1
|
Erozenci LA, Piersma SR, Pham TV, Bijnsdorp IV, Jimenez CR. Longitudinal stability of urinary extracellular vesicle protein patterns within and between individuals. Sci Rep 2021; 11:15629. [PMID: 34341426 PMCID: PMC8329217 DOI: 10.1038/s41598-021-95082-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
The protein content of urinary extracellular vesicles (EVs) is considered to be an attractive non-invasive biomarker source. However, little is known about the consistency and variability of urinary EV proteins within and between individuals over a longer time-period. Here, we evaluated the stability of the urinary EV proteomes of 8 healthy individuals at 9 timepoints over 6 months using data-independent-acquisition mass spectrometry. The 1802 identified proteins had a high correlation amongst all samples, with 40% of the proteome detected in every sample and 90% detected in more than 1 individual at all timepoints. Unsupervised analysis of top 10% most variable proteins yielded person-specific profiles. The core EV-protein-interaction network of 516 proteins detected in all measured samples revealed sub-clusters involved in the biological processes of G-protein signaling, cytoskeletal transport, cellular energy metabolism and immunity. Furthermore, gender-specific expression patterns were detected in the urinary EV proteome. Our findings indicate that the urinary EV proteome is stable in longitudinal samples of healthy subjects over a prolonged time-period, further underscoring its potential for reliable non-invasive diagnostic/prognostic biomarkers.
Collapse
Affiliation(s)
- Leyla A Erozenci
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
- Department of Urology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Irene V Bijnsdorp
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
- Department of Urology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
| | - Connie R Jimenez
- Department of Medical Oncology, OncoProteomics Laboratory, Cancer Center Amsterdam, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Funai K, Honzawa K, Suzuki M, Momiki S, Asai K, Kasamatsu N, Kawase A, Shinke T, Okada H, Nishizawa S, Takamoto H. Urinary fluorescent metabolite O-aminohippuric acid is a useful biomarker for lung cancer detection. Metabolomics 2020; 16:101. [PMID: 32940815 DOI: 10.1007/s11306-020-01721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Urine contains diagnostically important metabolites that can act as natural fluorophores. However, whether these fluorescent metabolites can be used in lung cancer diagnosis is unknown. OBJECTIVES This study was conducted to determine whether fluorescent urinary metabolites could be useful biomarkers for lung cancer detection. METHODS A total of 46 lung cancer patients and 185 volunteers without cancer were evaluated between November 2013 and November 2014. Samples of the first urine of the day were collected from lung cancer patients and diagnosed at the Hamamatsu University School of Medicine and the Hamamatsu Medical Center prior to cancer treatment, and from volunteers without cancer at the Hamamatsu Medical Imaging Center. Fluorescent urinary metabolites were screened by high-performance liquid chromatography and select effective fluorescent substances for distinguishing cancer from non-cancer status. RESULTS The fraction of patients at each stage of cancer severity were: 41.3% stage I, 8.7% stage II, 19.6% stage III, and 30.4% stage IV. A robust predictive biomarker for lung cancer was selected by the multivariate logistic analysis of fluorescent metabolites and identified to be O-aminohippuric acid (OAH). The area under the curve (AUC) data for OAH was 0.837 (95% CI 0.769-0.898, P < 0.001). CONCLUSION We identified a fluorescent urinary metabolite that can predict lung cancer. OAH exceeds the AUC (0.817) of lung cancer detection by AminoIndex® cancer screening, can be analyzed non-invasively without additional sample processing, and may be a valuable addition to existing lung cancer prediction models.
Collapse
Affiliation(s)
- Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Katsu Honzawa
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Masako Suzuki
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shigeru Momiki
- Department of Thoracic Surgery, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Katsuyuki Asai
- Department of Thoracic Surgery, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Norio Kasamatsu
- Department of Respiratory Medicine, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomomi Shinke
- Global Strategic Challenge Center, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Hiroyuki Okada
- Global Strategic Challenge Center, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Sadahiko Nishizawa
- Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan
| | | |
Collapse
|
3
|
Song Z, Pearce MC, Jiang Y, Yang L, Goodall C, Miranda CL, Milovancev M, Bracha S, Kolluri SK, Maier CS. Delineation of hypoxia-induced proteome shifts in osteosarcoma cells with different metastatic propensities. Sci Rep 2020; 10:727. [PMID: 31959767 PMCID: PMC6971036 DOI: 10.1038/s41598-019-56878-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone cancer in children and young adults. Solid tumors are characterized by intratumoral hypoxia, and hypoxic cells are associated with the transformation to aggressive phenotype and metastasis. The proteome needed to support an aggressive osteosarcoma cell phenotype remains largely undefined. To link metastatic propensity to a hypoxia-induced proteotype, we compared the protein profiles of two isogenic canine OS cell lines, POS (low metastatic) and HMPOS (highly metastatic), under normoxia and hypoxia. Label-free shotgun proteomics was applied to comprehensively characterize the hypoxia-responsive proteome profiles in the OS cell phenotypes. Hypothesis-driven parallel reaction monitoring was used to validate the differential proteins observed in the shotgun data and to monitor proteins of which we expected to exhibit hypoxia responsiveness, but which were absent in the label-free shotgun data. We established a "distance" score (|zHMPOS - zPOS|), and "sensitivity" score (|zHypoxia - zNormoxia) to quantitatively evaluate the proteome shifts exhibited by OS cells in response to hypoxia. Evaluation of the sensitivity scores for the proteome shifts observed and principal component analysis of the hypoxia-responsive proteins indicated that both cell types acquire a proteome that supports a Warburg phenotype with enhanced cell migration and proliferation characteristics. Cell migration and glucose uptake assays combined with protein function inhibitor studies provided further support that hypoxia-driven adaption of pathways associated with glycolytic metabolism, collagen biosynthesis and remodeling, redox regulation and immunomodulatory proteins typify a proteotype associated with an aggressive cancer cell phenotype. Our findings further suggest that proteins involved in collagen remodeling and immune editing may warrant further evaluation as potential targets for anti-metastatic treatment strategies in osteosarcoma.
Collapse
Affiliation(s)
- Zifeng Song
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Martin C Pearce
- Department of Environmental & Molecular Toxicology, Oregon State University, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Oregon, USA
| | - Liping Yang
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Cheri Goodall
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | | | - Milan Milovancev
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | - Shay Bracha
- College of Veterinary Medicine, Oregon State University, Oregon, USA
| | - Siva K Kolluri
- Department of Environmental & Molecular Toxicology, Oregon State University, Oregon, USA
- Linus Pauling Institute, Oregon State University, Oregon, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Oregon, USA.
- Linus Pauling Institute, Oregon State University, Oregon, USA.
| |
Collapse
|
4
|
Erozenci LA, Böttger F, Bijnsdorp IV, Jimenez CR. Urinary exosomal proteins as (pan‐)cancer biomarkers: insights from the proteome. FEBS Lett 2019; 593:1580-1597. [DOI: 10.1002/1873-3468.13487] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Leyla Ayse Erozenci
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Franziska Böttger
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Irene V. Bijnsdorp
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- Department of Urology Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| | - Connie R. Jimenez
- Department of Medical Oncology Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
- OncoProteomics Laboratory Cancer Center Amsterdam Amsterdam UMC Vrije Universiteit Amsterdam The Netherlands
| |
Collapse
|
5
|
Watanabe Y, Hirao Y, Kasuga K, Tokutake T, Semizu Y, Kitamura K, Ikeuchi T, Nakamura K, Yamamoto T. Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients. Dement Geriatr Cogn Dis Extra 2019; 9:53-65. [PMID: 31043964 PMCID: PMC6477484 DOI: 10.1159/000496100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022] Open
Abstract
Background/Aims The identification of predictive biomarkers for Alzheimer's disease (AD) from urine would aid in screening for the disease, but information about biological and pathophysiological changes in the urine of AD patients is limited. This study aimed to explore the comprehensive profile and molecular network relations of urinary proteins in AD patients. Methods Urine samples collected from 18 AD patients and 18 age- and sex-matched cognitively normal controls were analyzed by mass spectrometry and semiquantified with the normalized spectral index method. Bioinformatics analyses were performed on proteins which significantly increased by more than 2-fold or decreased by less than 0.5-fold compared to the control (p < 0.05) using DAVID bioinformatics resources and KeyMolnet software. Results The levels of 109 proteins significantly differed between AD patients and controls. Among these, annotation clusters related to lysosomes, complement activation, and gluconeogenesis were significantly enriched. The molecular relation networks derived from these proteins were mainly associated with pathways of lipoprotein metabolism, heat shock protein 90 signaling, matrix metalloproteinase signaling, and redox regulation by thioredoxin. Conclusion Our findings suggest that changes in the urinary proteome of AD patients reflect systemic changes related to AD pathophysiology.
Collapse
Affiliation(s)
- Yumi Watanabe
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Semizu
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaori Kitamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazutoshi Nakamura
- Division of Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | |
Collapse
|