1
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
2
|
Gao Y, Mao J, Zhang R, Deng Q, Wang Y, Pan Y, Liudi S, Wang Y, Fan X, Yang Y, Wan S. Inhibiting PRMT1 protects against CoNV by regulating macrophages through the FGF2/PI3K/Akt pathway. Eur J Pharmacol 2024; 977:176673. [PMID: 38815785 DOI: 10.1016/j.ejphar.2024.176673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Corneal neovascularization (CoNV) is predominantly initiated by inflammatory processes, resulting in aberrant vascular proliferation and consequent visual impairment. Existing therapeutic interventions for CoNV demonstrate limited efficacy and potential for adverse reactions. Protein arginine methyltransferase 1 (PRMT1) is associated with the regulation of inflammation and M2 macrophage polarization. Nevertheless, the precise mechanism by which PRMT1 operates in CoNV remains uncertain. This study explored the impact of PRMT1 inhibition in a murine model of CoNV induced by alkali burn. Our findings indicated a direct relationship between PRMT1 levels and corneal damage. Moreover, our observations indicated an increase in fibroblast growth factor 2 (FGF2) expression in CoNV, which was reduced after treatment with a PRMT1 inhibitor. The inhibition of PRMT1 alleviated both corneal injury and CoNV, as evidenced by decreased corneal opacity and neovascularization. Immunofluorescence analysis and evaluation of inflammatory factor expression demonstrated that PRMT1 inhibition attenuated M2 macrophage polarization, a phenomenon that was reversed by the administration of recombinant FGF2 protein. These results were confirmed through experimentation on Human Umbilical Vein Endothelial Cells (HUVECs) and Mouse leukemia cells of monocyte macrophage cells (RAW264.7). Furthermore, it was established that FGF2 played a role in PI3K/Akt signal transduction, a critical regulatory pathway for M2 macrophage polarization. Importantly, the activity of this pathway was found to be suppressed by PRMT1 inhibitors. Mechanistically, PRMT1 was shown to promote M2 macrophage polarization, thereby contributing to CoNV, through the FGF2/PI3K/Akt pathway. Therefore, targeting PRMT1 may offer a promising therapeutic approach.
Collapse
Affiliation(s)
- Yuelan Gao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiewen Mao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine & Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Deng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yujin Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yumiao Pan
- Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Shiwen Liudi
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei, 430063, China
| | - Yang Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangli Fan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Shanshan Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Wu H, Ye J, Zhang M, Zhang L, Lin S, Li Q, Liu Y, Han Y, Huang C, Wu Y, Cheng Y, Cai S, Ke L, Liu G, Li W, Chu C. A SU6668 pure nanoparticle-based eyedrops: toward its high drug Accumulation and Long-time treatment for corneal neovascularization. J Nanobiotechnology 2024; 22:290. [PMID: 38802884 PMCID: PMC11129376 DOI: 10.1186/s12951-024-02510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.
Collapse
Affiliation(s)
- Han Wu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Jinfa Ye
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Minjie Zhang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Department of Rheumatology and Clinical Immunology, School of Medicine, the First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, XM, 361000, China
- Municipal Clinical Research Center for Immune Diseases, Xiamen, XM, 361000, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, XM, 361000, China
| | - Lingyu Zhang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Sijie Lin
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Qingjian Li
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yanbo Liu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yun Han
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Caihong Huang
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yiming Wu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Yuhang Cheng
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Shundong Cai
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Lang Ke
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361002, China.
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Wei Li
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China.
| | - Chengchao Chu
- School of Medicine, Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Xiamen University, Xiamen, 361102, China.
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, 361102, China.
- Shen Zhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| |
Collapse
|
4
|
Ding W, Su Y, Mo J, Sun D, Cao C, Zhang X, Wang Y. Novel artemisinin derivative P31 inhibits VEGF-induced corneal neovascularization through AKT and ERK1/2 pathways. Heliyon 2024; 10:e29984. [PMID: 38699723 PMCID: PMC11063438 DOI: 10.1016/j.heliyon.2024.e29984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Corneal neovascularization (CoNV)is a major cause of blindness in many ocular diseases. Substantial evidence indicates that vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of corneal neovascularization. Previous evidence showed that artemisinin may inhibit angiogenesis through down regulation of the VEGF receptors. We designed and synthesized artemisinin derivatives, and validated their inhibitory effect on neovascularization in cell and animal models, and explored the mechanisms by which they exert an inhibitory effect on CoNV. Among these derivatives, P31 demonstrated significant anti-angiogenic effects in vivo and in vitro. Besides, P31 inhibited VEGF-induced HUVECs angiogenesis and neovascularization in rabbit model via AKT and ERK pathways. Moreover, P31 alleviated angiogenic and inflammatory responses in suture rabbit cornea. In conclusion, as a novel artemisinin derivative, P31 attenuates corneal neovascularization and has a promising application in ocular diseases.
Collapse
Affiliation(s)
- Wen Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Jianshan Mo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Danyuan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen Cao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
| | - Xiaolei Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yandong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Engineering Research Center for Ophthalmic Drug Creation and Evaluation, Guangzhou, 510060, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Shi Q, Li Q, Wu C, Ma S, Liang C, Fan X, Zhong J, Liu L. Deoxynivalenol Damages Corneal Epithelial Cells and Exacerbates Inflammatory Response in Fungal Keratitis. Mycopathologia 2024; 189:28. [PMID: 38483684 DOI: 10.1007/s11046-024-00829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Fungal keratitis (FK) is a kind of infectious keratopathy with a high rate of blindness worldwide. Deoxynivalenol (DON) has been proven to have multiple toxic effects on humans and animals. OBJECTIVES The aim of this study was to explore a possible pathogenic role of DON in FK. METHODS We first made an animal model of FK in New Zealand white rabbits, and then attempted to detect DON in a culture medium in which Fusarium solani had been grown and also in the corneal tissue of the animal model of Fusarium solani keratitis. Next, a model of DON damage in human corneal epithelial cells (HCECs) was constructed to evaluate effects of DON on the activity, migration ability, cell cycle, and apoptosis in the HCECs. Then, putative the toxic damaging effects of DON on rabbit corneal epithelial cells and the impact of the repair cycle were studied. The expression levels of inflammatory factors in the corneas of the animal model and in the model of DON-damaged HCECs were measured. RESULTS The Fusarium solani strain used in this study appeared to have the potential to produce DON, since DON was detected in the corneal tissue of rabbits which had been inoculated with this Fusarium solani strain. DON was found to alter the morphology of HCECs, to reduce the activity and to inhibit the proliferation and migration of HCECs. DON also induced the apoptosis and S-phase arrest of HCECs. In addition, DON was found to damage rabbit corneal epithelial cells, to prolong the corneal epithelial regeneration cycle, and to be associated with the upregulated expression of inflammatory factors in HCECs and rabbit corneas. CONCLUSIONS DON appears to have a toxic damaging effect on HCECs in FK, and to induce the expression of inflammatory factors, leading to the exacerbation of keratitis and the formation of new blood vessels. Future studies will explore the possibility of developing a test to detect DON in ophthalmic settings to aid the rapid diagnosis of FK, and to develop DON neutralizers and adsorbents which have the potential to improve keratocyte status, inhibit apoptosis, and alleviate inflammation, therein providing new thinking for therapy of clinical FK.
Collapse
Affiliation(s)
- Qi Shi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - QingQing Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Changlin Wu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shisi Ma
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, 515282, China
| | - Chunlan Liang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaoyi Fan
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Ophthalmology, The Sixth Affiliated Hospital, Jinan University, Dongguan, 523000, China.
| | - Lian Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Yang Y, Zhong J, Cui D, Jensen LD. Up-to-date molecular medicine strategies for management of ocular surface neovascularization. Adv Drug Deliv Rev 2023; 201:115084. [PMID: 37689278 DOI: 10.1016/j.addr.2023.115084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Ocular surface neovascularization and its resulting pathological changes significantly alter corneal refraction and obstruct the light path to the retina, and hence is a major cause of vision loss. Various factors such as infection, irritation, trauma, dry eye, and ocular surface surgery trigger neovascularization via angiogenesis and lymphangiogenesis dependent on VEGF-related and alternative mechanisms. Recent advances in antiangiogenic drugs, nanotechnology, gene therapy, surgical equipment and techniques, animal models, and drug delivery strategies have provided a range of novel therapeutic options for the treatment of ocular surface neovascularization. In this review article, we comprehensively discuss the etiology and mechanisms of corneal neovascularization and other types of ocular surface neovascularization, as well as emerging animal models and drug delivery strategies that facilitate its management.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Junmu Zhong
- Department of Ophthalmology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian Province, China
| | - Dongmei Cui
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, Guangdong Province, China
| | - Lasse D Jensen
- Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Unit of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
7
|
Jin H, Yang B, Jiang D, Ding Z, Xiong Y, Zeng X. Inhibitory effect of anti-Scg3 on corneal neovascularization: a preliminary study. BMC Ophthalmol 2022; 22:455. [PMID: 36443679 PMCID: PMC9703748 DOI: 10.1186/s12886-022-02690-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Corneal neovascularization (CNV) is an important disease that causes blindness. Secretogranin III (Scg3) has emerged as a new influencing factor of neovascularization. This study analyzed the Scg3 antibody's inhibitory effect on CNV and and explored its preliminary mechanism. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with Scg3 and anti-Scg3. Cell proliferation, wound healing migration and tube formation assays were performed. Healthy adult New Zealand rabbits were randomly selected to be alkali burned and establish the corneal neovascularization (CNV) model. The rabbits were randomly divided into 3 groups (the high concentration group, low concentration group and control group). Different doses of anti-Scg3 and PBS were administered to the rabbits. Clinical examinations, immunostaining, quantitative real-time polymerase chain reaction (qPCR) and western blotting analyses were performed postoperatively. RESULTS In the in vitro study, the Scg3 antibody mixture inhibited Scg3-induced endothelial cell proliferation and angiogenesis. In the in vivo study, significant CNV was observed in the control group. Confocal microscopy also revealed considerable active neovascularization in the control group. There was no obvious CNV growth in the high concentration group. Additionally, CD31, LYVE1 and CD45 expression was significantly inhibited after treatment with a high concentration of Scg3 antibody. The qPCR and western blotting analyses revealed that the levels of ERK in the low concentration group and high concentration group were higher than those in the control group at 7 days and 14 days. The levels of VEGF in the control group were significantly increased compared with those in the high concentration group. In all three groups, the levels of Akt were not significantly different at any time point. CONCLUSION The expression of Scg3 could affect the growth of HUVECs in vitro. Treatment with a high concentration (0.5 µg/mL) of Scg3 antibody reduced the inflammatory response and inhibited the growth of corneal neovascularization after corneal alkali burn injury in rabbits. The MEK/ERK pathway might play an important role in the inhibitory effect of anti-Scg3.
Collapse
Affiliation(s)
- He Jin
- grid.443385.d0000 0004 1798 9548Affiliated Hospital of Guilin Medical University, Guilin Medical University, 541001 Guilin, China
| | - Binbin Yang
- grid.443385.d0000 0004 1798 9548Affiliated Hospital of Guilin Medical University, Guilin Medical University, 541001 Guilin, China
| | - Dongdong Jiang
- grid.443385.d0000 0004 1798 9548Affiliated Hospital of Guilin Medical University, Guilin Medical University, 541001 Guilin, China
| | - Zhixiang Ding
- grid.443385.d0000 0004 1798 9548Affiliated Hospital of Guilin Medical University, Guilin Medical University, 541001 Guilin, China
| | - Yu Xiong
- grid.443385.d0000 0004 1798 9548Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin Medical University, 541001 Guilin, China
| | - Xinsheng Zeng
- grid.443385.d0000 0004 1798 9548Affiliated Hospital of Guilin Medical University, Guilin Medical University, 541001 Guilin, China
| |
Collapse
|
8
|
Tang B, Xie X, Yang R, Zhou S, Hu R, Feng J, Zheng Q, Zan X. Decorating hexahistidine-metal assemblies with tyrosine enhances the ability of proteins to pass through corneal biobarriers. Acta Biomater 2022; 153:231-242. [PMID: 36126912 DOI: 10.1016/j.actbio.2022.09.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 11/01/2022]
Abstract
In recent decades, the use of protein drugs has increased dramatically for almost every clinical indication, including autoimmunity and cancer infection, given their high specificity and limited side effects. However, their easy deactivation by the surrounding microenvironment and limited ability to pass through biological barriers pose large challenges to the use of these agents for therapeutic effects; these deficits could be greatly improved by nanodelivery using platforms with suitable physicochemical properties. Here, to assess the effect of the hydrophilicity of nanoparticles on their ability to penetrate biological barriers, the hydrophobic amino acid tyrosine (Y) was decorated onto hexahistidine peptide, and two nanosized YHmA and HmA particles were generated, in which Avastin (Ava, a protein drug) was encapsulated by a coassembly strategy. In vitro and in vivo tests demonstrated that these nanoparticles effectively retained the bioactivity of Ava and protected Ava from proteinase K hydrolysis. Importantly, YHmA displayed a considerably higher affinity to the ocular surface than HmA, and YHmA also exhibited the ability to transfer proteins across the barriers of the anterior segment, which greatly improved the bioavailability of the encapsulated Ava and produced surprisingly good therapeutic outcomes in a model of corneal neovascularization. STATEMENT OF SIGNIFICANCE: Improving the ability to penetrate tissue barriers and averting inactivation caused by surrounding environments, are the keys to broaden the application of protein drugs. By decorating hydrophobic amino acid, tyrosine (Y), on hexahistidine peptide, YHmA encapsulated protein drug Ava with high efficiency by co-assembly strategy. YHmA displayed promising ability to maintain bioactivity of Ava during encapsulation and delivery, and protected Ava from proteinase K hydrolysis. Importantly, YHmA transferred Ava across the corneal epithelial barrier and greatly improved its bioavailability, producing surprisingly good therapeutic outcomes in a model of corneal neovascularization. Our results contributed to not only the strategy to overcome shortcomings of protein drugs, but also suggestion on hydrophilicity as a nonnegligible factor in nanodrug penetration through biobarriers.
Collapse
Affiliation(s)
- Bojiao Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ruhui Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Sijie Zhou
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Ronggui Hu
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jiayao Feng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Qinxiang Zheng
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China; Oujiang Laboratory, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, PR China.
| |
Collapse
|
9
|
Successful Proof-of-Concept for Topical Delivery of Novel Peptide ALM201 with Potential Usefulness for Treating Neovascular Eye Disorders. OPHTHALMOLOGY SCIENCE 2022; 2:100150. [PMID: 36249680 PMCID: PMC9560569 DOI: 10.1016/j.xops.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
|
10
|
Chen J, Ding X, Du W, Tang X, Yu WZ. Inhibition of corneal neovascularization by topical application of nintedanib in rabbit models. Int J Ophthalmol 2021; 14:1666-1673. [PMID: 34804855 DOI: 10.18240/ijo.2021.11.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate the potential efficacy and mechanisms of nintedanib in corneal neovascularization (NV) in rabbit models. METHODS Corneal NV was induced using 1 mol/L NaOH. Rabbits (n=21) were randomized to 3 groups: Group 1 were treated with 0.9% NaCl, Group 2 with Avastin (5 mg/mL), and Group 3 with nintedanib (1 mg/mL). All treatments started 1d after alkaline burns and were topically performed 3 times a day for 2wk. Photographs were taken on a slit lamp microscope on day 7 and 14. The NV area, the length of the vascularization and angiogenesis index (AI) were used to evaluate the corneal NV. On day 14, the immunohistochemical (IHC) studies of the cornea were examined. Western blot was performed to test the expression levels of vascular endothelial growth factor (VEGF), Akt, p-Akt, P38, p-P38, MMP-2 and MMP-9. RESULTS The corneal NV area, vessel length and AI in Group 3 were significantly lower than Group 2, with both being lower than Group 1. IHC staining showed that VEGF was significantly overexpressed in the epithelium and stroma of cornea following alkaline burns. In contrast, the level of VEGF was significantly suppressed in both Group 2 and Group 3. Western blot results further confirmed that, compared with Group 1, Group 3 had significantly reduced expressions of VEGF, Akt, p-Akt, p-P38, MMP-2, and MMP-9 in corneal tissues. Trends of lower levels of MMP-2, AKT, and p-AKT in Group 3 than Group 2 were identified. CONCLUSION Nintedanib and Avastin can effectively inhibit corneal NV, with P38 MAPK and AKT signaling pathways being possibly involved. Nintedanib seems more effective than Avastin and has the potential to be a novel therapy for preventing corneal NV.
Collapse
Affiliation(s)
- Juan Chen
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Xue Ding
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Xin Tang
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| | - Wen-Zhen Yu
- Department of Ophthalmology, Peking University People's Hospital; Eye Diseases and Optometry Institute; Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases; College of Optometry, Peking University Health Science Center, Beijing 100044, China
| |
Collapse
|
11
|
Hu H, Wang S, He Y, Shen S, Yao B, Xu D, Liu X, Zhang Y. The role of bone morphogenetic protein 4 in corneal injury repair. Exp Eye Res 2021; 212:108769. [PMID: 34537186 DOI: 10.1016/j.exer.2021.108769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Corneal injury may cause neovascularization and lymphangiogenesis in cornea which have a detrimental effect to vision and even lead to blindness. Bone morphogenetic protein 4 (BMP4) regulates a variety of biological processes, which is closely relevant to the regulation of corneal epithelium and angiogenesis. Herein, we aimed to evaluate the effect of BMP4 on corneal neovascularization (CNV), corneal lymphangiogenesis (CL), corneal epithelial repair, and the role of BMP4/Smad pathway in these processes. METHODS We used MTT assay to determine the optimal concentration of BMP4. The suture method was performed to induce rat CNV and CL. We used ink perfusion and HE staining to visualize the morphological change of CNV, and utilized RT-qPCR and ELISA to investigate the expression of angiogenic factors and lymphangiogenic factors. The effects of BMP4 and anti-VEGF antibody on migration, proliferation and adhesion of corneal epithelium were determined by scratch test, MTT assay and cell adhesion test. RESULTS BMP4 significantly inhibited CNV and possibly CL. Topical BMP4 resulted in increased expression of endogenous BMP4, and decreased expression of angiogenic factors and lymphangiogenic factors. Compared with anti-VEGF antibody, BMP4 enhanced corneal epithelium migration, proliferation and adhesion, which facilitated corneal epithelial injury repair. Simultaneously, these processes could be regulated by BMP4/Smad pathway. CONCLUSIONS Our results demonstrated unreported effects of BMP4 on CNV, CL, and corneal epithelial repair, suggesting that BMP4 may represent a potential therapeutic target in corneal injury repair.
Collapse
Affiliation(s)
- Huicong Hu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Shurong Wang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yuxi He
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Sitong Shen
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Boyuan Yao
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Duo Xu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Yan Zhang
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
12
|
Pan J, Luo X, Zhao S, Li J, Jiang Z. miR-340-5p mediates the therapeutic effect of mesenchymal stem cells on corneal neovascularization. Graefes Arch Clin Exp Ophthalmol 2021; 260:497-507. [PMID: 34495369 DOI: 10.1007/s00417-021-05394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) inhibited angiogenesis via miRNA-mediated repression of prospero homeobox 1 (PROX1). This study aimed to verify whether miR-340-5p participates in the therapeutic effect of MSCs on corneal neovascularization (CNV) via repressing PROX1 and epithelial membrane protein 2 (EMP2). MATERIALS AND METHODS The rat CNV model was established by corneal alkali burn. The binding relationship between miR-340-5p and 3'-untranslational regions (3'UTRs) of EMP2 and PROX1 was confirmed using dual-luciferase reporter assay. After culturing corneal epithelial cells (CECs) using MSC supernatants, the vascular endothelial growth factor (VEGF) level in CEC supernatants and the CEC viability were detected. The role of miR-340-5p in the therapeutic effect of MSC on CNV was determined via lentivirus-mediated miR-340-5p intervention in vivo. RESULTS The expression of miR-340-5p was reduced and EMP2 and PROX1 were increased in CNV corneal tissues. The lentivirus-mediated overexpression of miR-340-5p inhibited the expressions of EMP2 and PROX1. The dual-luciferase reporter assay confirmed that miR-340-5p could bind with the 3'UTRs of EMP2 and PROX1. miR-340-5p was enriched in MSC supernatants and the culture of CECs using MSC supernatants increased the miR-340-5p expression in CECs. After being cultured in miR-340-5p-knocking down MSC supernatants, the expressions of EMP2 and PROX1 were increased, and the VEGF level and CEC viability were restored. The in vivo experiments also indicated that the therapeutic effect of MSCs was mediated by miR-340-5p. CONCLUSIONS miR-340-5p mediates the therapeutic effect of MSCs on CNV via binding and repressing the expressions of EMP2 and PROX1.
Collapse
Affiliation(s)
- Jian Pan
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Xu Luo
- Burn and Wound Healing Center, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.,Wound Repair Department, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 2 Zhongloudi Street, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Shujue Zhao
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China
| | - Zipei Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
13
|
Yasuda S, Sumioka T, Iwanishi H, Okada Y, Miyajima M, Ichikawa K, Reinach PS, Saika S. Loss of sphingosine 1-phosphate receptor 3 gene function impairs injury-induced stromal angiogenesis in mouse cornea. J Transl Med 2021; 101:245-257. [PMID: 33199821 PMCID: PMC7815507 DOI: 10.1038/s41374-020-00505-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid generated through sphingosine kinase1 (SPK1)-mediated phosphorylation of sphingosine. We show here that injury-induced S1P upregulation increases corneal neovascularization through stimulating S1PR3, a cognate receptor. since this response was suppressed in S1PR3-knockout mice. Furthermore, Cayman10444, a selective S1PR3 inhibitor, reduced this response in WT mice. Such reductions in neovascularization were associated with reduced vascular endothelial growth factor A (VEGF-A) mRNA expression levels in WT TKE2 corneal epithelial cells and macrophages treated with CAY10444 as well as macrophages isolated from S1PR3 KO mice. S1P increased tube-like vessel formation in human vascular endothelial cells (HUVEC) and human retinal microvascular endothelial cells (HRMECs) cells expressing S1PR3. In S1PR3 KO mice, TGFβ1-induced increases in αSMA gene expression levels were suppressed relative to those in the WT counterparts. In S1PR3 deficient macrophages, VEGF-A expression levels were lower than in WT macrophages. Transforming growth factor β1(TGFβ1) upregulated SPK1 expression levels in ocular fibroblasts and TKE2 corneal epithelial cells. CAY10444 blocked S1P-induced increases in VEGF-A mRNA expression levels in TKE2 corneal epithelial cells. Endogenous S1P signaling upregulated VEGF-A and VE-cadherin mRNA expression levels in HUVEC. Unlike in TKE2 cells, SIS3 failed to block TGFβ1-induced VEGF-A upregulation in ocular fibroblasts. Taken together, these results indicate that injury-induced TGFβ1 upregulation increases S1P generation through increases in SPK1 activity. The rise in S1P formation stimulates the S1PR3-linked signaling pathway, which in turn increases VEGF-A expression levels and angiogenesis in mouse corneas.
Collapse
Affiliation(s)
- Shingo Yasuda
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Peter S Reinach
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| |
Collapse
|
14
|
CXCR7 Inhibits Fibrosis via Wnt/ β-Catenin Pathways during the Process of Angiogenesis in Human Umbilical Vein Endothelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216926. [PMID: 32566651 PMCID: PMC7293734 DOI: 10.1155/2020/1216926] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Although SDF-1/CXCR7 plays an important role in angiogenesis, the function and the pathway of the SDF-1/CXCR7 axis might depend on the cell type or tissue origin and not fully understood. In this study, we investigated the effect of CXCR7 in SDF-1-induced proliferation, migration, apoptosis, tube formation, and endothelial-to-mesenchymal transition (EndMT) of human umbilical vein endothelial cells (HUVECs), and the potential pathway of SDF-1/CXCR7. We confirmed that the silencing of CXCR7 inhibited the proliferation of HUVECs and contributed the apoptosis, while overexpressed CXCR7 increased SDF-1-induced HUVECs migration and tube formation. However, upregulated CXCR7 inhibited the expression of α-SMA, suggesting that CXCR7 might attenuate EndMT. In addition, overexpressed CXCR7 activated AKT and ERK signaling pathways but suppressed Wnt/β-catenin pathways in HUVECs. The inhibition of Wnt/β-catenin pathways decreased the expression of α-SMA. Altogether, these results suggest that CXCR7 might inhibit fibrosis via Wnt/β-catenin pathways during the process of angiogenesis.
Collapse
|
15
|
Han H, Yin Q, Tang X, Yu X, Gao Q, Tang Y, Grzybowski A, Yao K, Ji J, Shentu X. Development of mucoadhesive cationic polypeptide micelles for sustained cabozantinib release and inhibition of corneal neovascularization. J Mater Chem B 2020; 8:5143-5154. [PMID: 32420566 DOI: 10.1039/d0tb00874e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Corneal neovascularization (CNV) is one of the leading risk factors for vision loss. Anti-angiogenic drugs can theoretically be extended to the treatment of CNV. However, the application of these drugs is often hindered by traditional administration methods, e.g., eye drops, which is ascribed to the unique structure of the cornea and tear film. In this study, cationic polypeptide nanoparticles with mucoadhesive ability that carry lipophilic cabozantinib (a tyrosine kinase inhibitor), called Cabo-NPs, were developed for sustained cabozantinib release and inhibition of CNV. The polypeptides were synthesized via N-carboxyanhydride ring-opening polymerization and could self-assemble into micelles with cabozantinib in aqueous solution. The Cabo-NPs possessed good biocompatibility both in corneal epithelial cells and mouse corneas. More importantly, in vitro angiogenesis assays demonstrated the strong inhibitory effect of Cabo-NPs on cell migration and tube formation. Furthermore, the Cabo-NPs exerted superior anti-angiogenic effects with remarkable reductions in the neovascular area, which were as effective as the clinical dexamethasone but without apparent side effects. The therapeutic mechanism of the Cabo-NPs is closely related to the significant decrease in proangiogenic and proinflammatory factors, suppressing neovascularization and inflammation. Overall, cationic Cabo-NPs offer a new prospect for safe and effective CNV treatment via enhancing the bioavailability of lipophilic cabozantinib.
Collapse
Affiliation(s)
- Haijie Han
- Zhejiang Provincial Key Lab of Ophthalmology, Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Song S, Cheng J, Yu BJ, Zhou L, Xu HF, Yang LL. LRG1 promotes corneal angiogenesis and lymphangiogenesis in a corneal alkali burn mouse model. Int J Ophthalmol 2020; 13:365-373. [PMID: 32309171 DOI: 10.18240/ijo.2020.03.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/19/2020] [Indexed: 12/12/2022] Open
Abstract
AIM To investigate the potential effect and mechanism of leucine-rich α-2-glycoprotein-1 (LRG1) on corneal angiogenesis and lymphangiogenesis. METHODS Corneal neovascularization and lymphatics were induced by establishing alkali burn mouse model. Immunofluorescence staining was performed to detect the location of LRG1 in cornea tissues and to verify the source of LRG1-positive cells. Corneal whole-mount staining for CD31 (a panendothelial cell marker) and lymphatic endothelial hyluronan receptor-1 (LYVE-1; lymphatic marker) was performed to detect the growth of blood and lymphatic vessels after local application of exogenous LRG1 protein or LRG1 siRNA. In addition, expressions of the proangiogenic vascular endothelial growth factor (VEGF) related proteins were detected using Western blot analysis. RESULTS LRG1 was dramatically increased in alkali burned corneal stroma in both the limbal and central areas. LRG1-positive cells in the corneal stroma were mainly derived from Vimentin-positive cells. Local application of exogenous LRG1 protein not only aggravated angiogenesis but also lymphangiogenesis significantly (P<0.01). LRG1 group upregulated the levels of VEGF and the vascular endothelial growth factor receptor (VEGFR) family when compared with the phosphate-buffered saline (PBS) control group. We also found that LRG1-specific siRNA could suppress corneal angiogenesis and lymphangiogenesis when compared with the scramble siRNA-treated group (P<0.01). CONCLUSION LRG1 can facilitate corneal angiogenesis and lymphangiogenesis through heightening the stromal expression of VEGF-A, B, C, D and VEGFR-1, 2, 3; LRG1-specific siRNA can suppress corneal angiogenesis and lymphangiogenesis in corneal alkali burn mice.
Collapse
Affiliation(s)
- Shan Song
- Weifang Medical University, Weifang 261053, Shandong Province, China.,Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Jun Cheng
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Bing-Jie Yu
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Li Zhou
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China.,Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Hai-Feng Xu
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| | - Ling-Ling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao 266071, Shandong Province, China
| |
Collapse
|