1
|
Wang M, Bergès R, Malfanti A, Préat V, Bastiancich C. Local delivery of doxorubicin prodrug via lipid nanocapsule-based hydrogel for the treatment of glioblastoma. Drug Deliv Transl Res 2024; 14:3322-3338. [PMID: 37889402 PMCID: PMC11499358 DOI: 10.1007/s13346-023-01456-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Glioblastoma (GBM) recurrences appear in most cases around the resection cavity borders and arise from residual GBM cells that cannot be removed by surgery. Here, we propose a novel treatment that combines the advantages of nanomedicine and local drug delivery to target these infiltrating GBM cells. We developed an injectable lipid nanocapsule (LNC)-based formulation loaded with lauroyl-doxorubicin prodrug (DOXC12). Firstly, we demonstrated the efficacy of intratumoral administration of DOXC12 in GL261 GBM-bearing mice, which extended mouse survival. Then, we formulated an injectable hydrogel by mixing the appropriate amount of prodrug with the lipophilic components of LNC. We optimized the hydrogel by incorporating cytidine-C16 (CytC16) to achieve a mechanical stiffness adapted for an application in the brain post-surgery (DOXC12-LNCCL). DOXC12-LNCCL exhibited high DOXC12 encapsulation efficiency (95%) and a size of approximately 60 nm with sustained drug release for over 1 month in vitro. DOXC12-LNCCL exhibited enhanced cytotoxicity compared to free DOXC12 (IC50 of 349 and 86 nM, respectively) on GL261 GBM cells and prevented the growth of GL261 spheroids cultured on organotypic brain slices. In vivo, post-surgical treatment with DOXC12-LNCCL significantly improved the survival of GL261-bearing mice. The combination of this local treatment with the systemic administration of anti-inflammatory drug ibuprofen further delayed the onset of recurrences. In conclusion, our study presents a promising therapeutic approach for the treatment of GBM. By targeting residual GBM cells and reducing the inflammation post-surgery, we present a new strategy to delay the onset of recurrences in the gap period between surgery and standard of care therapy.
Collapse
Affiliation(s)
- Mingchao Wang
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Raphaël Bergès
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 27 Boulevard Jean Moulin, Marseille, 13005, France
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium.
| | - Chiara Bastiancich
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73, 1200, Brussels, Belgium.
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, 27 Boulevard Jean Moulin, Marseille, 13005, France.
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, Turin, 10125, Italy.
| |
Collapse
|
2
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
3
|
Tian J, Mallinger JC, Shi P, Ling D, Deleyrolle LP, Lin M, Khoshbouei H, Sarkisian MR. Aurora kinase A inhibition plus Tumor Treating Fields suppress glioma cell proliferation in a cilium-independent manner. Transl Oncol 2024; 45:101956. [PMID: 38640786 PMCID: PMC11053227 DOI: 10.1016/j.tranon.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
Tumor Treating Fields (TTFields) extend the survival of glioblastoma (GBM) patients by interfering with a broad range of tumor cellular processes. Among these, TTFields disrupt primary cilia stability on GBM cells. Here we asked if concomitant treatment of TTFields with other agents that interfere with GBM ciliogenesis further suppress GBM cell proliferation in vitro. Aurora kinase A (AURKA) promotes both cilia disassembly and GBM growth. Inhibitors of AURKA, such as Alisertib, inhibit cilia disassembly and increase ciliary frequency in various cell types. However, we found that Alisertib treatment significantly reduced GBM cilia frequency in gliomaspheres across multiple patient derived cell lines, and in patient biopsies treated ex vivo. This effect appeared glioma cell-specific as it did not reduce normal neuronal or glial cilia frequencies. Alisertib-mediated depletion of glioma cilia appears specific to AURKA and not AURKB inhibition, and attributable in part to autophagy pathway activation. Treatment of two different GBM patient-derived cell lines with TTFields and Alisertib resulted in a significant reduction in cell proliferation compared to either treatment alone. However, this effect was not cilia-dependent as the combined treatment reduced proliferation in cilia-depleted cell lines lacking, ARL13B, or U87MG cells which are naturally devoid of ARL13B+ cilia. Thus, Alisertib-mediated effects on glioma cilia may be a useful biomarker of drug efficacy within tumor tissue. Considering Alisertib can cross the blood brain barrier and inhibit intracranial growth, our data warrant future studies to explore whether concomitant Alisertib and TTFields exposure prolongs survival of brain tumor-bearing animals in vivo.
Collapse
Affiliation(s)
- Jia Tian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Julianne C Mallinger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ping Shi
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dahao Ling
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Loic P Deleyrolle
- Department of Neurosurgery, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Min Lin
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Matthew R Sarkisian
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL 32610, USA; Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
4
|
Yang G, Lin Y, Sun X, Cheng D, Li H, Hu S, Chen M, Wang Y, Wang Y. Preclinical Evaluation of JAB-2485, a Potent AURKA Inhibitor with High Selectivity and Favorable Pharmacokinetic Properties. ACS OMEGA 2024; 9:21416-21425. [PMID: 38764682 PMCID: PMC11097369 DOI: 10.1021/acsomega.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024]
Abstract
As a critical mitotic regulator, Aurora kinase A (AURKA) is aberrantly activated in a wide range of cancers. Therapeutic targeting of AUKRA is a promising strategy for the treatment of solid tumors. In this study, we evaluated the preclinical characteristics of JAB-2485, a small-molecule inhibitor of AURKA currently in Phase I/IIa clinical trial in the US (NCT05490472). Biochemical studies demonstrated that JAB-2485 is potent and highly selective on AURKA, with subnanomolar IC50 and around 1500-fold selectivity over AURKB or AURKC. In addition, JAB-2485 exhibited favorable pharmacokinetic properties featured by low clearance and good bioavailability, strong dose-response relationship, as well as low risk for hematotoxicity and off-target liability. As a single agent, JAB-2485 effectively induced G2/M cell cycle arrest and apoptosis and inhibited the proliferation of small cell lung cancer, triple-negative breast cancer, and neuroblastoma cells. Furthermore, JAB-2485 exhibited robust in vivo antitumor activity both as monotherapy and in combination with chemotherapies or the bromodomain inhibitor JAB-8263 in xenograft models of various cancer types. Together, these encouraging preclinical data provide a strong basis for safety and efficacy evaluations of JAB-2485 in the clinical setting.
Collapse
Affiliation(s)
- Guiqun Yang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yiwei Lin
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Xin Sun
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Dai Cheng
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Haijun Li
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Shizong Hu
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Mingming Chen
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yinxiang Wang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| | - Yanping Wang
- Jacobio Pharmaceuticals
Co., Ltd., 105 Jinghai Third Street, Beijing 100176, China
| |
Collapse
|
5
|
Dumitru CA, Walter N, Siebert CLR, Schäfer FTA, Rashidi A, Neyazi B, Stein KP, Mawrin C, Sandalcioglu IE. The Roles of AGTRAP, ALKBH3, DIVERSIN, NEDD8 and RRM1 in Glioblastoma Pathophysiology and Prognosis. Biomedicines 2024; 12:926. [PMID: 38672281 PMCID: PMC11048029 DOI: 10.3390/biomedicines12040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
This study determined the expression of five novel biomarker candidates in IDH wild-type glioblastoma (GBM) tissues compared to non-malign brain parenchyma, as well as their prognostic relevance for the GBM patients' outcomes. The markers were analysed by immunohistochemistry in tumour tissues (n = 186) and healthy brain tissues (n = 54). The association with the patients' overall survival (OS) and progression-free survival (PFS) was assessed by Kaplan-Meier and log-rank test. The prognostic value of the markers was determined using multivariate Cox proportional hazard models. AGTRAP, DIVERSIN, cytoplasmic NEDD8 (NEDD8c) and RRM1 were significantly overexpressed in tumour tissues compared to the healthy brain, while the opposite was observed for ALKBH3. AGTRAP, ALKBH3, NEDD8c and RRM1 were significantly associated with OS in univariate analysis. AGTRAP and RRM1 were also independent prognostic factors for OS in multivariate analysis. For PFS, only AGTRAP and NEDD8c reached significance in univariate analysis. Additionally, AGTRAP was an independent prognostic factor for PFS in multivariate models. Finally, combined analysis of the markers enhanced their prognostic accuracy. The combination AGTRAP/ALKBH3 had the strongest prognostic value for the OS of GBM patients. These findings contribute to a better understanding of the GBM pathophysiology and may help identify novel therapeutic targets in this type of cancer.
Collapse
Affiliation(s)
| | - Nikolas Walter
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | | | | | - Ali Rashidi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Belal Neyazi
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-von-Guericke University, 39120 Magdeburg, Germany (I.E.S.)
| | - Christian Mawrin
- Department of Neuropathology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | |
Collapse
|