18 days. Urine samples (GD8, 14 and 18) were used to determine the levels of albumin, VEGF-A, clusterin, NGAL/Lipocalin-2, KIM-1, cystatin C, TIMP-1, β2M and OPN via Multiplex ELISAs. Albumin, and NGAL/lipocalin-2 were significantly elevated in the PAVP vs PS group on GD14 and GD18 (p < 0.001) respectively. VEGF-A significantly decreased in the pregnant vs non-pregnant groups on GD14 and 18 (p < 0.001). Clusterin (p < 0.001) and OPN (p < 0.05) were significantly higher in the PAVP vs PS group on GD18. Cystatin C and KIM-1 are significantly upregulated in the PAVP vs PS groups throughout gestation (p < 0.05). β2M is significantly elevated in the PAVP vs PS group on GD14 and 18 (p < 0.05). AVP elevated the urinary levels of the kidney injury biomarkers and replicated the renal dysfunction associated with PE development. Our findings confirm the potential applications of this model in studying the mechanisms underlying renal damage in PE.
Collapse
Affiliation(s)
- Sapna Ramdin
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sooraj Baijnath
- Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nalini Govender
- Department of Basic Medical Sciences, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
6
|
Khaliq SA, Kim J, Kim IC, Kim JH, Yoon MS. The Extracts from Two Antarctic Fish Species, Trematomus newnesi and Trematomus bernacchii, Enhance JEG-3 Cell Migration and Invasion via MMP9 Activation Through Akt/Protein Phosphatase1/β-Catenin Pathway. Mol Nutr Food Res 2024; 68:e2400028. [PMID: 38925577 DOI: 10.1002/mnfr.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/02/2024] [Indexed: 06/28/2024]
Abstract
SCOPE This study investigates the impact of extracts derived from Antarctic fish species, Trematomus newnesi and Trematomus bernacchii, on the migration of human placental trophoblast JEG-3 cells, which is a crucial aspect of successful pregnancy. METHODS AND RESULTS The extracts, obtained from the muscles of these fish, significantly enhance the migration and invasion of JEG-3 cells in in vitro wound healing, Transwell, and collagen invasion assays. These effects are accompanied by an increase in matrix metalloproteinase (MMP) 9 activity, as demonstrated by zymography. Furthermore, the extracts activated Akt and protein phosphatase 1, resulting in the dephosphorylation of β-catenin at Ser33/37/Thr41, as confirmed by western blot analysis. Consequently, MMP9 is upregulated, while metallopeptidase inhibitor 1/3 is downregulated, as verified by western blot and qRT-PCR analyses. Finally, utilizing ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, followed by matching with the Global Natural Product Social Molecular Networking library, the study annotates the compound responsible for the observed migratory activity as taurocholic acid. Importantly, the study confirms that taurocholic acid enhances cell migration in JEG-3 cells. CONCLUSION The results of this study emphasize the potential of Antarctic fish extracts in promoting extravillous trophoblast migration and invasion, which are critical for successful pregnancy.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Republic of Korea
| | - Jaewon Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Polar Science, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Incheon, 21999, Republic of Korea
| |
Collapse
|
7
|
Nguyen A, Cannon P, Kandel M, Nguyen TV, Baird L, Wong G, Hannan NJ, Tong S, Bartho L, Kaitu'u-Lino TJ. Cell surface associated protein mucin 15 (MUC15) is elevated in preeclampsia. Placenta 2023; 140:39-46. [PMID: 37531748 DOI: 10.1016/j.placenta.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Mucins are a family of proteins that protect the epithelium. A particular type of mucin, MUC15 is highly expressed in the placenta. This study aimed to characterise MUC15 in preeclampsia and investigate its role in placental stem cell biology. METHODS MUC15 mRNA and protein were measured in placentas from patients with early onset (<34 weeks' gestation) preeclampsia. Circulating serum MUC15 was measured via ELISA. MUC15 was localised in the placenta using in situ hybridisation. MUC15 mRNA expression was measured across differentiation of human trophoblast stem cells (hTSCs) to syncytiotrophoblast and extravillous trophoblasts. MUC15 was measured after syncytialised hTSCs were cultured in hypoxic (1% O2) and proinflammatory (TNF α, IL-6) conditions. MUC15 secretion was assessed when syncytialised hTSCs were treated with brefeldin A (impairs protein trafficking) and batimastat (inhibits matrix metalloproteinases). RESULTS MUC15 protein was significantly increased in the placenta (P = 0.0003, n = 32 vs n = 20 controls) and serum (P = 0.016, n = 32 vs n = 22 controls) of patients with preeclampsia, whilst MUC15 mRNA remained unchanged (n = 61 vs n = 18 controls). MUC15 mRNA (P = 0.005) and protein secretion (P = 0.006) increased following differentiation to syncytiotrophoblast cells. In situ hybridisation confirmed MUC15 localised to the syncytiotrophoblast cell within the placenta. Neither hypoxic or inflammatory conditions changed MUC15 mRNA expression or secretion. Brefeldin A treated hTSCs did not alter MUC15 secretion, whilst batimastat reduced MUC15 secretion (P = 0.044). CONCLUSIONS MUC15 is increased in early onset preeclampsia and is cleaved by matrix metalloproteinases. Increased MUC15 may reflect a protective mechanism associated with placental dysfunction. Further research will aid in confirming this.
Collapse
Affiliation(s)
- Anna Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Manju Kandel
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong-Vi Nguyen
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Lydia Baird
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Georgia Wong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Lucy Bartho
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| |
Collapse
|
8
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
9
|
Shi F, Li L. Hsa_circ_0088196 suppresses trophoblast migration and invasion by the miR-525-5p/ABL1 axis and the PI3K/AKT signaling pathway. J Biochem Mol Toxicol 2022; 36:e23150. [PMID: 35781906 DOI: 10.1002/jbt.23150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Our study aimed to explore the role of circ_0088196 (circular TNC [circTNC]) in trophoblast invasion and migration in preeclampsia (PE) both in vitro and in vivo. CircTNC, miR-525-5p, and ABL1 expression in trophoblast HTR8/SVneo cells were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability, migration, and invasion were detected by Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays. The binding between circTNC (or ABL1) and miR-525-5p was validated by RNA pulldown and luciferase reporter assays. The mouse model of PE was injected with sh-circTNC and the effects of circTNC knockdown on the mean artery pressure, urine protein concentration, and fetal survival number of pregnant mice were examined. The expression of MMP-2, MMP-9, and PI3K/AKT pathway molecules in placental tissues was assessed by immunohistochemistry, qRT-PCR, and western blot analysis. CircTNC overexpression inhibited cell invasion and migration, but did not influence cell proliferation. CircTNC bound with miR-525-5p, whose knockdown repressed cell invasion and migration, while it exerted no effect on cell proliferation. ABL1, a target of miR-525-5p, attenuated cell migration and invasion, without influence on cell viability. Importantly, either miR-525-5p overexpression or ABL1 depletion antagonized the repression of upregulated circTNC on trophoblast cell migration and invasion, MMP-2 and MMP-9 expression, and the PI3K/AKT pathway. CircTNC knockdown alleviated PE symptoms in pregnant mice. CircTNC knockdown promoted the trophoblast invasiveness in mice placenta by upregulating MMP-2/9 expression and suppressing the PI3K/AKT pathway. Circ_0088196 represses trophoblast invasion and migration both in vitro and in vivo via regulating the miR-525-5p/ABL1 axis and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Fenglian Shi
- Department of Gynaecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Li Li
- Department of Gynaecology and Obstetrics, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Li X, Li C, Wang Y, Cai J, Zhao L, Su Z, Ye H. IGFBP1 inhibits the invasion, migration, and apoptosis of HTR-8/SVneo trophoblast cells in preeclampsia. Hypertens Pregnancy 2022; 41:53-63. [PMID: 35168459 DOI: 10.1080/10641955.2022.2033259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the effects and underlying mechanisms of IGFBP1 on the biological functions of trophoblasts in simulated preeclampsia. METHODS IGFBP1 expression in placenta was determined by immunohistochemistry. HTR-8/SVneo cells were stimulated with/without IGFBP1-overexpression and hypoxia-reoxygenation, and the proliferation, invasion, migration, and apoptosis were detected by CCK8, transwell, and flow cytometry, respectively. RESULTS IGFBP1 expression was increased in placenta of preeclampsia. IGFBP1 overexpression inhibited proliferation, invasion, migration, and apoptosis of HTR-8/SVneo cells and induced MMP-26 expression with/without hypoxia-reoxygenation challenge. CONCLUSION IGFBP1 affects biological functions of trophoblasts, and it may play a role in pathophysiology of preeclampsia by inducing MMP-26.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Chenxi Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Ye Wang
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Jianxing Cai
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Li Zhao
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Zhiying Su
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, PR China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| |
Collapse
|
11
|
Pei J, Li Y, Min Z, Dong Q, Ruan J, Wu J, Hua X. MiR-590-3p and its targets VEGF, PIGF, and MMP9 in early, middle, and late pregnancy: their longitudinal changes and correlations with risk of fetal growth restriction. Ir J Med Sci 2021; 191:1251-1257. [PMID: 34159524 DOI: 10.1007/s11845-021-02664-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
AIMS The term "fetal growth restriction (FGR)" is commonly used to describe fetuses with an estimated fetal weight that is less than 10th percentile for gestational age. This study aimed to investigate the longitudinal change of microRNA-590-3p (miR-590-3p), vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and matrix metalloproteinase (MMP)9 expressions in early, middle, and late pregnancy, and their correlations with the fetal growth restriction (FGR) risk. METHODS Totally, 970 pregnant women in early pregnancy were enrolled, and their plasma samples were, respectively, acquired in early pregnancy (at 10th or 11th week of gestational age), middle pregnancy (at 20th or 21st week of gestational age), and late pregnancy (at 33th or 34th week of gestational age) for miR-590-3p, VEGF, PIGF, and MMP9 determinations. RESULTS MiR-590-3p underwent a growing trend, but VEGF, PIGF, and MMP9 experienced declined trend along with pregnancy (all P < 0.001). Furthermore, the negative association of miR-590-3p with VEGF, PIGF, and MMP9 became stronger along with the pregnancy. Besides, miR-590-3p expression in middle and late pregnancy was higher, but VEGF, PIGF, and MMP9 expressions in middle and late pregnancy were lower in women affected by FGR compared to normal pregnant women (all P < 0.001). In addition, miR-590-3p, VEGF, PIGF, and MMP9 expression in middle and late pregnancy were of good value in predicting FGR risk. CONCLUSIONS miR-590-3p exhibits a growing trend during pregnancy, and its expression in middle and late pregnancy is associated with increased FGR risk via interaction with VEGF, PIGF, and MMP9.
Collapse
Affiliation(s)
- Jindan Pei
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Yan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Zhihong Min
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Qi Dong
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Jiali Ruan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China
| | - Juan Wu
- Department of Gynecology, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiaolin Hua
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, 2699 West Gaoke Road, Shanghai, 201204, China.
| |
Collapse
|
12
|
Cheng M, Liu Z, Ji W, Zheng J, Zeng H, Guo F, He P. Tissue Transglutaminase Impairs HTR-8/SVneo Trophoblast Cell Invasion via the PI3K/AKT Signaling Pathway. Gynecol Obstet Invest 2021; 86:264-272. [PMID: 34139701 DOI: 10.1159/000515086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/06/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES The pathogenesis of preeclampsia (PE) is associated with impaired trophoblast invasion, which results in placental insufficiency. Our earlier studies demonstrated that tissue transglutaminase (tTG) is highly expressed in human PE serum. However, whether tTG participates in trophoblast invasion remains unclear. The aim of the present study was to determine the role and mechanism of tTG in regulating matrix metalloproteinase (MMP)-2/MMP-9 expression to reduce trophoblast invasiveness in PE. METHODS HTR-8/SVneo cells were transfected with a lentivirus vector and small interfering RNA targeting tTG. The protein level was detected by Western blotting. Cell proliferation and apoptosis were assessed by MTS and flow cytometry assays, respectively. Cell invasion was investigated by Transwell assay. In addition, the influence of tTG on PI3K and AKT mRNA levels in HTR-8/SVneo cells was evaluated using reverse transcription-quantitative PCR. RESULTS tTG-overexpression inhibited HTR-8/SVneo cell proliferation and invasion and promoted apoptosis. In addition, upregulation of tTG induced an increase of PI3K and phosphorylated AKT and a decrease of MMP-2 and MMP-9 expression. tTG-knockdown significantly promoted the proliferation and invasion of HTR-8/SVneo cells and inhibited the apoptosis. Furthermore, the PI3K expression level was reduced, and the MMP-2/MMP-9 protein levels were increased. CONCLUSION Taken together, the present study demonstrated that tTG-overexpression inhibited HTR-8/SVneo cell invasion via reducing the expression of MMP-2 and MMP-9 by activating PI3K/AKT signaling pathway, which may lead to the occurrence or development of PE. The present data provide new insights into modulation of tTG expression as a potential therapeutic target for PE.
Collapse
Affiliation(s)
- Mi Cheng
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zequn Liu
- Department of Prenatal Diagnostic Center, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wanqing Ji
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jie Zheng
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huiqian Zeng
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Fang Guo
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ping He
- Department of Obstetrics, Guangzhou Medical University Affiliated Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
13
|
Hamutoğlu R, Bulut HE, Kaloğlu C, Önder O, Dağdeviren T, Aydemir MN, Korkmaz EM. The regulation of trophoblast invasion and decidual reaction by matrix metalloproteinase-2, metalloproteinase-7, and metalloproteinase-9 expressions in the rat endometrium. Reprod Med Biol 2020; 19:385-397. [PMID: 33071641 PMCID: PMC7542015 DOI: 10.1002/rmb2.12342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE We aimed to evaluate how matrix metalloproteinases (MMPs) regulate the trophoblast invasion and placentation. METHODS Female rats were divided into the estrous cycle and early pregnancy day groups. Obtained uterine tissues and implantation sites were processed for immunofluorescence and real-time PCR examinations. RESULTS The mRNA expression of MMP-7 was higher than MMP-2 and MMP-9. Immunofluorescence findings confirmed that MMP-2, MMP-7, and MMP-9 were localized in the endometrial stroma, while MMP-7 was high in glandular and lining epithelial cells throughout the entire estrous cycle. However, their immunolocalizations and mRNA expressions were dramatically changed with the early pregnancy days. The MMP-7 reached very strong immunostaining in the giant trophoblast cells (GTCs), and the cytoplasm of mature and differentiating decidual cells, whereas MMP-2 and MMP-9 were mostly seen in the primary decidual zone (PDZ), GTCs, and the endothelium of blood vessels. CONCLUSIONS All three MMPs seemed likely to be a key mediator of trophoblast invasion into the decidual region as well as angiogenesis during the placentation process. Due to the strong and wide expression of MMP-7 in the mature decidua, it could be suggested that MMP-7 is important for decidual ECM remodeling and it might be used as a new marker of decidual reaction.
Collapse
Affiliation(s)
- Rasim Hamutoğlu
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Hüseyin Eray Bulut
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Celal Kaloğlu
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
- Cumhuriyet University Assisted Reproduction Technology (ART) CenterSivasTurkey
| | - Ozan Önder
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Tuğba Dağdeviren
- Department of Histology and EmbryologyFaculty of MedicineCumhuriyet UniversitySivasTurkey
| | - Merve Nur Aydemir
- Department of Molecular Biology and GeneticsFaculty of ScienceCumhuriyet UniversitySivasTurkey
| | - Ertan Mahir Korkmaz
- Department of Molecular Biology and GeneticsFaculty of ScienceCumhuriyet UniversitySivasTurkey
| |
Collapse
|
14
|
Sun M, Liu S, Gao J, Meng T, Xing X, Chen C, Chen H, Luo Y. Cyclin G2 Is Involved in the Proliferation of Placental Trophoblast Cells and Their Interactions with Endothelial Cells. Med Sci Monit 2020; 26:e926414. [PMID: 32941407 PMCID: PMC7521070 DOI: 10.12659/msm.926414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Remodeling of maternal spiral arteries after embryo implantation relies on well-regulated trophoblast functions. Although cyclin G2 (CCNG2) is thought to be involved in placental development and function, its role in trophoblasts and the mechanisms underlying placental development and function remain unclear. The present study investigated the potential role of CCNG2 in trophoblast cell proliferation and their interactions with endothelial cells. Material/Methods CCNG2 levels were modified by stable infection of HTR8/SVneo cells with lentiviruses overexpressing and silencing CCNG2. Cell proliferation was measured using CCK-8 assays. Network formation assays were performed using trophoblasts alone and co-cultured trophoblasts and endothelial cells to measure angiogenesis of trophoblasts and trophoblast-endothelial interactions. Levels of angiogenic factors (VEGF and sFlt-1) in the supernatant were measured by ELISA, and the expression of cell cycle regulatory (cyclin D1) and invasive (MMP2, MMP3, MMP9) markers implicated in artery remodeling were measured by western blotting. Results Ectopic expression of CCNG2 blocked the proliferation of HTR8/SVneo cells, as well as their abilities to form networks and integrate into human umbilical vein endothelial cells, whereas CCNG2 inhibition had the opposite effects. CCNG2 upregulation significantly reduced the expression of VEGF, cyclin D1, MMP2, MMP3, and MMP9, but enhanced the expression of sFlt-1. In contrast, CCNG2 downregulation had the opposite effects. Conclusions CCNG2 plays a critical role in trophoblast proliferation and trophoblast-endothelial cell interactions by significant affecting cell cycle, angiogenic, and invasive markers. CCNG2 may thus be a novel marker for the treatment of placental disorders.
Collapse
Affiliation(s)
- Manni Sun
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shenghuan Liu
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haiying Chen
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Science, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
15
|
Sun C, Groom KM, Oyston C, Chamley LW, Clark AR, James JL. The placenta in fetal growth restriction: What is going wrong? Placenta 2020; 96:10-18. [PMID: 32421528 DOI: 10.1016/j.placenta.2020.05.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
The placenta is essential for the efficient delivery of nutrients and oxygen from mother to fetus to maintain normal fetal growth. Dysfunctional placental development underpins many pregnancy complications, including fetal growth restriction (FGR) a condition in which the fetus does not reach its growth potential. The FGR placenta is smaller than normal placentae throughout gestation and displays maldevelopment of both the placental villi and the fetal vasculature within these villi. Specialized epithelial cells called trophoblasts exhibit abnormal function and development in FGR placentae. This includes an altered balance between proliferation and apoptotic death, premature cellular senescence, and reduced colonisation of the maternal decidual tissue. Thus, the placenta undergoes aberrant changes at the macroscopic to cellular level in FGR, which can limit exchange capacity and downstream fetal growth. This review aims to compile stereological, in vitro, and imaging data to create a holistic overview of the FGR placenta and its pathophysiology, with a focus on the contribution of trophoblasts.
Collapse
Affiliation(s)
- Cherry Sun
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| | - Katie M Groom
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Charlotte Oyston
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Auckland Bioengineering, House, Level 6/70 Symonds Street, Grafton, Auckland, 1010, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| |
Collapse
|
16
|
RITA Is Expressed in Trophoblastic Cells and Is Involved in Differentiation Processes of the Placenta. Cells 2019; 8:cells8121484. [PMID: 31766533 PMCID: PMC6953008 DOI: 10.3390/cells8121484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Preeclampsia (PE) remains a leading cause of maternal and perinatal mortality and morbidity worldwide. Its pathogenesis has not been fully elucidated and no causal therapy is currently available. It is of clinical relevance to decipher novel molecular biomarkers. RITA (RBP-J (recombination signal binding protein J)-interacting and tubulin-associated protein) has been identified as a negative modulator of the Notch pathway and as a microtubule-associated protein important for cell migration and invasion. In the present work, we have systematically studied RITA’s expression in primary placental tissues from patients with early- and late-onset PE as well as in various trophoblastic cell lines. RITA is expressed in primary placental tissues throughout gestation, especially in proliferative villous cytotrophoblasts, in the terminally differentiated syncytiotrophoblast, and in migrating extravillous trophoblasts. RITA’s messenger RNA (mRNA) level is decreased in primary tissue samples from early-onset PE patients. The deficiency of RITA impairs the motility and invasion capacity of trophoblastic cell lines, and compromises the fusion ability of trophoblast-derived choriocarcinoma cells. These data suggest that RITA may play important roles in the development of the placenta and possibly in the pathogenesis of PE.
Collapse
|
17
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
18
|
Zhao S, Liao T, Zhou T, Huang X, Xiang H, Chen J, Xu Z. Formyl-peptide receptor 2 suppresses proliferation, migration and invasion in human extravillous trophoblastic cells. Prostaglandins Other Lipid Mediat 2019; 143:106342. [DOI: 10.1016/j.prostaglandins.2019.106342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
|
19
|
Zhang Y, Li P, Guo Y, Liu X, Zhang Y. MMP-9 and TIMP-1 in placenta of hypertensive disorder complicating pregnancy. Exp Ther Med 2019; 18:637-641. [PMID: 31258700 PMCID: PMC6566117 DOI: 10.3892/etm.2019.7591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/19/2019] [Indexed: 12/26/2022] Open
Abstract
Expression and characteristics of matrix metalloproteinase-9 (MMP-9) and TIMP metallopeptidase inhibitor-1 (TIMP-1) in the placenta of pregnancy induced hypertension (PIH) were detected in Uygur to analyze its correlation with PIH, and to provide a theoretical basis for clinical work. Ninety cases of placental tissue patients who were hospitalized in the Department of Obstetrics of People's Hospital of Xinjiang Uygur from December 2014 to September 2016 were collected, including 30 cases of severe preeclampsia, 30 cases of mild preeclampsia, and 30 cases of normal group. The distribution of MMP-9 and TIMP-1 in placenta was mainly in the cytoplasm of trophoblast cells, vascular endothelial cells and villous mesenchymal cells. The distribution of MMP-9 positive particles in the placenta tissue of the severe group was significantly reduced. The difference of MMP-9 in the three groups was statistically significant. Severe group was statistically significantly different from normal and mild group. With the aggravation of PIH, positive expression of MMP-9 was gradually decreased. TIMP-1 was expressed in each group, and difference was not statistically significant. Positive expression ratio of MMP-9/TIMP-1 in severe group was lower than that in normal pregnancy and mild group, and positive expression ratio of the two groups became smaller as the condition worsened. Positive expression of MMP-9 in placental tissue of patients with PIH decreased significantly with the severity of PIH. TIMP-1 in placental tissue of PIH patients did not change much in each group, and had no significant correlation with PIH.
Collapse
Affiliation(s)
- Yuyi Zhang
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Peng Li
- Department of General Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Yue Guo
- Department of Gynecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Xiaowan Liu
- Department of Gynecology, People's Hospital of Xinjiang Uygur, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Yubo Zhang
- Department of Stomatology, Quzhou No. 2 People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
20
|
Gutiérrez JA, Gómez I, Chiarello DI, Salsoso R, Klein AD, Guzmán-Gutiérrez E, Toledo F, Sobrevia L. Role of proteases in dysfunctional placental vascular remodelling in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165448. [PMID: 30954558 DOI: 10.1016/j.bbadis.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a syndrome characterised by vascular dysfunction, impaired angiogenesis, and hypertension during pregnancy. Even when the precise pathophysiology of preeclampsia remains elusive, impaired vascular remodelling and placental angiogenesis in the placental villi and defective trophoblast invasion of the uterus are proposed as crucial mechanisms in this syndrome. Reduced trophoblast invasion leads to reduced uteroplacental blood flow and oxygen availability and increased oxidative stress. These phenomena trigger the release of soluble factors into the maternal and foetoplacental circulation that are responsible of the clinical features of preeclampsia. New blood vessels generation as well as vascular remodelling are mechanisms that require expression and activity of different proteases, including matrix metalloproteases, a-disintegrin and metalloproteases, and a-disintegrin and metalloprotease with thrombospondin motifs. These proteases exert proteolysis of the extracellular matrix. Additionally, cathepsins, a family of proteolytic enzymes, are primarily located in lysosomes but are also released by cells to the extracellular space. This review focuses on the role that these proteases play in the regulation of the uterine trophoblast invasion and the placental vascular remodelling associated with preeclampsia.
Collapse
Affiliation(s)
- Jaime A Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Isabel Gómez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Rocío Salsoso
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile
| | - Enrique Guzmán-Gutiérrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
21
|
Finken MJJ, van der Steen M, Smeets CCJ, Walenkamp MJE, de Bruin C, Hokken-Koelega ACS, Wit JM. Children Born Small for Gestational Age: Differential Diagnosis, Molecular Genetic Evaluation, and Implications. Endocr Rev 2018; 39:851-894. [PMID: 29982551 DOI: 10.1210/er.2018-00083] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/21/2018] [Indexed: 12/25/2022]
Abstract
Children born small for gestational age (SGA), defined as a birth weight and/or length below -2 SD score (SDS), comprise a heterogeneous group. The causes of SGA are multifactorial and include maternal lifestyle and obstetric factors, placental dysfunction, and numerous fetal (epi)genetic abnormalities. Short-term consequences of SGA include increased risks of hypothermia, polycythemia, and hypoglycemia. Although most SGA infants show catch-up growth by 2 years of age, ∼10% remain short. Short children born SGA are amenable to GH treatment, which increases their adult height by on average 1.25 SD. Add-on treatment with a gonadotropin-releasing hormone agonist may be considered in early pubertal children with an expected adult height below -2.5 SDS. A small birth size increases the risk of later neurodevelopmental problems and cardiometabolic diseases. GH treatment does not pose an additional risk.
Collapse
Affiliation(s)
- Martijn J J Finken
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Manouk van der Steen
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Carolina C J Smeets
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Marie J E Walenkamp
- Department of Pediatrics, VU University Medical Center, MB Amsterdam, Netherlands
| | - Christiaan de Bruin
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center/Sophia Children's Hospital, CN Rotterdam, Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, RC Leiden, Netherlands
| |
Collapse
|
22
|
Raez-Villanueva S, Ma C, Kleiboer S, Holloway AC. The effects of electronic cigarette vapor on placental trophoblast cell function. Reprod Toxicol 2018; 81:115-121. [DOI: 10.1016/j.reprotox.2018.07.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/24/2018] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
|
23
|
Sahay AS, Jadhav AT, Sundrani DP, Wagh GN, Mehendale SS, Joshi SR. Matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases -9 (MMP-9) are differentially expressed in different regions of normal and preeclampsia placentae. J Cell Biochem 2018; 119:6657-6664. [PMID: 29665148 DOI: 10.1002/jcb.26849] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/09/2018] [Indexed: 01/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are involved in the extracellular matrix (ECM) remodeling during human placentation and parturition and have been shown to be associated with oxidative stress. Placental regional changes in oxygen availability and oxidative stress indices may influence regional differences in expression of MMPs. This study examines the protein and mRNA levels of MMP-2 and MMP-9 in different regions of the placenta in normotensive control (NC) women and women with preeclampsia (PE). Fifty-two NC women and 43 women with PE (18 delivered at term [T-PE] and 25 delivered preterm [PT-PE]) were recruited. Placental samples were taken from four regions: central basal (CM), central chorionic (CF), peripheral basal (PM), and peripheral chorionic (PF). MMP protein and mRNA levels were measured by ELISA and quantitative real time PCR, respectively. MMP-2 protein levels were higher in all the placental regions (P < 0.05) from PT-PE group as compared to the respective regions from the NC and T-PE groups. MMP-9 mRNA levels were higher in CM region as compared to CF and PM regions (P < 0.05) in the NC group and compared to CF and PF regions (P < 0.05) in the T-PE group. The MMP-9 mRNA levels were lower in the CF region in the PT-PE and T-PE groups (P < 0.05) as compared to the NC group. Elevated levels of MMP-2 protein levels were observed in all regions of PT-PE placenta possibly influencing the degradation of placental ECM. Lower mRNA expression of MMP-9 both in PT-PE and T-PE may contribute to a disturbed placental vascularization.
Collapse
Affiliation(s)
- Akriti S Sahay
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Anjali T Jadhav
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali P Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Girija N Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Savita S Mehendale
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| |
Collapse
|
24
|
Tang L, He G, Liu X, Xu W. Progress in the understanding of the etiology and predictability of fetal growth restriction. Reproduction 2018; 153:R227-R240. [PMID: 28476912 DOI: 10.1530/rep-16-0287] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 02/21/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022]
Abstract
Fetal growth restriction (FGR) is defined as the failure of fetus to reach its growth potential for various reasons, leading to multiple perinatal complications and adult diseases of fetal origins. Shallow extravillous trophoblast (EVT) invasion-induced placental insufficiency and placental dysfunction are considered the main reasons for idiopathic FGR. In this review, first we discuss the major characteristics of anti-angiogenic state and the pro-inflammatory bias in FGR. We then elaborate major abnormalities in placental insufficiency at molecular levels, including the interaction between decidual leukocytes and EVT, alteration of miRNA expression and imprinted gene expression pattern in FGR. Finally, we review current animal models used in FGR, an experimental intervention based on animal models and the progress of predictive biomarker studies in FGR.Free Chinese abstract: A Chinese translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/R215/suppl/DC1.
Collapse
Affiliation(s)
- Li Tang
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education.,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Guolin He
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinghui Liu
- Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wenming Xu
- Joint Laboratory of Reproductive MedicineSCU-CUHK, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education .,Department of Obstetric and Gynecologic DiseasesWest China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
25
|
Barišić A, Dević Pavlić S, Ostojić S, Pereza N. Matrix metalloproteinase and tissue inhibitors of metalloproteinases gene polymorphisms in disorders that influence fertility and pregnancy complications: A systematic review and meta-analysis. Gene 2018; 647:48-60. [DOI: 10.1016/j.gene.2018.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023]
|
26
|
Zong L, Wei X, Gou W, Huang P, Lv Y. Zinc improves learning and memory abilities of fetal growth restriction rats and promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 axis activity. Oncotarget 2017; 8:115190-115201. [PMID: 29383152 PMCID: PMC5777764 DOI: 10.18632/oncotarget.23122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Fetal growth restriction (FGR) is a well-known risk factor for cognitive dysfunction, especially for learning and memory abilities. However, knowledge about prevention and treatment methods of learning and memory abilities of fetal are limit. Here, Morris water maze and passive avoidance tests showed zinc supplementation could protect the impairment of the learning and memory abilities caused by FGR. As accumulating evidence suggested that insufficiency of placental trophoblast cell invasion was closely related to FGR fetal neurodevelopmental dysplasia, we further explored the relationship between zinc supplementation during pregnancy and placental trophoblast. Microarray identified 346 differently expressed genes in placental tissues with and without zinc supplementation, and GO and KEGG analyses showed these differently expressed genes were highly enriched in cell invasion and migration and STAT3 pathway. Protein-protein interaction(PPI) analysis found that STAT3 interacted with matrix metalloproteinase-2/9 (MMP-2/9). In vivo, western blot results authenticated that the expression levels of phospho-STAT3, STAT3, MMP-2 and MMP-9 were up-regulated in placental tissues after zinc treatment. To validate whether zinc could promotes trophoblast cell invasion and migration via enhancing STAT3-MMP-2/9 activity. In vitro, Transwell assay was performed, and we observed that abilities of invasion and migration were obviously increased in zinc treated trophoblast cells. And phospho-STAT3, STAT3, MMP-2 and MMP-9 expression levels were correspondingly increased in zinc treated trophoblast cells, which were dose-dependent. Moreover, gain-of-function and loss-of-function of STAT3 confirmed that zinc promotes cell invasion and migration via regulating STAT3 mediated up-regulation of MMP-2/9 activity. We propose that activation of MMP-2/9 mediated by STAT3 may contribute to invasion and migration of trophoblast cells, which improved neurodevelopmental impairment of FGR rats probably via contributing to placental development. Our findings are the first to show a possible mechanism of reversing neurodevelopmental impairment of FGR rats by zinc supplementation, holding promise for the development of novel therapeutic modalities for learning and memory abilities impairment caused by FGR.
Collapse
Affiliation(s)
- Lu Zong
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohua Wei
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenli Gou
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Pu Huang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ye Lv
- Department of Behavioral Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
27
|
H1N1 influenza virus infection results in adverse pregnancy outcomes by disrupting tissue-specific hormonal regulation. PLoS Pathog 2017; 13:e1006757. [PMID: 29176767 PMCID: PMC5720832 DOI: 10.1371/journal.ppat.1006757] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/07/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
Increased susceptibility to influenza virus infection during pregnancy has been attributed to immunological changes occurring before and during gestation in order to “tolerate” the developing fetus. These systemic changes are most often characterized by a suppression of cell-mediated immunity and elevation of humoral immune responses referred to as the Th1-Th2 shift. However, the underlying mechanisms which increase pregnant mothers’ risk following influenza virus infection have not been fully elucidated. We used pregnant BALB/c mice during mid- to late gestation to determine the impact of a sub-lethal infection with A/Brisbane/59/07 H1N1 seasonal influenza virus on completion of gestation. Maternal and fetal health status was closely monitored and compared to infected non-pregnant mice. Severity of infection during pregnancy was correlated with premature rupture of amniotic membranes (PROM), fetal survival and body weight at birth, lung viral load and degree of systemic and tissue inflammation mediated by innate and adaptive immune responses. Here we report that influenza virus infection resulted in dysregulation of inflammatory responses that led to pre-term labor, impairment of fetal growth, increased fetal mortality and maternal morbidity. We observed significant compartment-specific immune responses correlated with changes in hormonal synthesis and regulation. Dysregulation of progesterone, COX-2, PGE2 and PGF2α expression in infected pregnant mice was accompanied by significant remodeling of placental architecture and upregulation of MMP-9 early after infection. Collectively these findings demonstrate the potential of a seasonal influenza virus to initiate a powerful pro-abortive mechanism with adverse outcomes in fetal health. Maternal immunology is finely balanced to maintain a tolerant and supportive molecular environment for the developing fetus while continuing surveillance against foreign microbial threats. Influenza viral infection during pregnancy is a significant clinical risk for mothers and their newborns, increasing hospitalization, preterm birth, low birth weight, and maternal and neonatal deaths worldwide. In a mouse pregnancy model, we show how influenza virus infection disrupts the delicate and interconnected cytokine and hormonal signaling pathways that respond to respiratory pathogens. The health of mothers and offspring was impacted in our study, after pregnant mothers’ lung and placental architecture was compromised by infection. Influenza virus infection increased the stress on the mother’s body already present due to pregnancy, or reversed the hormonal environment required to establish and maintain healthy pregnancy. By dissecting the effects of inflammation post-infection throughout the mother’s anatomy, we can tailor anti-inflammatory treatments for the pregnant population. Also, thorough knowledge of immune responses will assist in tailoring vaccine design and dosage for this delicate period of women’s immunological and reproductive health.
Collapse
|
28
|
The effect of acetyl salicylic acid (Aspirin) on trophoblast-endothelial interaction in vitro. J Reprod Immunol 2017; 124:54-61. [DOI: 10.1016/j.jri.2017.10.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/28/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
29
|
Zhang Y, Liu H, Shi X, Qiao F, Zeng W, Feng L, Deng D, Liu H, Wu Y. Maspin impairs the function of endothelial cells: an implying pathway of preeclampsia. BMC Pregnancy Childbirth 2017; 17:328. [PMID: 28962595 PMCID: PMC5622509 DOI: 10.1186/s12884-017-1525-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Backgroud Widespread endothelial injury contributes to the occurrence of preeclampsia. Maspin, first identified as a tumor suppressor, plays a critical role in cell invasion and angiogenesis. Our previous studies found that the expression of maspin was increased in preeclampsic placenta. In this research, we studied the function of human umbilical vein endothelial cells (HUVECs) to explore the role and possible mechanism of maspin gene in the pathogenesis of preeclampsia. Methods HUVECs were treated with different concentration of recombinant human maspin protein (r-maspin) during normoxia and hypoxia, we detected the proliferation, apoptosis, migration and tube formation of HUVECs. We also assessed nitride oxide (NO) synthesis and the expression of matrix metalloproteinase 2 (MMP2) to further explore the underlying molecular mechanism. Results There was only slight maspin expression at mRNA level in HUVECs. Treated HUVECs with r-maspin, the proliferation of HUVECs was significantly promoted both under normoxia and hypoxia. The tubes formed by HUVECs were significantly inhibited and NO synthesis was significantly reduced by r-maspin. Meantime, r-maspin also inhibited MMP2 expression and activity in HUVECs. However, there was no significant change in the migration and apoptosis of HUVECs. Conclusions Maspin may be an important participant for mediating endothelial function and ultimately leads to the occurence of preeclamsia.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Liu
- Department of Urology, Wuhan Third Hospital, Guanggu on campus, Wuhan, Hubei, China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wanjiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haiyi Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Espino Y Sosa S, Flores-Pliego A, Espejel-Nuñez A, Medina-Bastidas D, Vadillo-Ortega F, Zaga-Clavellina V, Estrada-Gutierrez G. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia. Int J Mol Sci 2017; 18:ijms18071448. [PMID: 28726716 PMCID: PMC5535939 DOI: 10.3390/ijms18071448] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022] Open
Abstract
Preeclampsia is a severe pregnancy complication globally, characterized by poor placentation triggering vascular dysfunction. Matrix metalloproteinases (MMPs) exhibit proteolytic activity implicated in the efficiency of trophoblast invasion to the uterine wall, and a dysregulation of these enzymes has been linked to preeclampsia. A decrease in MMP-2 and MMP-9 interferes with the normal remodeling of spiral arteries at early pregnancy stages, leading to the initial pathophysiological changes observed in preeclampsia. Later in pregnancy, an elevation in MMP-2 and MMP-9 induces abnormal release of vasoactive factors conditioning hypertension. Although these two enzymes lead the scene, other MMPs like MMP-1 and MMP-14 seem to have a role in this pathology. This review gathers published recent evidence about the implications of different MMPs in preeclampsia, and the potential use of these enzymes as emergent biomarkers and biological therapeutic targets, focusing on studies involving human subjects.
Collapse
Affiliation(s)
- Salvador Espino Y Sosa
- Clinical Research Branch, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Diana Medina-Bastidas
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Felipe Vadillo-Ortega
- Unidad de Vinculacion de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico.
| | - Veronica Zaga-Clavellina
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Guadalupe Estrada-Gutierrez
- Guadalupe Estrada-Gutierrez, Research Division, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| |
Collapse
|
31
|
Li W, Cui N, Mazzuca MQ, Mata KM, Khalil RA. Increased vascular and uteroplacental matrix metalloproteinase-1 and -7 levels and collagen type I deposition in hypertension in pregnancy: role of TNF-α. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626073 PMCID: PMC5625170 DOI: 10.1152/ajpheart.00207.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia is a pregnancy-related disorder manifested as maternal hypertension in pregnancy (HTN-Preg) and fetal growth restriction. Placental ischemia could be an initiating event that leads to abnormal vascular and uteroplacental remodeling in HTN-Preg; however, the molecular targets and intermediary mechanisms involved are unclear. We tested the hypothesis that placental ischemia could target vascular and uteroplacental matrix metalloproteinases (MMPs) through an inflammatory cytokine-mediated mechanism. MMP levels and distribution were measured in the aorta, uterus, and placenta of normal pregnant (Preg) rats and pregnant rats with reduced uterine perfusion pressure (RUPP). Maternal blood pressure was higher and the litter size and pup weight were lower in RUPP compared with Preg rats. Gelatin zymography showed prominent uterine MMP-2 and MMP-9 activity that was dependent on the amount of loaded protein. At saturating protein loading, both gelatin and casein zymography revealed two additional bands corresponding to MMP-1 and MMP-7 that were greater in the aorta, uterus, and placenta of RUPP compared with Preg rats. Western blots and immunohistochemistry confirmed increased MMP-1 and MMP-7 in the aorta, uterus, and placenta of RUPP versus Preg rats. The levels of MMP-1 and MMP-7 substrate collagen type I were greater in tissues of RUPP compared with Preg rats. In organ culture, TNF-α increased MMP-1 and MMP-7 in the aorta, uterus, and placenta of Preg rats, and a TNF-α antagonist prevented the increases in MMPs in tissues of RUPP rats. Thus, placental ischemia, possibly through TNF-α, increases vascular and uteroplacental MMP-1 and MMP-7, which, in turn, alter collagen deposition and cause inadequate tissue remodeling in HTN-Preg. Cytokine antagonists may reverse the increase in MMP-1 and MMP-7 expression/activity and, in turn, restore proper vascular and uteroplacental remodeling in HTN-Preg and preeclampsia.NEW & NOTEWORTHY The molecular mechanisms of preeclampsia are unclear, making it difficult to predict, prevent, or manage the pregnancy-associated disorder. This study showed that placental ischemia, possibly through the release of TNF-α, causes increases in the levels of matrix metalloproteinase (MMP)-1 and MMP-7, which could alter collagen deposition and cause inadequate uteroplacental and vascular remodeling in hypertension in pregnancy. The data suggest that targeting MMP-1 and MMP-7 and their upstream modulators, such as TNF-α, could provide a new approach in the management of hypertension in pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Wei Li
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ning Cui
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marc Q Mazzuca
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Karina M Mata
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Chen J, Ren Z, Zhu M, Khalil RA. Decreased homodimerization and increased TIMP-1 complexation of uteroplacental and uterine arterial matrix metalloproteinase-9 during hypertension-in-pregnancy. Biochem Pharmacol 2017; 138:81-95. [PMID: 28506758 DOI: 10.1016/j.bcp.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Preeclampsia is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg) and often intrauterine growth restriction (IUGR). Placental ischemia could be an initiating event, but the molecular mechanisms are unclear. To test the hypothesis that dimerization of matrix metalloproteinases (MMPs) plays a role in HTN-Preg and IUGR, the levels/activity of MMP-9, tissue inhibitor of metalloproteinase (TIMP-1), and their dimerization forms were measured in the placenta, uterus, and uterine artery of normal pregnant (Preg) rats and a rat model of reduced uteroplacental perfusion pressure (RUPP). Consistent with our previous report, blood pressure (BP) was higher, pup weight was lower, and gelatin zymography showed different gelatinolytic activity for pro-MMP-9, MMP-9, pro-MMP-2 and MMP-2 in RUPP vs Preg rats. Careful examination of the zymograms showed additional bands at 200 and 135kDa. Western blots with MMP-9 antibody suggested that the 200kDa band was a MMP-9 homodimer. Western blots with TIMP-1 antibody as well as reverse zymography suggested that the 135kDa band was a MMP-9/TIMP-1 complex. The protein levels and gelatinase activity of MMP-9 homodimer were decreased while MMP-9/TIMP-1 complex was increased in placenta, uterus and uterine artery of RUPP vs Preg rats. The epidermal growth factor (EGF) receptor blocker erlotinib and protein kinase C (PKC) inhibitor bisindolylmaleimide decreased MMP-9 homodimer and increased MMP-9/TIMP-1 complex in placenta, uterus and uterine artery of Preg rats. EGF and the PKC activator phorbol-12,13-dibutyrate (PDBu) reversed the decreases in MMP-9 homodimer and the increases in MMP-9/TIMP-1 complex in tissues of RUPP rats. Thus, the increased BP and decreased pup weight in placental ischemia model of HTN-Preg are associated with a decrease in MMP-9 homodimer and an increase in MMP-9/TIMP-1 complex in placenta, uterus, and uterine artery, which together would cause a net decrease in MMP-9 activity and reduce uteroplacental and vascular remodeling in the setting of HTN-Preg and IUGR. Enhancing EGFR/PKC signaling may reverse the MMP-9 unfavorable dimerization patterns and thereby promote uteroplacental and vascular remodeling in preeclampsia.
Collapse
Affiliation(s)
- Juanjuan Chen
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol 2017; 232:R27-R44. [PMID: 27729465 PMCID: PMC5115955 DOI: 10.1530/joe-16-0340] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Maternal vascular adaptation to pregnancy is critically important to expand the capacity for blood flow through the uteroplacental unit to meet the needs of the developing fetus. Failure of the maternal vasculature to properly adapt can result in hypertensive disorders of pregnancy such as preeclampsia (PE). Herein, we review the endocrinology of maternal adaptation to pregnancy and contrast this with that of PE. Our focus is specifically on those hormones that directly influence endothelial cell function and dysfunction, as endothelial cell dysfunction is a hallmark of PE. A variety of growth factors and cytokines are present in normal vascular adaptation to pregnancy. However, they have also been shown to be circulating at abnormal levels in PE pregnancies. Many of these factors promote endothelial dysfunction when present at abnormal levels by acutely inhibiting key Ca2+ signaling events and chronically promoting the breakdown of endothelial cell-cell contacts. Increasingly, our understanding of how the contributions of the placenta, immune cells, and the endothelium itself promote the endocrine milieu of PE is becoming clearer. We then describe in detail how the complex endocrine environment of PE affects endothelial cell function, why this has contributed to the difficulty in fully understanding and treating this disorder, and how a focus on signaling convergence points of many hormones may be a more successful treatment strategy.
Collapse
Affiliation(s)
- D S Boeldt
- Department of Ob/GynPerinatal Research Laboratories, University Wisconsin - Madison, Madison, Wisconsin, USA
| | - I M Bird
- Department of Ob/GynPerinatal Research Laboratories, University Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
34
|
Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. ADVANCES IN PHARMACOLOGY 2016; 77:361-431. [PMID: 27451103 DOI: 10.1016/bs.apha.2016.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia.
Collapse
Affiliation(s)
- J S Possomato-Vieira
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
35
|
Majali-Martinez A, Hiden U, Ghaffari-Tabrizi-Wizsy N, Lang U, Desoye G, Dieber-Rotheneder M. Placental membrane-type metalloproteinases (MT-MMPs): Key players in pregnancy. Cell Adh Migr 2016; 10:136-46. [PMID: 26745344 DOI: 10.1080/19336918.2015.1110671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are a sub-family of zinc-dependent endopeptidases involved in the degradation of the extracellular matrix. Although MT-MMPs have been mainly characterized in tumor biology, they also play a relevant role during pregnancy. Placental MT-MMPs are required for cytotrophoblast migration and invasion of the uterine wall and in the remodeling of the spiral arteries. They are involved in the fusion of cytotrophoblasts to form the syncytiotrophoblast as well as in angiogenesis. All these processes are crucial for establishing and maintaining a successful pregnancy and, thus, MT-MMP activity has to be tightly regulated in time and space. Indeed, a de-regulation of MT-MMP expression has been linked with pregnancy complications such as preeclampsia (PE), fetal growth restriction (FGR), gestational diabetes mellitus (GDM) and was also found in maternal obesity. Here we review what is currently known about MT-MMPs in the placenta, with a focus on their general features, their localization and their involvement in pregnancy disorders.
Collapse
Affiliation(s)
| | - Ursula Hiden
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | | | - Uwe Lang
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | - Gernot Desoye
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria
| | - Martina Dieber-Rotheneder
- a Department of Obstetrics and Gynecology , Medical University of Graz , Graz , Austria.,c Institute of Pathology, Medical University of Graz , Graz , Austria
| |
Collapse
|
36
|
Sahay AS, Sundrani DP, Joshi SR. Regional changes of placental vascularization in preeclampsia: a review. IUBMB Life 2015; 67:619-25. [PMID: 26269153 DOI: 10.1002/iub.1407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022]
Abstract
Preeclampsia is characterized by vascular dysfunction and results in maternal and fetal morbidity and mortality. The placenta plays a critical role in the growth and development of the fetus, and recent studies indicate that placental architecture, oxygen availability, and oxidative stress indices vary across different regions of the placenta. Our earlier studies have reported altered maternal angiogenesis and differential placental gene expression and methylation patterns of angiogenic factors in women with preeclampsia when compared with normotensive women. We have also demonstrated lower maternal and placental neurotrophin (NT) levels in women with preeclampsia. Studies suggest that oxidative stress is associated with proteases like matrix metalloproteinases (MMPs) and growth factors like NTs and angiogenic factors known to be involved in the process of angiogenesis. Recently, we have reported regionwise differential oxidative stress, antioxidant enzyme activity, and NT levels in placenta from normotensive control women and women with preeclampsia. The current review describes the regional changes in the placenta and highlights the role of placental oxidative stress in influencing regional differences in the expression of angiogenic factors, MMPs, and NTs. This review discusses the need for further research on various growth factors and proteins involved in the process of placental development across different regions of the placenta. This would help to understand whether regional differences in these factors affect the growth and development of the fetus.
Collapse
Affiliation(s)
- Akriti S Sahay
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Deepali P Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|