1
|
Xiao B, Feturi F, Su AJA, Van der Merwe Y, Barnett JM, Jabbari K, Khatter NJ, Li B, Katzel EB, Venkataramanan R, Solari MG, Wagner WR, Steketee MB, Simons DJ, Washington KM. Nerve Wrap for Local Delivery of FK506/Tacrolimus Accelerates Nerve Regeneration. Int J Mol Sci 2024; 25:847. [PMID: 38255920 PMCID: PMC10815243 DOI: 10.3390/ijms25020847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Peripheral nerve injuries (PNIs) occur frequently and can lead to devastating and permanent sensory and motor function disabilities. Systemic tacrolimus (FK506) administration has been shown to hasten recovery and improve functional outcomes after PNI repair. Unfortunately, high systemic levels of FK506 can result in adverse side effects. The localized administration of FK506 could provide the neuroregenerative benefits of FK506 while avoiding systemic, off-target side effects. This study investigates the utility of a novel FK506-impregnated polyester urethane urea (PEUU) nerve wrap to treat PNI in a previously validated rat infraorbital nerve (ION) transection and repair model. ION function was assessed by microelectrode recordings of trigeminal ganglion cells responding to controlled vibrissae deflections in ION-transected and -repaired animals, with and without the nerve wrap. Peristimulus time histograms (PSTHs) having 1 ms bins were constructed from spike times of individual single units. Responses to stimulus onsets (ON responses) were calculated during a 20 ms period beginning 1 ms after deflection onset; this epoch captures the initial, transient phase of the whisker-evoked response. Compared to no-wrap controls, rats with PEUU-FK506 wraps functionally recovered earlier, displaying larger response magnitudes. With nerve wrap treatment, FK506 blood levels up to six weeks were measured nearly at the limit of quantification (LOQ ≥ 2.0 ng/mL); whereas the drug concentrations within the ION and muscle were much higher, demonstrating the local delivery of FK506 to treat PNI. An immunohistological assessment of ION showed increased myelin expression for animals assigned to neurorrhaphy with PEUU-FK506 treatment compared to untreated or systemic-FK506-treated animals, suggesting that improved PNI outcomes using PEUU-FK506 is mediated by the modulation of Schwann cell activity.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
| | - Firuz Feturi
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
| | - An-Jey A. Su
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
- Department of Surgery, Division of Plastic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Joshua M. Barnett
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
| | - Kayvon Jabbari
- Department of Surgery, Division of Plastic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neil J. Khatter
- Department of Surgery, Division of Plastic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bing Li
- Department of Surgery, Division of Plastic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Evan B. Katzel
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
| | | | - Mario G. Solari
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; (W.R.W.); (D.J.S.)
| | - Michael B. Steketee
- Department of Ophthalmology, University of California, San Diego, CA 90095, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; (W.R.W.); (D.J.S.)
| | - Daniel J. Simons
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; (W.R.W.); (D.J.S.)
| | - Kia M. Washington
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Veterans Administration Healthcare System, Pittsburgh, PA 15213, USA; (B.X.); (F.F.)
- Department of Surgery, Division of Plastic Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15219, USA; (W.R.W.); (D.J.S.)
| |
Collapse
|
2
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
3
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Komatsu C, van der Merwe Y, He L, Kasi A, Sims JR, Miller MR, Rosner IA, Khatter NJ, Su AJA, Schuman JS, Washington KM, Chan KC. In vivo MRI evaluation of anterograde manganese transport along the visual pathway following whole eye transplantation. J Neurosci Methods 2022; 372:109534. [PMID: 35202613 PMCID: PMC8940646 DOI: 10.1016/j.jneumeth.2022.109534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since adult mammalian retinal ganglion cells cannot regenerate after injury, we have recently established a whole-eye transplantation (WET) rat model that provides an intact optical system to investigate potential surgical restoration of irreversible vision loss. However, it remains to be elucidated whether physiological axoplasmic transport exists in the transplanted visual pathway. New Method: We developed an in vivo imaging model system to assess WET integration using manganese-enhanced magnetic resonance imaging (MEMRI) in rats. Since Mn2+ is a calcium analogue and an active T1-positive contrast agent, the levels of anterograde manganese transport can be evaluated in the visual pathways upon intravitreal Mn2+ administration into both native and transplanted eyes. RESULTS No significant intraocular pressure difference was found between native and transplanted eyes, whereas comparable manganese enhancement was observed between native and transplanted intraorbital optic nerves, suggesting the presence of anterograde manganese transport after WET. No enhancement was detected across the coaptation site in the higher visual areas of the recipient brain. Comparison with Existing Methods: Existing imaging methods to assess WET focus on either the eye or local optic nerve segments without direct visualization and longitudinal quantification of physiological transport along the transplanted visual pathway, hence the development of in vivo MEMRI. CONCLUSION Our established imaging platform indicated that essential physiological transport exists in the transplanted optic nerve after WET. As neuroregenerative approaches are being developed to connect the transplanted eye to the recipient's brain, in vivo MEMRI is well-suited to guide strategies for successful WET integration for vision restoration. Keywords (Max 6): Anterograde transport, magnetic resonance imaging, manganese, neuroregeneration, optic nerve, whole-eye transplantation.
Collapse
Affiliation(s)
- Chiaki Komatsu
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yolandi van der Merwe
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lin He
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Plastic, Aesthetic & Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Anisha Kasi
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States
| | - Maxine R Miller
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ian A Rosner
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Neil J Khatter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; William Beaumont School of Medicine, Oakland University, Rochester, MI, United States
| | - An-Jey A Su
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States
| | - Kia M Washington
- Department of Plastic and Reconstructive Surgery, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Colorado, Denver, CO, United States; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Kevin C Chan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States; Center for Neural Science, College of Arts and Science, New York University, New York, NY, United States; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY, United States; Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, United States.
| |
Collapse
|
5
|
Pharmacokinetics and Biodistribution of Tacrolimus after Topical Administration: Implications for Vascularized Composite Allotransplantation. Pharm Res 2020; 37:222. [PMID: 33067715 DOI: 10.1007/s11095-020-02921-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
AIM The high doses of oral tacrolimus (TAC) (1,2) necessary to prevent acute rejection (AR) after vascularized composite allotransplantation (VCA) are associated with systemic adverse effects. The skin is the most antigenic tissue in VCA and the primary target of AR. However, the short-term use of topical TAC (Protopic®), as an off-label adjunct to oral TAC, to treat AR episodes pro re nata (PRN), has yielded inconsistent results. There is lack of data on the pharmacokinetics and tissue distribution of topical TAC in VCA, that hampers our understanding of the reasons for unreliable efficacy. Toward this goal, we evaluated the ability of topical TAC to achieve high local tissue concentrations at the site of application with low systemic concentrations. MATERIALS AND METHODS We assessed the pharmacokinetics and tissue distribution of topical TAC (Protopic®, 0.03%) after single or repeated topical application in comparison to those after systemic delivery in rats. Animals received a single topical application of TAC ointment (Group 1) or an intravenous (IV) injection of TAC (Group 2) at a dose of 0.5 mg/kg. In another experiment, animals received daily topical application of TAC ointment (Group 3), or daily intraperitoneal (IP) injection of TAC (Group 4) at a dose of 0.5 mg/kg for 7 days. TAC concentrations in blood and tissues were analyzed by Liquid Chromatography-Mass Spectrometry (LC/MS-MS). RESULTS Following single topical administration, TAC was absorbed slowly with a Tmax of 4 h and an absolute bioavailability of 11%. The concentrations of TAC in skin and muscle were several folds higher than whole blood concentrations. Systemic levels remained subtherapeutic (< 3 ng/ml) with repeated once daily applications. CONCLUSION Topical application of TAC ointment (Protopic®, 0.03%) at a dose of 0.5 mg/kg/day provided high concentrations in the local tissues with low systemic exposure. Repeated topical administration of TAC is well tolerated with no local or systemic adverse effects. This study confirms the feasibility of topical application of TAC for site specific graft immunosuppression and enables future applications in VCA.
Collapse
|
6
|
Matrix-bound nanovesicles prevent ischemia-induced retinal ganglion cell axon degeneration and death and preserve visual function. Sci Rep 2019; 9:3482. [PMID: 30837658 PMCID: PMC6400956 DOI: 10.1038/s41598-019-39861-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/25/2019] [Indexed: 01/07/2023] Open
Abstract
Injury to retinal ganglion cells (RGC), central nervous system neurons that relay visual information to the brain, often leads to RGC axon degeneration and permanently lost visual function. Herein this study shows matrix-bound nanovesicles (MBV), a distinct class of extracellular nanovesicle localized specifically to the extracellular matrix (ECM) of healthy tissues, can neuroprotect RGCs and preserve visual function after severe, intraocular pressure (IOP) induced ischemia in rat. Intravitreal MBV injections attenuated IOP-induced RGC axon degeneration and death, protected RGC axon connectivity to visual nuclei in the brain, and prevented loss in retinal function as shown by histology, anterograde axon tracing, manganese-enhanced magnetic resonance imaging, and electroretinography. In the optic nerve, MBV also prevented IOP-induced decreases in growth associated protein-43 and IOP-induced increases in glial fibrillary acidic protein. In vitro studies showed MBV suppressed pro-inflammatory signaling by activated microglia and astrocytes, stimulated RGC neurite growth, and neuroprotected RGCs from neurotoxic media conditioned by pro-inflammatory astrocytes. Thus, MBV can positively modulate distinct signaling pathways (e.g., inflammation, cell death, and axon growth) in diverse cell types. Since MBV are naturally derived, bioactive factors present in numerous FDA approved devices, MBV may be readily useful, not only experimentally, but also clinically as immunomodulatory, neuroprotective factors for treating trauma or disease in the retina as well as other CNS tissues.
Collapse
|
7
|
Novel targeted drug delivery systems to minimize systemic immunosuppression in vascularized composite allotransplantation. Curr Opin Organ Transplant 2018; 23:568-576. [DOI: 10.1097/mot.0000000000000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Fetal extracellular matrix nerve wraps locally improve peripheral nerve remodeling after complete transection and direct repair in rat. Sci Rep 2018. [PMID: 29540763 PMCID: PMC5852088 DOI: 10.1038/s41598-018-22628-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In peripheral nerve (PN) injuries requiring surgical repair, as in PN transection, cellular and ECM remodeling at PN epineurial repair sites is hypothesized to reduce PN functional outcomes by slowing, misdirecting, or preventing axons from regrowing appropriately across the repair site. Herein this study reports on deriving and analyzing fetal porcine urinary bladder extracellular matrix (fUB-ECM) by vacuum assisted decellularization, fabricating fUBM-ECM nerve wraps, and testing fUB-ECM nerve wrap biocompatibility and bioactivity in a trigeminal, infraorbital nerve (ION) branch transection and direct end-to-end repair model in rat. FUB-ECM nerve wraps significantly improved epi- and endoneurial organization and increased both neovascularization and growth associated protein-43 (GAP-43) expression at PN repair sites, 28-days post surgery. However, the number of neurofilament positive axons, remyelination, and whisker-evoked response properties of ION axons were unaltered, indicating improved tissue remodeling per se does not predict axon regrowth, remyelination, and the return of mechanoreceptor cortical signaling. This study shows fUB-ECM nerve wraps are biocompatible, bioactive, and good experimental and potentially clinical devices for treating epineurial repairs. Moreover, this study highlights the value provided by precise, analytic models, like the ION repair model, in understanding how PN tissue remodeling relates to axonal regrowth, remyelination, and axonal response properties.
Collapse
|
9
|
Localized Tacrolimus Delivery Repairs the Damaged Central Nervous System. EBioMedicine 2017; 26:4-5. [PMID: 29195745 PMCID: PMC5832624 DOI: 10.1016/j.ebiom.2017.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022] Open
|