1
|
Smiseth OA, Rider O, Cvijic M, Valkovič L, Remme EW, Voigt JU. Myocardial Strain Imaging: Theory, Current Practice, and the Future. JACC Cardiovasc Imaging 2025; 18:340-381. [PMID: 39269417 DOI: 10.1016/j.jcmg.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/15/2024]
Abstract
Myocardial strain imaging by echocardiography or cardiac magnetic resonance (CMR) is a powerful method to diagnose cardiac disease. Strain imaging provides measures of myocardial shortening, thickening, and lengthening and can be applied to any cardiac chamber. Left ventricular (LV) global longitudinal strain by speckle-tracking echocardiography is the most widely used clinical strain parameter. Several CMR-based modalities are available and are ready to be implemented clinically. Clinical applications of strain include global longitudinal strain as a more sensitive method than ejection fraction for diagnosing mild systolic dysfunction. This applies to patients suspected of having heart failure with normal LV ejection fraction, to early systolic dysfunction in valvular disease, and when monitoring myocardial function during cancer chemotherapy. Segmental LV strain maps provide diagnostic clues in specific cardiomyopathies, when evaluating LV dyssynchrony and ischemic dysfunction. Strain imaging is a promising modality to quantify right ventricular function. Left atrial strain may be used to evaluate LV diastolic function and filling pressure.
Collapse
Affiliation(s)
- Otto A Smiseth
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway.
| | - Oliver Rider
- Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Marta Cvijic
- Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Espen W Remme
- Institute for Surgical Research, Division of Cardiovascular and Pulmonary Diseases, Oslo University Hospital, Rikshospitalet, and University of Oslo, Oslo, Norway; The Intervention Center, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jens-Uwe Voigt
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Ashikaga K, Manabe T, Tomori A, Endo N, Kamahara K. Differences in athlete's left ventricular morphology by sex and sports discipline categories in elite Japanese athletes. PHYSICIAN SPORTSMED 2025:1-10. [PMID: 39905295 DOI: 10.1080/00913847.2025.2463320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVES The cardiac morphology of elite athletes is related to sports disciplines and race; however, no studies have examined the effects of sports discipline on East Asian athletes. Therefore, this study aimed to assess left ventricular (LV) remodeling using transthoracic echocardiography in elite Japanese athletes and establish standard values for the indicators of the cardiac morphology of elite athletes in East Asia, considering the influence of body size. METHODS We retrospectively evaluated 1,363 elite Japanese athletes who underwent electrocardiography and transthoracic echocardiography between January 2011 and December 2021. The athletes were assigned to four sports discipline categories (skill, power, mixed, and endurance). We evaluated the differences in LV volume and mass between the groups for each sex. RESULTS The LV end-diastolic volume (LVEDV) and LV mass indexed to the body surface area (BSA) in the endurance group (LVEDV/BSA: 72.3 ± 11.4 mL/m2 in males and 68.7 ± 11.0 mL/m2 in females, LV mass/BSA: 121.1 ± 19.1 g/m2 in males and 106.5 ± 18.0 g/m2 in females) were significantly larger than those of any other groups. Both values were affected by sex, BSA, and endurance sport type, whereas only LV mass was affected by age. CONCLUSION Cardiac remodeling is proportional to the sport type, with a significantly greater effect in athletes playing endurance sports. The remodeling is particularly evident in the left ventricle; however, the corresponding remodeling is also observed in other heart chambers. Cardiac remodeling in elite Japanese athletes is similar to that observed in elite athletes of other races, except for the changes in LV wall thickness.
Collapse
Affiliation(s)
- Kohei Ashikaga
- Department of Sports Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Sports Medical Center, Japan Institute of Sports Science, Tokyo, Japan
| | - Tomohiro Manabe
- Sports Medical Center, Japan Institute of Sports Science, Tokyo, Japan
- Sports Medicine Research Center, Keio University, Yokohama, Kanagawa, Japan
| | - Anna Tomori
- Sports Medical Center, Japan Institute of Sports Science, Tokyo, Japan
| | - Naoya Endo
- Sports Medical Center, Japan Institute of Sports Science, Tokyo, Japan
| | - Kazuyuki Kamahara
- Sports Medical Center, Japan Institute of Sports Science, Tokyo, Japan
| |
Collapse
|
3
|
Dalen H, Letnes JM, Hoydal MA, Wisløff U. Diastolic function and dysfunction in athletes. Eur Heart J Cardiovasc Imaging 2024; 25:1537-1545. [PMID: 39023211 PMCID: PMC11522865 DOI: 10.1093/ehjci/jeae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cardiac remodelling is often most profound in male athletes and in athletes with the greatest volumes of endurance training and is characterized by chamber enlargement and a mild-to-modest hypertrophy. The diastolic filling of the left ventricle (LV) is a complex process including the early recoil of the contracted LV, the active relaxation of the myocardium, the compliance of the myocardium, the filling pressures, and heart rate. Echocardiography is the cornerstone for the clinical assessment of LV diastolic function. LV diastolic function is usually enhanced in elite endurance athletes characterized by improved early filling of the ventricle, while it is preserved or enhanced in other athletes associated with the type of training being performed. This allows for the high performance of any endurance athlete. Typical findings when using resting echocardiography for the assessment of LV diastolic function in endurance athletes include a dilated LV with normal or mildly reduced LV ejection fraction (EF), significantly enlarged left atrium (LA) beyond the commonly used cut-off of 34 mL/m2, and a significantly elevated E/A ratio. The early-diastolic mitral annular velocity and the E-wave peak velocity are usually normal. Importantly, interpretation of the echocardiographic indices of LV diastolic function should always consider the clinical context and other parameters of systolic and diastolic functions. In the absence of an underlying pathology, single measurements outside the expected range for similar athletes will often not represent the pathology.
Collapse
Affiliation(s)
- Havard Dalen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
- Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
- Clinic of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Jon Magne Letnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
- Clinic of Cardiology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Morten A Hoydal
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Faculty of Medicine and Health Sciences, Box 8905, NO-7491 Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
4
|
Schellenberg J, Matits L, Bizjak DA, Jenkins FS, Kersten J. Cardiac Function and Structure before and after Mild SARS-CoV-2 Infection in Elite Athletes Using Biventricular and Left Atrial Strain. Biomedicines 2024; 12:2310. [PMID: 39457622 PMCID: PMC11505127 DOI: 10.3390/biomedicines12102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Myocardial involvement has been observed in athletes following SARS-CoV-2 infection. It is unclear if these changes are due to myocardial damage per se or to an interruption in training. The aim of this study was to assess cardiac function and structure in elite athletes before and after infection (INFAt) and compare them to a group of healthy controls (CON). METHODS Transthoracic echocardiography was performed in 32 elite athletes, including 16 INFAt (median 21.0 (19.3-21.5) years, 10 male) before (t0) and 52 days after (t1) mild SARS-CoV-2 infection and 16 sex-, age- and sports type-matched CON. Left and right ventricular global longitudinal strain (LV/RV GLS), RV free wall longitudinal strain (RV FWS) and left atrial strain (LAS) were assessed by an investigator blinded to patient history. RESULTS INFAt showed no significant changes in echocardiographic parameters between t0 and t1, including LV GLS (-21.8% vs. -21.7%, p = 0.649) and RV GLS (-29.1% vs. -28.7%, p = 0.626). A significant increase was observed in LA reservoir strain (LASr) (35.7% vs. 47.8%, p = 0.012). Compared to CON, INFAt at t1 had significantly higher RV FWS (-33.0% vs. -28.2%, p = 0.011), LASr (47.8% vs. 30.5%, p < 0.001) and LA contraction strain (-12.8% vs. -4.9%, p = 0.050) values. CONCLUSIONS In elite athletes, mild SARS-CoV-2 infection does not significantly impact LV function when compared to their pre-SARS-CoV-2 status and to healthy controls. However, subtle changes in RV and LA strain may indicate temporary or training-related adaptions. Further research is needed, particularly focusing on athletes with more severe infections or prolonged symptoms.
Collapse
Affiliation(s)
- Jana Schellenberg
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89081 Ulm, Germany; (L.M.); (D.A.B.)
| | - Lynn Matits
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89081 Ulm, Germany; (L.M.); (D.A.B.)
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, 89081 Ulm, Germany
| | - Daniel A. Bizjak
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89081 Ulm, Germany; (L.M.); (D.A.B.)
| | - Freya S. Jenkins
- Medical Faculty, Heinrich-Heine-University Dusseldorf, 40225 Dusseldorf, Germany
| | - Johannes Kersten
- Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89081 Ulm, Germany; (L.M.); (D.A.B.)
| |
Collapse
|
5
|
Colne E, Pace N, Fraix A, Gauthier F, Selton-Suty C, Chenuel B, Sadoul N, Girerd N, Lamiral Z, Felloni J, Djaballah K, Filippetti L, Huttin O. Advanced myocardial deformation echocardiography for evaluation of the athlete's heart: Functional and mechanistic analysis. Arch Cardiovasc Dis 2024; 117:490-496. [PMID: 39153877 DOI: 10.1016/j.acvd.2024.05.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Assessment of the athlete's heart is challenging because of a phenotypic overlap between reactive physiological adaptation and pathological remodelling. The potential value of myocardial deformation remains controversial in identifying early cardiomyopathy. AIM To identify the echocardiographic phenotype of athletes using advanced two-dimensional speckle tracking imaging, and to define predictive factors of subtle left ventricular systolic dysfunction. METHODS In total, 191 healthy male athletes who underwent a preparticipation medical evaluation at Nancy University Hospital between 2013 and 2020 were included. Clinical and echocardiographic data were compared with 161 healthy male subjects from the STANISLAS cohort. Borderline global longitudinal strain value was defined as<17.5%. RESULTS Athletes demonstrated lower left ventricular ejection fraction (57.9±5.3% vs. 62.6±6.4%; P<0.01) and lower global longitudinal strain (17.5±2.2% vs. 21.1±2.1%; P<0.01). No significant differences were found between athletes with and without a borderline global longitudinal strain value regarding clinical characteristics, structural echocardiographic features and exercise capacity. A borderline global longitudinal strain value was associated with a lower endocardial global longitudinal strain (18.8±1.2% vs. 22.7±1.9%; P=0.02), a lower epicardial global longitudinal strain (14.0±1.1% vs. 16.6±1.2%; P<0.01) and a higher endocardial/epicardial global longitudinal strain ratio (1.36±0.07 vs. 1.32±0.06; P<0.01). No significant difference was found regarding mechanical dispersion (P=0.46). CONCLUSIONS Borderline global longitudinal strain value in athletes does not appear to be related to structural remodelling, mechanical dispersion or exercise capacity. The athlete's heart is characterized by a specific myocardial deformation pattern with a more pronounced epicardial layer strain impairment.
Collapse
Affiliation(s)
- Eva Colne
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Nathalie Pace
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France.
| | - Antoine Fraix
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Félix Gauthier
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | | | - Bruno Chenuel
- University Centre of Sports Medicine and Adapted Physical Activity, Nancy University Hospital, 54000 Nancy, France
| | - Nicolas Sadoul
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Nicolas Girerd
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France; Inserm, UMR-1116, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France; Inserm, CIC 1433, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| | - Zohra Lamiral
- Inserm, CIC 1433, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| | - Jérôme Felloni
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Karim Djaballah
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Laura Filippetti
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France
| | - Olivier Huttin
- Department of Cardiology, Nancy University Hospital, 54000 Nancy, France; Inserm, UMR-1116, Lorraine University, 54505 Vandœuvre-Lès-Nancy, France
| |
Collapse
|
6
|
Segreti A, Fossati C, Mulè MT, Fanale V, Crispino SP, Coletti F, Parisi FR, Zampogna B, Vasta S, Mannacio E, Papalia R, Antonelli-Incalzi R, Pigozzi F, Grigioni F. Assessment of cardiopulmonary capacity in deconditioned athletes because of knee injury. J Sports Med Phys Fitness 2024; 64:615-623. [PMID: 38916084 DOI: 10.23736/s0022-4707.24.15496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND An athlete's career inevitably goes through periods of forced physical exercise interruption like a knee injury. Advanced echocardiographic methods and cardiopulmonary exercise testing (CPET) are essential in evaluating athletes in the period elapsing after the injury. However, the feasibility of a maximal pre-surgery CPET and the capacity of resting advanced echocardiographic techniques to predict cardiorespiratory capacity still need to be clarified. METHODS We evaluated 28 non-professional athletes aged 18-52, involved in prevalently aerobic or alternate aerobic/anaerobic sports activities, affected by a knee pathology with indications for surgical treatment. The evaluation was performed at rest by trans-thoracic echocardiography, including global longitudinal strain (GLS) and myocardial work (MW) assessment, and during exercise by CPET. RESULTS The percent-predicted peak oxygen consumption (peak VO2%) was 82.8±13.7%, the mean respiratory exchange ratio was 1.16±0.08, and the mean ventilation/carbon dioxide (VE/VCO2) slope was 24.23±3.36. Peak VO2% negatively correlated with GLS (r=-0.518, P=0.003) and global wasted work (GWW) (r =-0.441, P=0.015) and positively correlated with global work efficiency (GWE) (r=0.455, P=0.012). Finally, we found that the VE/VCO2 slope during exercise was negatively correlated with GWE (r=-0.585, P=0.001) and positively correlated with GWW (r=0.499, P=0.005). CONCLUSIONS A maximal CPET can be obtained in deconditioned athletes because of a knee injury, allowing a comprehensive functional pre-surgery evaluation. In these patients, peak VO2 is reduced due to decreased physical activity after injury; however, a lower cardiopulmonary efficiency may be a concause of the injury itself. In addition, we demonstrated that the MW indexes obtained at rest could predict exercise capacity and ventilatory efficiency as evaluated by CPET.
Collapse
Affiliation(s)
- Andrea Segreti
- Unit of Cardiovascular Science, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy -
- Department of Movement, Human and Health Sciences, Foro Italico University, Rome, Italy -
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, Foro Italico University, Rome, Italy
| | - Maria T Mulè
- Unit of Cardiovascular Science, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Valerio Fanale
- Unit of Cardiovascular Science, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simone P Crispino
- Unit of Cardiovascular Science, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Federica Coletti
- Unit of Cardiovascular Science, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco R Parisi
- Research Unit of Orthopedics and Trauma Surgery, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopedics and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Biagio Zampogna
- Research Unit of Orthopedics and Trauma Surgery, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopedics and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Sebastiano Vasta
- Department of Movement, Human and Health Sciences, Foro Italico University, Rome, Italy
- Research Unit of Orthopedics and Trauma Surgery, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopedics and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elena Mannacio
- Center for Exercise Science and Sports Medicine, Foro Italico University, Rome, Italy
| | - Rocco Papalia
- Research Unit of Orthopedics and Trauma Surgery, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Research Unit of Orthopedics and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, Foro Italico University, Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiovascular Science, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
7
|
Ramos GV, Santos MM, Gava FN, de Lacerda-Neto JC. Effects of conditioning on the left ventricular function of young purebred Arabian horses. PLoS One 2024; 19:e0304724. [PMID: 38829873 PMCID: PMC11146711 DOI: 10.1371/journal.pone.0304724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
The effects of conditioning on cardiac function in young horses is still unknown. For this reason, this study evaluated the left ventricular (LV) function of young horses by echocardiography after six weeks of conditioning. Fourteen untrained young purebred Arabian horses were evaluated at rest and after a stress test (ST) before and after a six-week conditioning program. There was an increase in V4 (p < 0.001) after conditioning, as well as a reduction in both heart rate (HR) at rest and peak HR during the ST (p < 0.001). There was also a reduction in internal diameter, along with an increase in interventricular septal, free wall and mean thicknesses and LV mass (p < 0.05). After the ST, the conditioned animals showed higher values of velocity time integral, stroke volume, systolic and cardiac indices, ejection (ET) and deceleration times (DT), end-diastolic volume, time to onset of radial myocardial velocity during early diastole and time to peak of transmitral flow velocity, in addition to reduced pre-ejection period (PEP), PEP/ET ratio and mean velocity of circumferential fiber shortening (p < 0.05). The conditioning protocol promoted physiological adaptations that indicate an improvement in the animals' aerobic capacity associated with an enhanced left ventricular function.
Collapse
Affiliation(s)
- Gabriel Vieira Ramos
- Department of Veterinary Clinics and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Maíra Moreira Santos
- Department of Veterinary Clinics and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Fábio Nelson Gava
- Department of Veterinary Clinics, State University of Londrina, Londrina, Paraná, Brazil
| | - José Corrêa de Lacerda-Neto
- Department of Veterinary Clinics and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
8
|
Kösemen DS, Çetin S, Demirci D, Babaoğlu K. Evaluation of the Left Ventricular Myocardium Using Layer-Specific Strain Analysis in Adolescent Athletes Performing High-Intensity Interval Training. Pediatr Cardiol 2024; 45:770-779. [PMID: 38347232 DOI: 10.1007/s00246-024-03411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 03/24/2024]
Abstract
High-intensity interval training (HIIT) has been demonstrated to be an efficient way of improving physical performance in adolescent athletes compared to conventional training modalities. The objective of this study was to evaluate the impact of HIIT on the myocardial function of adolescent athletes, specifically focusing on left ventricular (LV) function, using conventional echocardiography and layer-specific strain (LSS) analysis. A total of 19 male adolescent athletes (with mean age of 16.83 ± 1.29 years) participating in various football clubs were recruited for this study. During the course of 8 weeks, these adolescent male athletes engaged in HIIT program centered around running. Upon completion of HIIT program, a treadmill exercise test was conducted. Subsequently, conventional and LSS echocardiography were conducted to acquire the evaluation of LV myocardial function. Interventricular septum thickness and ventricular mass index were significantly increased post high-intensity interval training (p < 0.005). After the HIIT, the treadmill exercise test demonstrated a significant increase in test duration and metabolic equivalent compared to the pre-training values (p < 0.005). Post high-intensity interval training, LSS analysis revealed significantly improved LV circumferential strain values in the basal and mid-segments of the left ventricle when compared to the pre-training measurements (p < 0.005). The implementation of high-intensity interval training led to an enhancement of circumferential LSS in the LV, indicating a favorable physiological adaptation and improved efficiency of the myocardium.
Collapse
Affiliation(s)
| | - Süha Çetin
- Department of Cardiology, Okan University Hospital, Icmeler Mah. Aydinli Yolu Cad. Nr 2, Icmeler, 34947, Tuzla, Istanbul, Turkey.
| | - Deniz Demirci
- Department of Health Sciences, Uskudar University, Uskudar, Istanbul, Turkey
| | - Kadir Babaoğlu
- Department of Pediatric Cardiology, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
9
|
Zholshybek N, Khamitova Z, Toktarbay B, Jumadilova D, Khissamutdinov N, Dautov T, Rakhmanov Y, Bekbossynova M, Gaipov A, Salustri A. Cardiac imaging in athlete's heart: current status and future prospects. Cardiovasc Ultrasound 2023; 21:21. [PMID: 38098064 PMCID: PMC10720202 DOI: 10.1186/s12947-023-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Physical activity contributes to changes in cardiac morphology, which are known as "athlete's heart". Therefore, these modifications can be characterized using different imaging modalities such as echocardiography, including Doppler (flow Doppler and Doppler myocardial imaging) and speckle-tracking, along with cardiac magnetic resonance, and cardiac computed tomography. MAIN TEXT Echocardiography is the most common method for assessing cardiac structure and function in athletes due to its availability, repeatability, versatility, and low cost. It allows the measurement of parameters like left ventricular wall thickness, cavity dimensions, and mass. Left ventricular myocardial strain can be measured by tissue Doppler (using the pulse wave Doppler principle) or speckle tracking echocardiography (using the two-dimensional grayscale B-mode images), which provide information on the deformation of the myocardium. Cardiac magnetic resonance provides a comprehensive evaluation of cardiac morphology and function with superior accuracy compared to echocardiography. With the addition of contrast agents, myocardial state can be characterized. Thus, it is particularly effective in differentiating an athlete's heart from pathological conditions, however, is less accessible and more expensive compared to other techniques. Coronary computed tomography is used to assess coronary artery anatomy and identify anomalies or diseases, but its use is limited due to radiation exposure and cost, making it less suitable for young athletes. A novel approach, hemodynamic forces analysis, uses feature tracking to quantify intraventricular pressure gradients responsible for blood flow. Hemodynamic forces analysis has the potential for studying blood flow within the heart and assessing cardiac function. CONCLUSIONS In conclusion, each diagnostic technique has its own advantages and limitations for assessing cardiac adaptations in athletes. Examining and comparing the cardiac adaptations resulting from physical activity with the structural cardiac changes identified through different diagnostic modalities is a pivotal focus in the field of sports medicine.
Collapse
Affiliation(s)
- Nurmakhan Zholshybek
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan
| | - Zaukiya Khamitova
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan
| | - Bauyrzhan Toktarbay
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan
| | - Dinara Jumadilova
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan
- National Research Cardiac Surgery Center, Radiology Unit, Astana, 01000, Kazakhstan
| | - Nail Khissamutdinov
- National Research Cardiac Surgery Center, Cardiology Unit #2, Astana, 01000, Kazakhstan
| | - Tairkhan Dautov
- Clinical and Academic Department of Radiology and Nuclear Medicine, CF "University Medical Center", Astana, 01000, Kazakhstan
| | - Yeltay Rakhmanov
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan
| | | | - Abduzhappar Gaipov
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan
| | - Alessandro Salustri
- School of Medicine, Department of Medicine, Nazarbayev University, Astana, 01000, Kazakhstan.
| |
Collapse
|
10
|
Forsythe L, George K, Papadakis M, Mill N, Daniels M, Oxborough D. Seasonal variation of cardiac structure and function in the elite rugby football league athlete. Echo Res Pract 2023; 10:16. [PMID: 37817231 PMCID: PMC10566089 DOI: 10.1186/s44156-023-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/30/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Pre-participation cardiac screening (PCS) of "Super-League" rugby football league (RFL) athletes is mandatory but may be completed at any time point. The aim of this study was to assess cardiac electrical, structural and functional variation across the competitive season. METHODS Elite, male, RFL athletes from a single Super-League club underwent cardiac evaluation using electrocardiography (ECG), 2D echocardiography and speckle tracking echocardiography (STE) at four time points across the RFL season; (1) End pre-season (ENDPRE), (2) mid-season (MIDCOMP), (3) end-season (ENDCOMP) and (4) End off-season (ENDOFF). Training loads for each time point were also determined. One-way ANOVA with post-hoc Bonferroni were used for statistical analyses. RESULTS Total workload undertaken by athletes was lower at both MIDCOMP and ENDCOMP compared to ENDPRE (P < 0.001). ECG patterns were normal with training-related changes that were largely consistent across assessments. Structural data did not vary across assessment points. Standard functional data was not different across assessment points but apical rotation and twist were higher at ENDPRE (9.83˚ and 16.55˚, respectively compared to all other time points (MIDCOMP, 6.13˚ and 12.62˚; ENDCOMP, 5.84˚ and 12.12˚; ENDOFF 6.60˚ and 12.35˚). CONCLUSIONS Despite some seasonal variation in training load, the athletes' ECG and cardiac structure were stable across a competitive season. Seasonal variation in left ventricular (LV) apical rotation and twist, associated with higher training loads, should be noted in the context of PCS.
Collapse
Affiliation(s)
- Lynsey Forsythe
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Keith George
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Liverpool, L3 3AF UK
| | - Michael Papadakis
- Cardiovascular Sciences Research Centre, St Georges University of London, London, UK
| | - Nathan Mill
- St Helens Rugby Football League Club, St Helens, UK
| | - Matt Daniels
- St Helens Rugby Football League Club, St Helens, UK
| | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Liverpool, L3 3AF UK
| |
Collapse
|
11
|
Schellenberg J, Matits L, Bizjak DA, Kersten J, Kirsten J, Vollrath S, Steinacker JM. Assessment of myocardial function and cardiac performance using left ventricular global longitudinal strain in athletes after COVID-19: a follow-up study. Front Cardiovasc Med 2023; 10:1240278. [PMID: 37876776 PMCID: PMC10591089 DOI: 10.3389/fcvm.2023.1240278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background It has not yet been conclusively determined whether reduced left ventricular global longitudinal strain (LV GLS) after COVID-19 contributes to a reduction in exercise capacity. Our own studies showed a possible mild myocardial involvement in the form of reduced LV GLS in athletes after COVID-19 compared with healthy athletes. The aims of this prospective follow-up study were to investigate the development of LV GLS over a 3-month period in athletes after COVID-19 and the possible relationship between LV GLS and physical performance. Methods LV GLS was determined in four-, two-, and three-chamber views and assessed offline by a blinded investigator in 96 recreational athletes (mean age 33.15 ± 12.40 years, 53 male, peak VO2 38.82 ± 11.14 ml/min/kg) at a median of two (t0) and five months (t1) after COVID-19. Cardiopulmonary exercise testing (CPET) was performed on a bicycle ergometer on both examination dates. Results LV GLS improved significantly between t0 and t1 (t0 -18.82 ± 2.02 vs. t1 -19.46 ± 2.05, p < 0.001). Echocardiographic and spiroergometric parameters were within the normal clinical reference range. Maximum power increased significantly from t0 to t1 (t0 283.17 ± 83.20 vs. t1 286.24 ± 85.22 Watt, p = 0.009) and there was a trend toward increased peak oxygen uptake (t0 36.82 ± 11.14 vs. t1 38.68 ± 10.26 ml/min/kg, p = 0.069). We found no correlation between LV GLS and performance parameters, except for the respiratory exchange ratio (RER) [ρ -0.316, (-0.501; -0.102), p < 0.050]. Conclusions Significant improvement in LV GLS approximately five months after COVID-19 may be due to mild myocardial involvement during or shortly after COVID-19, which seems to recover. There was no correlation between LV GLS and performance parameters, except for an inverse correlation of LV GLS and RER, suggesting insufficient exercise intolerance at lower GLS values. Further studies on the development of GLS in athletes or in the general population with moderate and severe disease courses would be informative as well as the comparison of pre-COVID-19 with post-COVID-19 echocardiography to evaluate the effects of COVID-19 on cardiac function.
Collapse
Affiliation(s)
- J. Schellenberg
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
| | - L. Matits
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
- Clinical & Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - D. A. Bizjak
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
| | - J. Kersten
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
| | - J. Kirsten
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
| | - S. Vollrath
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
| | - J. M. Steinacker
- Division of Sports and Rehabilitation Medicine, University Ulm Hospital, Ulm, Germany
| |
Collapse
|
12
|
Roslan A, Stanislaus R, Yee Sin T, Aris FA, Ashari A, Shaparudin AA, Rahimi Shah WFW, Hui Beng K, Tjen Jhung L, Tantawi Jauhari Aktifanus A, Kamsani SH, Rusani BI, Win NT, Abdul Rani MNH, Ai Ming T, Aedrus N, Azman K, Halim MNA, Zainal MDY, Hussein K, Shariff Hamid M, Puji A, Khairuddin A. Echocardiography and strain analysis in Malaysian elite athletes versus young healthy adults. IJC HEART & VASCULATURE 2023; 47:101242. [PMID: 37576081 PMCID: PMC10422669 DOI: 10.1016/j.ijcha.2023.101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
Background Athletes have changes that can mimic pathological cardiomyopathy. Methods Echocardiographic study of 50 male, female athletes (MA, FA) and non-athletes (MNA, FNA) age 18 to 30 years. These athletes participate in sports with predominantly endurance component. All participants exhibit no known medical illnesses or symptoms. Results MA have thicker wall (IVSd) than MNA. No MA have IVSd > 1.2 cm and no FA have IVSd > 1.0 cm. Left ventricle internal dimension (LVIDd), left ventricle end diastolic volume index (LVEDVi) is bigger in athletes. None have LVIDd > 5.8 cm. Right ventricle fractional area change (FAC) is lower in athletes. (MA vs MNA, p = 0.013, FA vs FNA, p = 0.025). Athletes have higher septal and lateral e' (Septal e'; MA 13.57 ± 2.66 cm/s vs MNA 11.46 ± 2.93 cm/s, p < 0.001, Lateral e'; MA 17.17 ± 3.07 cm/s vs MNA 14.82 ± 3.14 cm/s, p < 0.001), (Septal e'; FA 13.46 ± 2.32 cm/s vs FNA 12.16 ± 2.05 cm/s, p = 0.04, Lateral e'; FA 16.92 ± 2.97 cm/s vs FNA 15.44 ± 2.29 cm/s, p = 0.006).No difference in Global longitudinal (GLS), Right ventricle free wall (RVFWS) and Global circumferential strain (GCS). Left atrial reservoir (LArS) and left atrial booster strain (LAbS) is smaller in athletes. (LArS, MA 44.12 ± 9.55% vs MNA 52.95 ± 11.17%, p < 0.001 LArS, FA 48.07 ± 10.06% vs FNA 53.64 ± 8.99%, p = 0.004), (LAbS, MA 11.59 ± 5.13% vs MNA 17.35 ± 5.27%, p < 0.001 LAbS FA 11.77 ± 4.65% vs FNA 15.30 ± 4.19%, p < 0.001). Conclusion Malaysian athletes have thicker wall and bigger left ventricle than controls. No athletes have IVSd > 1.2 cm and/or LVIDd > 5.8 cm. There is no difference in GLS, RVFWS and GCS but athletes have smaller LArS and LAbS.
Collapse
Affiliation(s)
- Aslannif Roslan
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Rohith Stanislaus
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Tey Yee Sin
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Faten A. Aris
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Afif Ashari
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | | | - Koh Hui Beng
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Lee Tjen Jhung
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | - Suraya H. Kamsani
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Beni I. Rusani
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Nay T. Win
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | - Tan Ai Ming
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Noraminah Aedrus
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | - Kartina Azman
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| | | | | | | | | | - Arshad Puji
- Institut Sukan Negara, Kuala Lumpur, Malaysia
| | - Ahmad Khairuddin
- Department of Cardiology, Institut Jantung Negara, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Engan B, Omdal TR, Greve G, Vollsaeter M, Leirgul E. Myocardial function including estimates of myocardial work in young adults born very preterm or with extremely low birthweight - a cohort study. BMC Cardiovasc Disord 2023; 23:222. [PMID: 37120542 PMCID: PMC10149027 DOI: 10.1186/s12872-023-03253-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Preterm birth and low birthweight have been associated with increased risk of heart failure and cardiovascular disease in young adulthood. However, results from clinical studies of myocardial function are not consistent. Echocardiographic strain analyses allow detection of early stages of cardiac dysfunction, and non-invasive estimates of myocardial work can provide additional information on cardiac function. We aimed to evaluate left ventricular (LV) myocardial function including measures of myocardial work in young adults born very preterm (gestational age < 29 weeks) or with extremely low birthweight (< 1000 g) (PB/ELBW), compared with term-born age- and sex matched controls. METHODS 63 PB/ELBW and 64 controls born in Norway in the periods 1982-1985, 1991-1992, and 1999-2000 were examined with echocardiography. LV ejection fraction (EF) and LV global longitudinal strain (GLS) were measured. Myocardial work was estimated from LV pressure-strain loops after determination of GLS and construction of a LV pressure curve. Diastolic function was evaluated by determination of the presence or absence of elevated LV filling pressure, including measures of left atrial longitudinal strain. RESULTS The PB/ELBW with mean birthweight 945 (standard deviation (SD) 217) grams, mean gestational age 27 (SD 2) weeks, and mean age 27 (SD 6) years had LV systolic function mainly within normal range. Only 6% had EF < 50% or impaired GLS >-16%, but 22% had borderline impaired GLS between - 16% and - 18%. Mean GLS in PB/ELBW (-19.4% (95% confidence interval (CI) -20.0, -18.9)) was impaired compared to controls (-20.6% (95% CI -21.1, -20.1)), p = 0.003. Lower birthweight was associated to more impaired GLS (Pearson correlation coefficient - 0.2). Means of EF, measures of diastolic function including left atrial reservoir strain, global constructive and wasted work, global work index and global work efficiency was similar in PB/ELBW and controls. CONCLUSION The young adults born very preterm or with extremely low birthweight had impaired LV-GLS compared to controls, although systolic function mainly within normal range. Lower birthweight was associated with more impaired LV-GLS. These findings could indicate an elevated lifetime risk of developing heart failure in preterm born individuals. Measures of diastolic function and myocardial work were similar compared to controls.
Collapse
Affiliation(s)
- Britt Engan
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.
| | - Tom R Omdal
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gottfried Greve
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Maria Vollsaeter
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Paediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Elisabeth Leirgul
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Griffiths MD, Landolfi E, Szabo A. Does Exercise Addiction Exist Among Individuals Engaged in Team-Based Exercise? A Position Paper. Int J Ment Health Addict 2023. [DOI: 10.1007/s11469-023-01039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractExercise addiction is a term used to describe dysfunctional exercise behavior characterized by the classic symptoms of addictions, which eventually result in physical, psychological, or social harm to the affected individual. While well over 1000 peer-reviewed papers on problematic exercise have been published, very few studies have explored the conceptual differences between team-based and individual-based exercise, and no previous study has critically addressed this issue. The rationale for this distinction is that team-based exercise is typically organized and scheduled by others with little or no control over its timing by the individual team member. On the contrary, individual-based exercise can be self-scheduled. Consequently, more (total) control over its timing facilitates the satisfaction of craving-induced urges characterized by an addiction. It is posited that exercise addicts, in general, are “lone wolves” in the context of their addiction. Therefore, being addicted to exercise in team sports is only possible if the individual resorts to additional individually-controlled exercise above and beyond team-based training. To support this position, the present paper briefly reviews the few studies conducted in this area and examines how their results match the diagnostic interpretation of “addiction.” The present position paper highlights that “control” over the addictive behavior, in this case, exercise, is an important marker in the potential for the risk of exercise addiction. Therefore, future studies should consider that team-based exercise assigns little control to the individual. However, the extent to which additional individual-based exercise occurs and poses a risk of addiction within team exercises merits further research attention.
Collapse
|
15
|
Chevalier L, Cochet H, Mahida S, S SB, Benard A, Cariou T, Sridi-Cheniti S, Benhenda S, Doutreleau S, Cade S, Guerard S, Guy JM, Trimoulet P, Picard S, Dusfour B, Pouzet A, Roseng S, Franchi M, Jaïs P, Pellegrin I, Chevalier L, Pellegrin I, Babeau M, Bensaïd A, Bernard J, Blanchard S, Chadourne C, Claisse P, Cubillé V, Dindart JM, Franchi M, Goguillot S, Humetz L, Izard P, Laffourcade B, Lemahieu B, Monnot D, Poirier C, Pouget P, Rebeyrol JL, Rubio E, Vela C, Vincent Q, ASCCOVID Investigators. Resuming Training in High-Level Athletes After Mild COVID-19 Infection: A Multicenter Prospective Study (ASCCOVID-19). SPORTS MEDICINE - OPEN 2022; 8:83. [PMID: 35751748 PMCID: PMC9233721 DOI: 10.1186/s40798-022-00469-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022]
Abstract
Background There is a paucity of data on cardiovascular sequelae of asymptomatic/mildly symptomatic SARS-Cov-2 infections (COVID). Objectives The aim of this prospective study was to characterize the cardiovascular sequelae of asymptomatic/mildly symptomatic COVID-19 among high/elite-level athletes. Methods 950 athletes (779 professional French National Rugby League (F-NRL) players; 171 student athletes) were included. SARS-Cov-2 testing was performed at inclusion, and F-NRL athletes were intensely followed-up for incident COVID-19. Athletes underwent ECG and biomarker profiling (D-Dimer, troponin, C-reactive protein). COVID(+) athletes underwent additional exercise testing, echocardiography and cardiac magnetic resonance imaging (CMR). Results 285/950 athletes (30.0%) had mild/asymptomatic COVID-19 [79 (8.3%) at inclusion (COVID(+)prevalent); 206 (28.3%) during follow-up (COVID(+)incident)]. 2.6% COVID(+) athletes had abnormal ECGs, while 0.4% had an abnormal echocardiogram. During stress testing (following 7-day rest), COVID(+) athletes had a functional capacity of 12.8 ± 2.7 METS with only stress-induced premature ventricular ectopy in 10 (4.3%). Prevalence of CMR scar was comparable between COVID(+) athletes and controls [COVID(+) vs. COVID(−); 1/102 (1.0%) vs 1/28 (3.6%)]. During 289 ± 56 days follow-up, one athlete had ventricular tachycardia, with no obvious link with a SARS-CoV-2 infection. The proportion with troponin I and CRP values above the upper-limit threshold was comparable between pre- and post-infection (5.9% vs 5.9%, and 5.6% vs 8.7%, respectively). The proportion with D-Dimer values above the upper-limit threshold increased when comparing pre- and post-infection (7.9% vs 17.3%, P = 0.01). Conclusion The absence of cardiac sequelae in pauci/asymptomatic COVID(+) athletes is reassuring and argues against the need for systematic cardiac assessment prior to resumption of training (clinicaltrials.gov; NCT04936503). Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00469-0.
Collapse
|
16
|
Zimmermann P, Eckstein ML, Moser O, Schöffl I, Zimmermann L, Schöffl V. Left Ventricular, Left Atrial and Right Ventricular Strain Modifications after Maximal Exercise in Elite Ski-Mountaineering Athletes: A Feasibility Speckle Tracking Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13153. [PMID: 36293734 PMCID: PMC9603167 DOI: 10.3390/ijerph192013153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Eleven world elite ski-mountaineering (Ski-Mo) athletes were evaluated for pronounced echocardiographic physiological remodeling as the primary aim of our feasibility speckle tracking study. In this context, sports-related cardiac remodeling was analyzed by performing two-dimensional echocardiography, including speckle tracking analysis of the left atrium (LA), right ventricle (RV) and left ventricular (LV) global longitudinal strain (LV-GLS) at rest and post-peak performance. The feasibility echocardiographic speckle tracking analysis was performed on eleven elite Ski-Mo athletes, which were obtained in 2022 during the annual medical examination. The obtained data of the professional Ski-Mo athletes (11 athletes, age: 18-26 years) were compared for different echocardiographic parameters at rest and post-exercise. Significant differences were found for LV-GLS mean (p = 0.0036) and phasic LA conduit strain pattern at rest and post-exercise (p = 0.0033). Furthermore, negative correlation between LV mass and LV-GLS (p = 0.0195, r = -0.69) and LV mass Index and LV-GLS (p = 0.0253, r = -0.66) at rest were elucidated. This descriptive reporting provided, for the first time, a sport-specific dynamic remodeling of an entire elite national team of the Ski-Mo athlete's left heart and elucidated differences in the dynamic deformation pattern of the left heart.
Collapse
Affiliation(s)
- Paul Zimmermann
- Department of Cardiology, Klinikum Bamberg, 96049 Bamberg, Germany
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany
- Division of Exercise Physiology and Metabolism, BaySpo-Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany
| | - Max L. Eckstein
- Division of Exercise Physiology and Metabolism, BaySpo-Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, BaySpo-Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany
| | - Isabelle Schöffl
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany
- Department of Pediatric Cardiology, Friedrich-Alexander-University Erlangen-Nurnberg, 91054 Erlangen, Germany
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds LS1 3HE, UK
| | - Lukas Zimmermann
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany
| | - Volker Schöffl
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds LS1 3HE, UK
- Department of Orthopedic and Trauma Surgery, Friedrich-Alexander-University Erlangen-Nurnberg, 91054 Erlangen, Germany
- Department of Orthopedic and Trauma Surgery, Klinikum Bamberg, 96049 Bamberg, Germany
- Section of Wilderness Medicine, Department of Emergency Medicine at the University of Colorado School of Medicine, Denver, CO 80045, USA
| |
Collapse
|
17
|
Danielian A, Shah AB. Differentiating Physiology from Pathology: The Gray Zones of the Athlete's Heart. Clin Sports Med 2022; 41:425-440. [PMID: 35710270 DOI: 10.1016/j.csm.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Routine vigorous exercise can lead to electrical, structural, and functional adaptations that can enhance exercise performance. There are several factors that determine the type and magnitude of exercise-induced cardiac remodeling (EICR) in trained athletes. In some athletes with pronounced cardiac remodeling, there can be an overlap in morphologic features with mild forms of cardiomyopathy creating gray zone scenarios whereby distinguishing health from disease can be difficult. An integrated clinical approach that factors athlete-specific characteristics (sex, size, sport, ethnicity, and training history) and findings from multimodality imaging are essential to help make this distinction.
Collapse
Affiliation(s)
- Alfred Danielian
- Las Vegas Heart Associates- Affiliated with Mountain View Hospital, 2880 North Tenaya Way Suite 100, Las Vegas, NV 89128, USA
| | - Ankit B Shah
- Sports & Performance Cardiology Program, MedStar Health, 3333 North Calvert Street Suite 500 JPB, Baltimore, MD 21218, USA.
| |
Collapse
|
18
|
Bewarder Y, Lauder L, Kulenthiran S, Schäfer O, Ukena C, Percy Marshall R, Hepp P, Laufs U, Stöbe S, Hagendorff A, Böhm M, Mahfoud F, Ewen S. Global longitudinal strain differentiates physiological hypertrophy from maladaptive remodeling. IJC HEART & VASCULATURE 2022; 40:101044. [PMID: 35573652 PMCID: PMC9096142 DOI: 10.1016/j.ijcha.2022.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/27/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
Aims Differentiation of left ventricular (LV) hypertrophy in healthy athletes from pathological LV hypertrophy in heart disease is often difficult. We explored whether extended echocardiographic measurements such as E/e’ and global longitudinal strain (GLS) distinguish physiologic from maladaptive hypertrophy in hypertrophic cardiomyopathy, excessively trained athletes’ hearts and normal hearts. Methods Seventy-eight professional athletes (cyclists n = 37, soccer players n = 29, handball players n = 21) were compared with patients (n = 88) with pathological LV hypertrophy (hypertrophic obstructive cardiomyopathy (HOCM, n = 17), hypertensive heart disease (HHD, n = 36), severe aortic valve stenosis (AVS, n = 35) and with sedentary healthy individuals as controls (n = 37). Results LV ejection fraction (LVEF) was ≥50% in all patients, athletes (median age 26 years, all male) and the controls (97% male, median age 32 years). LV mass index (LVMI) and septal wall thickness was in normal range in controls, but elevated in cyclists and patients with pathological hypertrophy (p < 0.001 for both). E/e’ was elevated in all patients with maladaptive hypertrophy but normal in controls and athletes (p < 0.001 vs. pathological hypertrophy). Furthermore GLS was reduced in patients with pathological hypertrophy compared with athletes and controls (for both p < 0.001). In subjects with septal wall thickness >11 mm, GLS (≥−18%) has a specificity of 79% to distinguish between physiological and pathological hypertrophy. Conclusion GLS and E/e’ are reliable parameters unlike left ventricular mass or LV ejection fraction to distinguish pathological and physiological hypertrophy.
Collapse
Affiliation(s)
- Yvonne Bewarder
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
- Corresponding author at: Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrberger Str. 100, Geb. 41, 66421 Homburg/Saar, Germany.
| | - Lucas Lauder
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Saarraaken Kulenthiran
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Ortwin Schäfer
- Cycling Team Israel Start-Up Nation, 4 Hanechoshet St., 6 Floor, Or Towers, 6971069 Tel Aviv, Israel
| | - Christian Ukena
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | | | - Pierre Hepp
- Universitätsklinikum Leipzig, Klinik und Poliklinik für Orthopädie, Unfallchirurgie und Plastische Chirurgie, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Ulrich Laufs
- Universitästklinikum Leipzig, Klinik und Poliklinik für Kardiologie, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Stephan Stöbe
- Universitästklinikum Leipzig, Klinik und Poliklinik für Kardiologie, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Andreas Hagendorff
- Universitästklinikum Leipzig, Klinik und Poliklinik für Kardiologie, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Felix Mahfoud
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Sebastian Ewen
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
19
|
Szabó L, Juhász V, Dohy Z, Fogarasi C, Kovács A, Lakatos BK, Kiss O, Sydó N, Csulak E, Suhai FI, Hirschberg K, Becker D, Merkely B, Vágó H. Is cardiac involvement prevalent in highly trained athletes after SARS-CoV-2 infection? A cardiac magnetic resonance study using sex-matched and age-matched controls. Br J Sports Med 2022; 56:553-560. [PMID: 34848398 PMCID: PMC8637606 DOI: 10.1136/bjsports-2021-104576] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate the cardiovascular consequences of SARS-CoV-2 infection in highly trained, otherwise healthy athletes using cardiac magnetic resonance (CMR) imaging and to compare our results with sex-matched and age-matched athletes and less active controls. METHODS SARS-CoV-2 infection was diagnosed by PCR on swab tests or serum immunoglobulin G antibody tests prior to a comprehensive CMR examination. The CMR protocol contained sequences to assess structural, functional and tissue-specific data. RESULTS One hundred forty-seven athletes (94 male, median 23, IQR 20-28 years) after SARS-CoV-2 infection were included. Overall, 4.7% (n=7) of the athletes had alterations in their CMR as follows: late gadolinium enhancement (LGE) showing a non-ischaemic pattern with or without T2 elevation (n=3), slightly elevated native T1 values with or without elevated T2 values without pathological LGE (n=3) and pericardial involvement (n=1). Only two (1.4%) athletes presented with definite signs of myocarditis. We found pronounced sport adaptation in both athletes after SARS-CoV-2 infection and athlete controls. There was no difference between CMR parameters, including native T1 and T2 mapping, between athletes after SARS-CoV-2 infection and the matched athletic groups. Comparing athletes with different symptom severities showed that athletes with moderate symptoms had slightly greater T1 values than athletes with asymptomatic and mildly symptomatic infections (p<0.05). However, T1 mapping values remained below the cut-off point for most patients. CONCLUSION Among 147 highly trained athletes after SARS-CoV-2 infection, cardiac involvement on CMR showed a modest frequency (4.7%), with definite signs of myocarditis present in only 1.4%. Comparing athletes after SARS-CoV-2 infection and healthy sex-matched and age-matched athletes showed no difference between CMR parameters, including native T1 and T2 values.
Collapse
Affiliation(s)
- Liliána Szabó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Vencel Juhász
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsófia Dohy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csenge Fogarasi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Orsolya Kiss
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Nóra Sydó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Dávid Becker
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vágó
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Athlete’s Heart in Elite Biathlon, Nordic Cross—Country and Ski-Mountaineering Athletes: Cardiac Adaptions Determined Using Echocardiographic Data. J Cardiovasc Dev Dis 2021; 9:jcdd9010008. [PMID: 35050218 PMCID: PMC8779238 DOI: 10.3390/jcdd9010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Twelve world elite Biathlon (Bia), ten Nordic Cross Country (NCC) and ten ski-mountaineering (Ski-Mo) athletes were evaluated for pronounced echocardiographic physiological cardiac remodeling as a primary aim of our descriptive preliminary report. In this context, sports-related cardiac remodeling was analyzed by performing two-dimensional echocardiography including speckle tracking analysis as left ventricular global longitudinal strain (LV-GLS). A multicenter retrospective analysis of echocardiographic data was performed in 32 elite world winter sports athletes, which were obtained between 2020 and 2021 during the annual medical examination. The matched data of the elite world winter sports athletes (14 women, 18 male athletes, age: 18–35 years) were compared for different echocardiographic parameters. Significant differences could be revealed for left ventricular systolic function (LV-EF, p = 0.0001), left ventricular mass index (LV Mass index, p = 0.0078), left atrial remodeling by left atrial volume index (LAVI, p = 0.0052), and LV-GLS (p = 0.0003) between the three professional winter sports disciplines. This report provides new evidence that resting measures of cardiac structure and function in elite winter sport professionals can identify sport specific remodeling of the left heart, against the background of training schedule and training frequency.
Collapse
|
21
|
Chen H, Warncke ML, Muellerleile K, Saering D, Beitzen-Heineke A, Kisters A, Swiderska M, Cavus E, Jahnke CM, Adam G, Lund GK, Tahir E. Acute impact of an endurance race on biventricular and biatrial myocardial strain in competitive male and female triathletes evaluated by feature-tracking CMR. Eur Radiol 2021; 32:3423-3435. [PMID: 34902061 PMCID: PMC9038901 DOI: 10.1007/s00330-021-08401-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Objectives Cardiac adaptation in endurance athletes is a well-known phenomenon, but the acute impact of strenuous exercise is rarely reported on. The aim of this study was to analyze the alterations in biventricular and biatrial function in triathletes after an endurance race using novel feature-tracking cardiac magnetic resonance (FT-CMR). Methods Fifty consecutive triathletes (45 ± 10 years; 80% men) and twenty-eight controls were prospectively recruited, and underwent 1.5-T CMR. Biventricular and biatrial volumes, left ventricular ejection fraction (LVEF), FT-CMR analysis, and late gadolinium imaging (LGE) were performed. Global systolic longitudinal (GLS), circumferential (GCS), and radial strain (GRS) were assessed. CMR was performed at baseline and following an endurance race. High-sensitive troponin T and NT-proBNP were determined. The time interval between race completion and CMR was 2.3 ± 1.1 h (range 1–5 h). Results Post-race troponin T (p < 0.0001) and NT-proBNP (p < 0.0001) were elevated. LVEF remained constant (62 ± 6 vs. 63 ± 7%, p = 0.607). Post-race LV GLS decreased by tendency (− 18 ± 2 vs. − 17 ± 2%, p = 0.054), whereas GCS (− 16 ± 4 vs. − 18 ± 4%, p < 0.05) and GRS increased (39 ± 11 vs. 44 ± 11%, p < 0.01). Post-race right ventricular GLS (− 19 ± 3 vs. − 19 ± 3%, p = 0.668) remained constant and GCS increased (− 7 ± 2 vs. − 8 ± 3%, p < 0.001). Post-race left atrial GLS (30 ± 8 vs. 24 ± 6%, p < 0.0001) decreased while right atrial GLS remained constant (25 ± 6 vs. 24 ± 6%, p = 0.519). Conclusions The different alterations of post-race biventricular and biatrial strain might constitute an intrinsic compensatory mechanism following an acute bout of endurance exercise. The combined use of strain parameters may allow a better characterization of ventricular and atrial function in endurance athletes. Key Points • Triathletes demonstrate a decrease of LV global longitudinal strain by tendency and constant RV global longitudinal strain following an endurance race. • Post-race LV and RV global circumferential and radial strains increase, possibly indicating a compensatory mechanism after an acute endurance exercise bout. • Subgroup analyses of male triathletes with focal myocardial fibrosis did not demonstrate alterations in biventricular and biatrial strain after an endurance race. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08401-y.
Collapse
Affiliation(s)
- Hang Chen
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Malte L Warncke
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kai Muellerleile
- Department of General and Interventional Cardiology, University Heart Center, Hamburg, Germany
| | - Dennis Saering
- Information Technology and Image Processing, University of Applied Sciences, Wedel, Germany
| | - Antonia Beitzen-Heineke
- Department of Oncology, Hematology, BMT With Department of Pneumology, University Medical Center Hamburg, Hamburg, Germany
| | - Anna Kisters
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Monika Swiderska
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ersin Cavus
- Department of General and Interventional Cardiology, University Heart Center, Hamburg, Germany
| | - Charlotte M Jahnke
- Department of General and Interventional Cardiology, University Heart Center, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Gunnar K Lund
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Enver Tahir
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
22
|
Karaca Özer P, Ayduk Gövdeli E, Engin B, Atıcı A, Baykız D, Orta H, Demirtakan ZG, Emet S, Elitok A, Tayyareci Y, Umman B, Bilge AK, Buğra Z. Role of global longitudinal strain in discriminating variant forms of left ventricular hypertrophy and predicting mortality. Anatol J Cardiol 2021; 25:863-871. [PMID: 34866580 DOI: 10.5152/anatoljcardiol.2021.21940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE In this study, we aimed to compare the functional adaptations of the left ventricle in variant forms of left ventricular hypertrophy (LVH) and to evaluate the use of two-dimensional speckle tracking echocardiography (2D-STE) in differential diagnosis and prognosis. METHODS This was a prospective cohort study of 68 patients with LVH, including 20 patients with non-obstructive hypertrophic cardiomyopathy (HCM), 23 competitive top-level athletes free of cardiovascular disease, and 25 patients with hypertensive heart disease (HHD). All the subjects underwent 2D transthoracic echocardiography (TTE) and 2D-STE. The primary endpoint was all-cause mortality. Global longitudinal strain (GLS) below -12.5% was defined as severely reduced strain, -12.5% to -17.9% as mildly reduced strain, and above -18% as normal strain. RESULTS The mean LV-GLS value was higher in athletes than in patients with HCM and HHD with the lowest value being in the HCM group (HCM: -11.4±2.2%; HHD: -13.6±2.6%; and athletes: -15.5±2.1%; p<0.001 among groups). LV-GLS below -12.5% distinguished HCM from others with 65% sensitivity and 77% specificity [area under curve (AUC)=0.808, 95% confidence interval (CI): 0.699-0.917, p<0.001]. The median follow-up duration was 6.4±1.1 years. Overall, 11 patients (16%) died. Seven of these were in the HHD group, and four were in the HCM group. The mean GLS value in patients who died was -11.8±1.5%. LV-GLS was significantly associated with mortality after adjusting age and sex via multiple analysis (RR=0.723, 95% CI: 0.537-0.974, p=0.033). Patients with GLS below -12.5% had a higher risk of all-cause mortality compared with that of patients with GLS above -12.5% according to Kaplan-Meier survival analysis for 7 years (29% vs. 9%; p=0.032). The LV-GLS value predicts mortality with 64% sensitivity and 70% specificity with a cut-off value of -12.5 (AUC=0.740, 95% CI: 0.617-0.863, p=0.012). CONCLUSION The 2D-STE provides important information about the longitudinal systolic function of the myocardium. It may enable differentiation variable forms of LVH and predict prognosis.
Collapse
Affiliation(s)
- Pelin Karaca Özer
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Elif Ayduk Gövdeli
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Berat Engin
- Department of Cardiology, Manavgat State Hospital; Antalya-Turkey
| | - Adem Atıcı
- Department of Cardiology, İstanbul Medeniyet University, Göztepe Training and Research Hospital; İstanbul-Turkey
| | - Derya Baykız
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Hüseyin Orta
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | | | - Samim Emet
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Ali Elitok
- Department of Cardiology, İstinye University, Liv Hospital; İstanbul-Turkey
| | - Yelda Tayyareci
- Department of Cardiology, İstinye University, Liv Hospital; İstanbul-Turkey
| | - Berrin Umman
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Ahmet Kaya Bilge
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| | - Zehra Buğra
- Department of Cardiology, İstanbul Medical Faculty, İstanbul University; İstanbul-Turkey
| |
Collapse
|
23
|
D’Andrea A, Sperlongano S, Russo V, D’Ascenzi F, Benfari G, Renon F, Palermi S, Ilardi F, Giallauria F, Limongelli G, Bossone E. The Role of Multimodality Imaging in Athlete's Heart Diagnosis: Current Status and Future Directions. J Clin Med 2021; 10:5126. [PMID: 34768646 PMCID: PMC8584488 DOI: 10.3390/jcm10215126] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
"Athlete's heart" is a spectrum of morphological and functional changes which occur in the heart of people who practice physical activity. When athlete's heart occurs with its most marked expression, it may overlap with a differential diagnosis with certain structural cardiac diseases, including cardiomyopathies, valvular diseases, aortopathies, myocarditis, and coronary artery anomalies. Identifying the underlying cardiac is essential to reduce the potential for sudden cardiac death. For this purpose, a spectrum of imaging modalities, including rest and exercise stress echocardiography, speckle tracking echocardiography, cardiac magnetic resonance, computed tomography, and nuclear scintigraphy, can be undertaken. The objective of this review article is to provide to the clinician a practical step-by-step approach, aiming at distinguishing between extreme physiology and structural cardiac disease during the athlete's cardiovascular evaluation.
Collapse
Affiliation(s)
- Antonello D’Andrea
- Division of Cardiology, Department of Traslational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (S.S.); (V.R.); (F.R.); (G.L.)
- Department of Cardiology and Intensive Coronary Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy;
| | - Simona Sperlongano
- Division of Cardiology, Department of Traslational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (S.S.); (V.R.); (F.R.); (G.L.)
| | - Vincenzo Russo
- Division of Cardiology, Department of Traslational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (S.S.); (V.R.); (F.R.); (G.L.)
| | - Flavio D’Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, 53100 Siena, Italy;
| | - Giovanni Benfari
- Department of Cardiology, Section of Medicine, University of Verona, 37129 Verona, Italy;
| | - Francesca Renon
- Division of Cardiology, Department of Traslational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (S.S.); (V.R.); (F.R.); (G.L.)
| | - Stefano Palermi
- Department of Cardiology and Intensive Coronary Care, Umberto I Hospital, 84014 Nocera Inferiore, Italy;
| | - Federica Ilardi
- Department of Advanced Biomedical Sciences, Federico II University Hospital, 80131 Naples, Italy;
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University of Naples, 80131 Naples, Italy;
| | - Giuseppe Limongelli
- Division of Cardiology, Department of Traslational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy; (S.S.); (V.R.); (F.R.); (G.L.)
| | - Eduardo Bossone
- Cardiology Division, Department of Internal Medicine, A. Cardarelli Hospital, 80131 Naples, Italy;
| |
Collapse
|
24
|
Anwar AM, tenCate FJ. Echocardiographic evaluation of hypertrophic cardiomyopathy: A review of up-to-date knowledge and practical tips. Echocardiography 2021; 38:1795-1808. [PMID: 34555207 DOI: 10.1111/echo.15200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most frequent cardiac disease with genetic substrate, affecting about .2%-.5% of the population. The proper diagnosis is important for optimal management and follow-up. Echocardiography plays an essential role in the assessment of patients with HCM including diagnosis, screening, management formulation, prognosis, and follow up. It also helps to differentiate HCM from other diseases. The advancement of software and probe technology added many echo modalities and techniques that helped in refining the diagnostic and assessing the prognosis of patients with HCM. In this review, we briefly summarize how to integrate the different echocardiographic modalities to obtain comprehensive assessment supported by an updated knowledge of the latest guidelines and recently published articles. Many practical tips and tricks are included in this review to improve the diagnostic accuracy of echocardiography and minimize errors during interpretation.
Collapse
Affiliation(s)
- Ashraf M Anwar
- Department of Cardiology, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia.,Department of Cardiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
25
|
Giusca S, Steen H, Montenbruck M, Patel AR, Pieske B, Erley J, Kelle S, Korosoglou G. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2021; 23:92. [PMID: 34247623 PMCID: PMC8273957 DOI: 10.1186/s12968-021-00775-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 01/12/2023] Open
Abstract
AIM To evaluate the ability of single heartbeat fast-strain encoded (SENC) cardiovascular magnetic resonance (CMR) derived myocardial strain to discriminate between different forms of left ventricular (LV) hypertrophy (LVH). METHODS 314 patients (228 with hypertensive heart disease (HHD), 45 with hypertrophic cardiomyopathy (HCM), 41 with amyloidosis, 22 competitive athletes, and 33 healthy controls) were systematically analysed. LV ejection fraction (LVEF), LV mass index and interventricular septal (IVS) thickness, T1 mapping and atypical late gadolinium enhancement (LGE) were assessed. In addition, the percentage of LV myocardial segments with strain ≤ - 17% (%normal myocardium) was determined. RESULTS Patients with amyloidosis and HCM exhibited the highest IVS thickness (17.4 ± 3.3 mm and 17.4 ± 6 mm, respectively, p < 0.05 vs. all other groups), whereas patients with amyloidosis showed the highest LV mass index (95.1 ± 20.1 g/m2, p < 0.05 vs all others) and lower LVEF compared to controls (50.5 ± 9.8% vs 59.2 ± 5.5%, p < 0.05). Analysing subjects with mild to moderate hypertrophy (IVS 11-15 mm), %normal myocardium exhibited excellent and high precision, respectively for the differentiation between athletes vs. HCM (sensitivity and specificity = 100%, Area under the curve; AUC%normalmyocardium = 1.0, 95%CI = 0.85-1.0) and athletes vs. HHD (sensitivity = 83%, specificity = 75%, AUC%normalmyocardium = 0.85, 95%CI = 0.78-0.90). Combining %normal myocardial strain with atypical LGE provided high accuracy also for the differentiation of HHD vs. HCM (sensitivity = 82%, specificity = 100%, AUCcombination = 0.92, 95%CI = 0.88-0.95) and HCM vs. amyloidosis (sensitivity = 83%, specificity = 100%, AUCcombination = 0.83, 95%CI = 0.60-0.96). CONCLUSION Fast-SENC derived myocardial strain is a valuable tool for differentiating between athletes vs. HCM and athletes vs. HHD. Combining strain and LGE data is useful for differentiating between HHD vs. HCM and HCM vs. cardiac amyloidosis.
Collapse
Affiliation(s)
- Sorin Giusca
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Roentgenstrasse 1, 69469, Weinheim, Germany
| | - Henning Steen
- Department of Cardiology, Marien Hospital Hamburg, Hamburg, Germany
| | | | - Amit R Patel
- Department of Medicine, University of Chicago, Illinois, USA
| | - Burkert Pieske
- Department of Internal Medicine, Cardiology German Heart Center Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jennifer Erley
- Department of Internal Medicine, Cardiology German Heart Center Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Sebastian Kelle
- Department of Internal Medicine, Cardiology German Heart Center Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Grigorios Korosoglou
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Roentgenstrasse 1, 69469, Weinheim, Germany.
| |
Collapse
|
26
|
Pagourelias ED, Christou GA, Sotiriou PG, Anifanti MA, Koutlianos NA, Tsironi MP, Christou KA, Vassilikos VP, Deligiannis AP, Kouidi EJ. Impact of a 246 Km ultra-marathon running race on heart: Insights from advanced deformation analysis. Eur J Sport Sci 2021; 22:1287-1295. [PMID: 33980129 DOI: 10.1080/17461391.2021.1930194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although previous studies suggest that prolonged intense exercise such as marathon running transitorily alters cardiac function, there is little information regarding ultramarathon races. Aim of this study was to investigate the acute impact of ultra-endurance exercise (UEE) on heart, applying advanced strain imaging. Echocardiographic assessment was performed the day before and at the finish line of "Spartathlon": A 246 Km ultra-marathon running race. 2D speckle-tracking echocardiography was performed in all four chambers, evaluating longitudinal strain (LS) for both ventricles and atria. Peak strain values and temporal parameters adjusted for heart rate were extracted from the derived curves. Out of 60 participants initially screened, 27 athletes (19 male, age 45 ± 7 years) finished the race in 33:34:27(28:50:38-35:07:07) hours. Absolute values of right (RV) and left ventricular (LV) LS (RVLS -22.9 ± 3.6 pre- to -21.2 ± 3.0% post-, p=0.04 and LVLS -20.9 ± 2.3 pre- to -18.8 ± 2.0 post-, p=0.009) slightly decreased post-race, whereas atrial strain did not change. RV and LV LS decrease was caused mainly by strain impairment of basal regions with apical preservation. Inter-chamber relationships assessed through RV/LV, LV/LA, RV/RA and RA/LA peak values' ratios remained unchanged from pre to post-race. Finally, UEE caused an extension of the systolic phase of cardiac cycle with concomitant diastole reduction (p<0.001 for all strain curves). Conclusively, ventricular LS strain as well as effective diastolic period slightly decreased, whereas atrial strain and inter-chamber relationships remained unchanged after running a 246-km-ultra-marathon race. These changes may be attributed to concomitant pre- and afterload alterations following UEE.
Collapse
Affiliation(s)
- Efstathios D Pagourelias
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Third Cardiology Department, Hippokrateion University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios A Christou
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota G Sotiriou
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria A Anifanti
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos A Koutlianos
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria P Tsironi
- Faculty of Human Movement and Quality of Life Sciences, Department of Nursing, University of Peloponnese, Sparta, Greece
| | - Konstantinos A Christou
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios P Vassilikos
- Third Cardiology Department, Hippokrateion University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios P Deligiannis
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia J Kouidi
- Sports Medicine Laboratory, Department of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Albaeni A, Davis JW, Ahmad M. Echocardiographic evaluation of the Athlete's heart. Echocardiography 2021; 38:1002-1016. [PMID: 33971043 DOI: 10.1111/echo.15066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiac response to prolonged, intense exercise induces phenotypic and physiologic adaptive changes that improve myocardial ability to meet oxygen demands. These adaptations, termed "athletes' heart," have been extensively studied. The importance of this entity arises from the increasing numbers of athletes as well as the drive for physical fitness in the general population leading to adaptive cardiac changes that need to be differentiated from life-threatening cardiovascular diseases. A number of pathologic entities may share phenotypic changes with the athletes' heart such as hypertrophic cardiomyopathy, dilated cardiomyopathy, Marfan's syndrome, and arrhythmogenic right ventricular cardiomyopathy. Cardiologists need to be cognizant of these overlapping findings to appropriately diagnose diseases and prevent catastrophic outcomes especially in young and healthy individuals who may not show any symptoms until they engage in intense exercise. It is equally important to recognize and distinguish normal, exercise-adaptive cardiac changes to provide accurate screening and guidance to young elite athletes. Echocardiography is a valuable modality that allows comprehensive initial evaluation of cardiac structures, function, and response to exercise. Several different echocardiographic techniques including M-Mode, 2D echo, Doppler, tissue Doppler, color tissue Doppler, and speckle tracking have been used in the evaluation of cardiac adaptation to exercise. The following discussion is a review of literature that has expanded our knowledge of the athlete's heart.
Collapse
Affiliation(s)
- Aiham Albaeni
- Department of Medicine, Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - John W Davis
- Department of Medicine, Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Masood Ahmad
- Department of Medicine, Division of Cardiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Moulson N, Baggish A. Subclinical COVID-19 Cardiac Imaging Findings: Resurgence of the Athletic "Grey-Zone". JACC Cardiovasc Imaging 2021; 14:556-558. [PMID: 33454267 PMCID: PMC7836850 DOI: 10.1016/j.jcmg.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Nathaniel Moulson
- Cardiovascular Performance Program, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aaron Baggish
- Cardiovascular Performance Program, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Małek ŁA, Mazurkiewicz Ł, Marszałek M, Barczuk-Falęcka M, Simon JE, Grzybowski J, Miłosz-Wieczorek B, Postuła M, Marczak M. Deformation Parameters of the Heart in Endurance Athletes and in Patients with Dilated Cardiomyopathy-A Cardiac Magnetic Resonance Study. Diagnostics (Basel) 2021; 11:diagnostics11020374. [PMID: 33671723 PMCID: PMC7926616 DOI: 10.3390/diagnostics11020374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
A better understanding of the left ventricle (LV) and right ventricle (RV) functioning would help with the differentiation between athlete's heart and dilated cardiomyopathy (DCM). We aimed to analyse deformation parameters in endurance athletes relative to patients with DCM using cardiac magnetic resonance feature tracking (CMR-FT). The study included males of a similar age: 22 ultramarathon runners, 22 patients with DCM and 21 sedentary healthy controls (41 ± 9 years). The analysed parameters were peak LV global longitudinal, circumferential and radial strains (GLS, GCS and GRS, respectively); peak LV torsion; peak RV GLS. The peak LV GLS was similar in controls and athletes, but lower in DCM (p < 0.0001). Peak LV GCS and GRS decreased from controls to DCM (both p < 0.0001). The best value for differentiation between DCM and other groups was found for the LV ejection fraction (area under the curve (AUC) = 0.990, p = 0.0001, with 90.9% sensitivity and 100% specificity for ≤53%) and the peak LV GRS diastolic rate (AUC = 0.987, p = 0.0001, with 100% sensitivity and 88.4% specificity for >-1.27 s-1). The peak LV GRS diastolic rate was the only independent predictor of DCM (p = 0.003). Distinctive deformation patterns that were typical for each of the analysed groups existed and can help to differentiate between athlete's heart, a nonathletic heart and a dilated cardiomyopathy.
Collapse
Affiliation(s)
- Łukasz A. Małek
- Department of Epidemiology Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, 04-635 Warsaw, Poland
- Correspondence:
| | - Łukasz Mazurkiewicz
- Department of Cardiomyopathy, National Institute of Cardiology, 04-628 Warsaw, Poland; (Ł.M.); (J.G.)
| | - Mikołaj Marszałek
- Medical University of Warsaw, 02-091 Warsaw, Poland; (M.M.); (J.E.S.)
| | | | - Jenny E. Simon
- Medical University of Warsaw, 02-091 Warsaw, Poland; (M.M.); (J.E.S.)
| | - Jacek Grzybowski
- Department of Cardiomyopathy, National Institute of Cardiology, 04-628 Warsaw, Poland; (Ł.M.); (J.G.)
| | - Barbara Miłosz-Wieczorek
- Department of Radiology, National Institute of Cardiology, 04-628 Warsaw, Poland; (B.M.-W.); (M.M.)
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Magdalena Marczak
- Department of Radiology, National Institute of Cardiology, 04-628 Warsaw, Poland; (B.M.-W.); (M.M.)
| |
Collapse
|
30
|
Haji K, Marwick TH. Clinical Utility of Echocardiographic Strain and Strain Rate Measurements. Curr Cardiol Rep 2021; 23:18. [PMID: 33594493 DOI: 10.1007/s11886-021-01444-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Assessment of left ventricular function is pivotal in many decisions, but ejection fraction has fundamental limitations for assessment of mild dysfunction, and especially for repeated assessments. Myocardial deformation imaging using speckle-tracking is widely available on modern echocardiography systems, and is now feasible as a clinical, rather than purely a research tool. Strain can be measured in all cardiac chambers, most commonly as a systolic parameter, although it can be measured in diastole. Generally, speckle tracking is more effective at measuring strain than strain-rate, which requires a higher temporal resolution. The purpose of this review is to help clinicians understand the main situations where strain provides incremental value to standard echocardiographic measurements. RECENT FINDINGS The normal range of LV global longitudinal strain (GLS) has now been defined as -18% and lower (ie more negative), abnormal as -16% or higher (ie less negative), with -16 to -18% being borderline. The variation between different vendors is now small for global parameters, but regional strain measurement remains unreliable - and therefore its use for stress echocardiography remains problematic. The most valuable indications for measuring strain are subclinical LV dysfunction (eg., GLS in HFpEF, stage B heart failure, aortic stenosis, mitral regurgitation), RV dysfunction (RV strain in pulmonary hypertension), atrial fibrillation (LA strain) and sequential follow-up (cardiotoxicity). Strain measurements have clinical utility in a number of settings and should be considered as part of the standard echocardiogram.
Collapse
Affiliation(s)
- Kawa Haji
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria, 3004, Australia.,Cardiology Department, Western Health, Melbourne, Australia.,Departments of Cardiometabolic Health and Medicine, University of Melbourne, Melbourne, Australia
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, PO Box 6492, Melbourne, Victoria, 3004, Australia. .,Cardiology Department, Western Health, Melbourne, Australia. .,Departments of Cardiometabolic Health and Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
31
|
Wang TKM, Desai MY, Collier P, Grimm RA, Griffin BP, Popović ZB. Determining the thresholds for abnormal left ventricular strains in healthy subjects by echocardiography: a meta-analysis. Cardiovasc Diagn Ther 2021; 10:1858-1873. [PMID: 33381430 DOI: 10.21037/cdt-20-711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Left ventricular global longitudinal strain (LVGLS), circumferential strain (LVGCS) and radial strain (LVGRS) are echocardiographic parameters with wide clinical applicability. However, the thresholds for abnormal left ventricular (LV) strains, particularly the lower limits of normal (LLN), are not well established. This meta-analysis determined the mean and LLN of two- (2D) and three-dimensional (3D) LV strain in healthy subjects and factors that influence strain measurements. Methods We searched PubMed, Embase and Cochrane databases until 31 December 2019 for studies reporting left ventricular (LV) global strain in at least 50 healthy subjects. We pooled means and LLNs of 2D and 3D LV strain using random-effects models, and performed subgroup and meta-regression analysis for LVGLS. Results Forty-four studies were eligible totaling 8,910 subjects. The pooled means and LLNs (95% confidence intervals) were -20.1% (-20.7%, -19.6%) and -15.4% (-16.0%, -14.7%) respectively for 2D-LVGLS; -21.9% (-23.4%, -20.3%) and -15.3% (-16.9%, -13.8%) respectively for 2D-LVGCS; and 48.4% (43.8%, 53.0%) and 25.5% (17.8%, 33.1%) respectively for 2D-LVGRS. All pooled analyses demonstrated significant heterogeneity, and means and LLNs of and 3D-LV strains differed marginally from 2D. Only vendor software was associated with differences in pooled means and LLN of 2D-LVGLS. Conclusions In conclusion, pooled means and LLNs of 2D- and 3D-LV global strain parameters in healthy subjects were reported. Based on the pooled LLNs, thresholds for abnormal, borderline and normal strains can be defined, such as less negative than -14.7%, between -14.7% and -16.0% and more negative than -16.0% respectively for 2D-LVGLS, and 2D-LVGLS values are only affected by vendor software.
Collapse
Affiliation(s)
- Tom Kai Ming Wang
- Section of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Milind Y Desai
- Section of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patrick Collier
- Section of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard A Grimm
- Section of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian P Griffin
- Section of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zoran B Popović
- Section of Cardiovascular Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
D'Ascenzi F, Biella F, Lemme E, Maestrini V, Di Giacinto B, Pelliccia A. Female Athlete's Heart: Sex Effects on Electrical and Structural Remodeling. Circ Cardiovasc Imaging 2020; 13:e011587. [PMID: 33317335 DOI: 10.1161/circimaging.120.011587] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Most of our knowledge on training-induced cardiac remodeling is derived from men, with the paucity of data from women representing an important gap in knowledge. The aim of the study was to define the electrocardiographic and morphological features of female athlete's heart, with special attention to differences related to sex and sport. METHODS Seven hundred twenty Olympic athletes (360 females and 360 age- and sport-matched males, mean age: 23±5 years) were evaluated by clinical, resting, and exercise electrocardiography and echocardiography. RESULTS Anterior T-wave inversion was more common in females than males (P<0.05). Left ventricular (LV) wall thickness and LV mass were greater in men (P<0.001). Females had smaller absolute but greater indexed LV and right ventricular (RV) dimensions as compared to males. Most women had normal LV geometry (80.8%). A progressive increase in LV/RV dimensions was observed in women from those engaged in skill, power, to mixed and endurance disciplines, with the endurance ones demonstrating the greatest degree of RV dilatation. Women had a peculiar biventricular adaptation, with higher LV/RV (1.41±0.16 versus 1.36±0.15, P<0.0001) and lower RV inflow/outflow ratio (P<0.001), as compared to men. CONCLUSIONS Sex significantly affects cardiac remodeling in athletes, with females presenting a different electrical and structural remodeling. Women maintain a normal LV geometry, with relative larger increase of cavity dimensions compared with men. Type of sport has a relevant impact, with endurance athletes exhibiting the greatest degree of RV and LV dimensional remodeling. The present study confirms the need for a sex-based approach for interpreting the complex features of athlete's heart in women.
Collapse
Affiliation(s)
- Flavio D'Ascenzi
- Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy (F.D.)
| | - Federico Biella
- Institute of Sports Medicine and Science, Rome, Italy (F.B., E.L., V.M., B.D.G., A.P.)
| | - Erika Lemme
- Institute of Sports Medicine and Science, Rome, Italy (F.B., E.L., V.M., B.D.G., A.P.)
| | - Viviana Maestrini
- Institute of Sports Medicine and Science, Rome, Italy (F.B., E.L., V.M., B.D.G., A.P.)
| | - Barbara Di Giacinto
- Institute of Sports Medicine and Science, Rome, Italy (F.B., E.L., V.M., B.D.G., A.P.)
| | - Antonio Pelliccia
- Institute of Sports Medicine and Science, Rome, Italy (F.B., E.L., V.M., B.D.G., A.P.)
| |
Collapse
|
33
|
Yaman B, Akpınar O, Kemal HS, Cerit L, Sezenöz B, Açıkgöz E, Duygu H. The beneficial effect of low-intensity exercise on cardiac performance assessed by two-dimensional speckle tracking echocardiography. Echocardiography 2020; 37:1989-1999. [PMID: 33070385 DOI: 10.1111/echo.14891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Regular physical activity is associated with cardiovascular health; however, intensive exercise can have harmful effects on the heart. Two-dimensional (2D) speckle tracking echocardiography (STE) is a well-established diagnostic tool to evaluate subclinical myocardial dysfunction and has been widely used in athletes in recent years. This study is designed to evaluate whether low-intensity exercise has beneficial effects on myocardial performance. We aimed to evaluate systolic and diastolic functions of myocardium derived from STE in sports practitioners in a low-intensity exercise training program. METHOD Eighty-four sports practitioners and eighty-two sedentary healthy controls were prospectively included in our study. In addition to standard 2D echocardiographic measurements, left ventricular (LV) global longitudinal strain (GLS), right ventricular (RV) GLS, RV-free wall strain (FWS), left atrium (LA) strain, and strain rate were analyzed. RESULTS Mean LV GLS was significantly higher in sports practitioners compared with sedentary population (-19.21 ± 2.61% vs -18.37 ± 2.75%, P = .044). RV GLS was significantly higher in sports practitioners than sedentary population (-21.82 ± 4.86% vs -20.04 ± 4.62%, P = .016). Longitudinal strain and strain rate of LA conduit phase were significantly higher in sports practitioners than sedentary participants (-23.60 ± 6.83% vs -20.20 ± 6.64%, P = .001; -2.45 ± 0.81 L/s vs -2.10 ± 0.89 L/s, P = .010; respectively). Also, LA conduit phase strain/contraction phase strain and conduit phase strain rate/contraction phase strain rate ratios were higher in sports practitioners (1.88 ± 0.93 vs 1.48 ± 0.63, P = .001; 1.42 ± 0.65 vs 1.16 ± 0.53, P = .005; respectively). CONCLUSION The findings in the current study suggest that regular low-intensity exercise may have a beneficial effect on both systolic and diastolic functions of the myocardium.
Collapse
Affiliation(s)
- Belma Yaman
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Onur Akpınar
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Hatice S Kemal
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Levent Cerit
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Burak Sezenöz
- Department of Cardiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Eser Açıkgöz
- Department of Cardiology, Ankara Oncology Training and Research Hospital, Ankara, Turkey
| | - Hamza Duygu
- Department of Cardiology, Faculty of Medicine, Near East University, Nicosia, Cyprus
| |
Collapse
|
34
|
A Vegan Athlete's Heart-Is It Different? Morphology and Function in Echocardiography. Diagnostics (Basel) 2020; 10:diagnostics10070477. [PMID: 32674452 PMCID: PMC7400409 DOI: 10.3390/diagnostics10070477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Plant-based diets are a growing trend, including among athletes. This study compares the differences in physical performance and heart morphology and function between vegan and omnivorous amateur runners. A study group and a matched control group were recruited comprising N = 30 participants each. Eight members of the study group were excluded, leaving N = 22 participants. Members of both groups were of similar age and trained with similar frequency and intensity. Vegans displayed a higher VO2max (54.08 vs. 50.10 mL/kg/min, p < 0.05), which correlated positively with carbohydrate intake (ρ = 0.52) and negatively with MUFA (monounsaturated fatty acids) intake (ρ = −0.43). The vegans presented a more eccentric form of remodelling with greater left ventricular end diastolic diameter (LVEDd, 2.93 vs. 2.81 cm/m2, p = 0.04) and a lower relative wall thickness (RWT, 0.39 vs. 0.42, p = 0.04) and left ventricular mass (LVM, 190 vs. 210 g, p = 0.01). The left ventricular mass index (LVMI) was similar (108 vs. 115 g/m2, p = NS). Longitudinal strain was higher in the vegan group (−20.5 vs. −19.6%, p = 0.04), suggesting better systolic function. Higher E-wave velocities (87 vs. 78 cm/s, p = 0.001) and E/e′ ratios (6.32 vs. 5.6, p = 0.03) may suggest better diastolic function in the vegan group. The results demonstrate that following a plant-based diet does not impair amateur athletes’ performance and influences both morphological and functional heart remodelling. The lower RWT and better LV systolic and diastolic function are most likely positive echocardiographic findings.
Collapse
|
35
|
Kaya Ü, Eren H, Öcal L, İnanır M, Balaban İ. Association between fragmented QRS complexes and left-ventricular dysfunction in anabolic androgenic steroid users. Acta Cardiol 2020; 75:244-253. [PMID: 31663816 DOI: 10.1080/00015385.2019.1682339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Anabolic androgen steroid (AS) use has adverse effects on left ventricular functions, such as fibrosis development. Fragmented QRS is an important marker of myocardial fibrosis, while speckle-tracking echocardiographyis a method used to show subclinical left ventricle dysfunction. In this study, we examined the the ability of fQRS + to detect left ventricle fibrosis by speckle tracking echocardiography (STE) in AS users.Methods: The study included a total of 181 healthy athletes. Athletes were divided into two groups as AS users (n = 89) and non-AS users (n = 92). Then, athletes using AS were divided into two groups as fQRS+ (n = 52) and fQRS- (n = 37). In both groups, the arithmetic mean of three images was used to obtain the left ventricle global longitudinal strain (LV-GLS). The E/SRe ratio was also calculated and analysed.Results: There were significant differences between the AS users and non-AS users in terms of, E/SRe (55.7 ± 17.9 vs 50.3 ± 14.8; p = 0.015), LV-GLS (23.1 ± 1.9 vs 24.0 ± 1.7; p = 0.001), and fQRS (18.5% vs 6%; p = 0.005). When subgroup analysis was performed, both LV-GLS and E/SRivr were found to be poor in the fQRS + group. When multiple linear regression analysis was performed, we determined fQRS as an independent predictor for LV-GLS and E/SRivr ratio.Conclusion: In conclusion, our study demonstrated that fQRS is a parameter that can beused to determine left ventricle subclinical systolic and diastolic dysfunction in AS users. It can be used for cessation of drug use, especially in long-term use.
Collapse
Affiliation(s)
- Ülker Kaya
- Department of Cardiology, Elbistan State Hospital, Kahramanmaraş, Turkey
| | - Hayati Eren
- Department of Cardiology, Elbistan State Hospital, Kahramanmaraş, Turkey
| | - Lütfi Öcal
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| | - Mehmet İnanır
- Department of Cardiology, Abant Izzet Baysal University Hospital, Bolu, Turkey
| | - İsmail Balaban
- Department of Cardiology, Kosuyolu Kartal Heart Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
36
|
Sgambat K, Moudgil A. Obesity and Cardiovascular Outcomes in Children With CKD: Does Sex Matter? Am J Kidney Dis 2020; 76:161-162. [PMID: 32389355 DOI: 10.1053/j.ajkd.2020.02.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Kristen Sgambat
- Division of Nephrology, Children's National Hospital, Washington, DC.
| | - Asha Moudgil
- Division of Nephrology, Children's National Hospital, Washington, DC
| |
Collapse
|
37
|
Bhatt A, Khanna V, Patel N, Schwartz A, Homma S, Engel DJ. Left Ventricular Global Longitudinal Strain in National Basketball Association Athletes. J Am Soc Echocardiogr 2020; 33:514-515. [DOI: 10.1016/j.echo.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
|
38
|
Brown B, Millar L, Somauroo J, George K, Sharma S, La Gerche A, Forsythe L, Oxborough D. Left ventricular remodeling in elite and sub-elite road cyclists. Scand J Med Sci Sports 2020; 30:1132-1139. [PMID: 32187398 DOI: 10.1111/sms.13656] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Marked adaptation of left ventricular (LV) structure in endurance athletes is well established. However, previous investigations of functional and mechanical adaptation have been contradictory. A lack of clarity in subjects' athletic performance level may have contributed to these disparate findings. This study aimed to describe structural, functional, and mechanical characteristics of the cyclists' LV, based on clearly defined performance levels. Male elite cyclists (EC) (n = 69), sub-elite cyclists (SEC) (n = 30), and non-athletes (NA) (n = 46) were comparatively studied using conventional and speckle tracking 2D echocardiography. Dilated eccentric hypertrophy was common in EC (34.7%), but not SEC (3.3%). Chamber concentricity was higher in EC compared to SEC (7.11 ± 1.08 vs 5.85 ± 0.98 g/(mL)2/3 , P < .001). Ejection fraction (EF) was lower in EC compared to NA (57 ± 5% vs 59 ± 4%, P < .05), and reduced EF was observed in a greater proportion of EC (11.6%) compared to SEC (6.7%). Global circumferential strain (GCε) was greater in EC (-18.4 ± 2.4%) and SEC (-19.8 ± 2.7%) compared to NA (-17.2 ± 2.6%) (P < .05 and P < .001). Early diastolic filling was lower in EC compared with SEC (0.72 ± 0.14 vs 0.88 ± 0.12 cm/s, P < .001), as were septal E' (12 ± 2 vs 15 ± 2 cm/s, P < .001) and lateral E' (18 ± 4 vs 20 ± 4 cm/s, P < .05). The magnitude of LV structural adaptation was far greater in EC compared with SEC. Increased GCε may represent a compensatory mechanism to maintain stroke volume in the presence of increased chamber volume. Decreased E and E' velocities may be indicative of a considerable functional reserve in EC.
Collapse
Affiliation(s)
- Benjamin Brown
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lynne Millar
- Cardiovascular Sciences Research Centre, St Georges University of London, London, UK
| | - John Somauroo
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Keith George
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sanjay Sharma
- Cardiovascular Sciences Research Centre, St Georges University of London, London, UK
| | - Andre La Gerche
- Sports Cardiology, Baker IDI Heart and Diabetes Institute, Melbourne, Vic., Australia
| | - Lynsey Forsythe
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
39
|
Cardiac adaptations in elite female football- and volleyball-athletes do not impact left ventricular global strain values: a speckle tracking echocardiography study. Int J Cardiovasc Imaging 2020; 36:1085-1096. [PMID: 32170496 DOI: 10.1007/s10554-020-01809-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
Cardiac adaptations to exercise on an elite level have been well studied. Strain analysis by speckle tracking echocardiography has emerged as a tool for sports cardiologists to assess the nature of hypertrophy in athletes' hearts. In prior studies, strain values generally did not change in physiological adaptations to exercise but were reduced in pathological hypertrophy. However, research in this field has focused almost solely on male athletes. Purpose of the present study is to investigate strain values in the hearts of female elite athletes in football and volleyball. In this cross-sectional study echocardiography was performed on 19 female elite football-players, 16 female elite volleyball-players and 16 physically inactive controls. Conventional echocardiographic data was documented as well as left ventricular longitudinal, radial and circumferential strain values gained by speckle tracking echocardiography. The hearts of the female athletes had a thicker septal wall, a larger overall mass and larger atria than the hearts in the control group. Global longitudinal, radial and circumferential strain values did not differ between the athletes and controls or between sporting disciplines. No correlation between septal wall thickness and global strain values could be documented. Cardiac adaptations to elite level exercise in female volleyball and football players do not influence global strain values. This has been documented for male athletes of several disciplines. The present study adds to the very limited control-group comparisons of left ventricular strain values in elite female athletes. The findings indicate that global strain values can be used when assessing the cardiac health in female athletes.
Collapse
|
40
|
Arenas IA, Podesta CA, Issa O, Lin J, Brenes JC. Myocardial longitudinal strain, fitness, and heart failure risk factors in young adults. Echocardiography 2020; 37:404-411. [PMID: 32077529 DOI: 10.1111/echo.14613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/24/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS To investigate the relationship between fitness, heart failure (HF) risk factors (age, blood pressure, and obesity), and global/regional myocardial longitudinal strain in young adults undergoing stress testing. METHODS Individuals 25-55 years old without any significant medical history, not taking medications, and with a normal maximal stress echocardiogram were eligible. Global and regional longitudinal strain (LS) was evaluated by 2D speckle tracking echocardiography. RESULTS One hundred and seventy patients were included, of which 60% were males. The mean age was 43 years old, 49% had optimal blood pressure, and 30% were obese. On average, patients achieved 10.5 (3) METS, and the global LS was -19.9 (3.1) %. Reduced fitness was associated with decreased global longitudinal strain (GLS). Those in the top GLS quartile walked on average 1 minute and 21 seconds longer compared with the lowest quartile (P < .001). The effect of fitness on LS was preferential to the mid and apex, such that there was an apex-to-base gradient. Obesity was also independently associated with reduced GLS. However, the reduction in LS in obese individuals was more prominent at the base and mid-walls with relative sparing of the apex. Similar to fitness, aging was also associated with an increase in the apex-to-base gradient of LS. Furthermore, diastolic filling parameters correlated distinctively with regional LS. CONCLUSIONS In young adults without cardiovascular disease, low fitness and obesity are independently associated with reduced left ventricular longitudinal strain. There is a differential effect of HF risk factors on regional longitudinal function.
Collapse
Affiliation(s)
- Ivan A Arenas
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, Florida
| | - Carlos A Podesta
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, Florida
| | - Omar Issa
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, Florida
| | - Jeffrey Lin
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, Florida
| | - Juan C Brenes
- Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami Beach, Florida
| |
Collapse
|
41
|
Skjølsvik ET, Hasselberg NE, Dejgaard LA, Lie ØH, Andersen K, Holm T, Edvardsen T, Haugaa KH. Exercise is Associated With Impaired Left Ventricular Systolic Function in Patients With Lamin A/C Genotype. J Am Heart Assoc 2020; 9:e012937. [PMID: 31957533 PMCID: PMC7033829 DOI: 10.1161/jaha.119.012937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Lamin A/C cardiomyopathy is a malignant and highly penetrant inheritable cardiomyopathy. Competitive sports have been associated with adverse events in these patients, but data on recreational exercise are lacking. We aimed to explore associations between exercise exposure and disease severity in patients with lamin A/C genotype. Methods and Results Lamin A/C genotype positive patients answered a questionnaire on exercise habits from age 7 years until genetic diagnosis. We recorded exercise hours >3 metabolic equivalents and calculated cumulative lifetime exercise. Patients were grouped in active or sedate based on lifetime exercise hours above or below median. We performed echocardiography, 12‐lead ECG, Holter monitoring, and biomarkers including NT‐proBNP (N‐terminal pro‐B‐type natriuretic peptide). We defined left ventricular ejection fraction <45% as a clinically significant impairment of left ventricular function. We included 69 patients (age 42±14 years, 41% probands, 46% women) with median lifetime exercise 4160 (interquartile range 1041–6924) hours. Active patients were more frequently probands (53% versus 29%, P=0.04), had lower left ventricular ejection fraction (43±13% versus 51±11%, P=0.006), and higher NT‐proBNP (78 [interquartile range 32–219] pmol/L versus 30 [interquartile range 13–64] pmol/L, P=0.03) compared with sedate, while age did not differ (45±13 years versus 40±16 years, P=0.16). The decrease in left ventricular ejection fraction per tertile increment in lifetime exercise was 4% (95% CI −7% to −0.4%, P=0.03), adjusted for age and sex and accounting for dependence within families. Left ventricular ejection fraction <45% was observed at a younger age in active patients (log rank P=0.007). Conclusions Active lamin A/C patients had worse systolic function compared with sedate which occurred at younger age. Our findings may improve exercise recommendations in patients with lamin A/C.
Collapse
Affiliation(s)
- Eystein T Skjølsvik
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway.,Institute for Clinical Medicine University of Oslo Norway
| | - Nina E Hasselberg
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway
| | - Lars A Dejgaard
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway.,Institute for Clinical Medicine University of Oslo Norway
| | - Øyvind H Lie
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway.,Institute for Clinical Medicine University of Oslo Norway
| | - Kjell Andersen
- Department of Medicine Section of Cardiology Innlandet Hospital Trust Hamar Norway
| | - Torbjørn Holm
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway
| | - Thor Edvardsen
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway.,Institute for Clinical Medicine University of Oslo Norway
| | - Kristina H Haugaa
- Department of Cardiology Oslo University Hospital Rikshospitalet Oslo Norway.,Institute for Clinical Medicine University of Oslo Norway
| |
Collapse
|
42
|
Pelliccia A, Caselli S, Sharma S, Basso C, Bax JJ, Corrado D, D'Andrea A, D'Ascenzi F, Di Paolo FM, Edvardsen T, Gati S, Galderisi M, Heidbuchel H, Nchimi A, Nieman K, Papadakis M, Pisicchio C, Schmied C, Popescu BA, Habib G, Grobbee D, Lancellotti P. European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete's heart. Eur Heart J 2019; 39:1949-1969. [PMID: 29029207 DOI: 10.1093/eurheartj/ehx532] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- Antonio Pelliccia
- Institute of Sports Medicine and Science, Largo Piero Gabrielli, 1, 00197 Rome, Italy
| | - Stefano Caselli
- Institute of Sports Medicine and Science, Largo Piero Gabrielli, 1, 00197 Rome, Italy
| | | | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Jeroen J Bax
- Departmentt of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Antonello D'Andrea
- Department of Cardiology, Monaldi Hospital, Second University of Naples, Naples, Italy
| | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fernando M Di Paolo
- Institute of Sports Medicine and Science, Largo Piero Gabrielli, 1, 00197 Rome, Italy
| | - Thor Edvardsen
- Department of Cardiology, Center of Cardiologic Innovation, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Hein Heidbuchel
- Jessa Hospital, Hasselt University and Heart Center Hasselt, Hasselt, Belgium
| | | | - Koen Nieman
- Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Cataldo Pisicchio
- Institute of Sports Medicine and Science, Largo Piero Gabrielli, 1, 00197 Rome, Italy
| | | | - Bogdan A Popescu
- Institute of Cardiovascular Diseases, University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | - Gilbert Habib
- Department of Cardiology, Hôpital La Timone, Marseille, France
| | - Diederick Grobbee
- Department of Epidemiology, University Medical Center, Utrecht, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, GIGA Cardiovascular Sciences, University of Liège Hospital, Valvular Disease Clinic, Belgium
| | | |
Collapse
|
43
|
Normal Global Longitudinal Strain: An Individual Patient Meta-Analysis. JACC Cardiovasc Imaging 2019; 13:167-169. [PMID: 31481298 DOI: 10.1016/j.jcmg.2019.07.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/05/2019] [Accepted: 07/19/2019] [Indexed: 01/26/2023]
|
44
|
Barberato SH, Romano MMD, Beck ALDS, Rodrigues ACT, Almeida ALCD, Assunção BMBL, Gripp EDA, Guimarães Filho FV, Abensur H, Castillo JMD, Miglioranza MH, Vieira MLC, Barros MVLD, Nunes MDCP, Otto MEB, Hortegal RDA, Barretto RBDM, Campos TH, Siqueira VND, Morhy SS. Position Statement on Indications of Echocardiography in Adults - 2019. Arq Bras Cardiol 2019; 113:135-181. [PMID: 31411301 PMCID: PMC6684182 DOI: 10.5935/abc.20190129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Silvio Henrique Barberato
- CardioEco-Centro de Diagnóstico Cardiovascular, Curitiba, PR - Brazil.,Quanta Diagnóstico e Terapia, Curitiba, PR - Brazil
| | - Minna Moreira Dias Romano
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP - Brazil
| | - Adenalva Lima de Souza Beck
- Instituto de Cardiologia do Distrito Federal, Brasília, DF - Brazil.,Fundação Universitária de Cardiologia (ICDF/FUC), Brasília, DF - Brazil
| | - Ana Clara Tude Rodrigues
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HC-FMUSP), São Paulo, SP - Brazil
| | | | | | - Eliza de Almeida Gripp
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brazil.,Hospital Universitário Antônio Pedro, Niterói, RJ - Brazil.,DASA, São Paulo, SP - Brazil
| | | | - Henry Abensur
- Hospital Beneficência Portuguesa de São Paulo, São Paulo, SP - Brazil
| | | | - Marcelo Haertel Miglioranza
- Fundação Universitária de Cardiologia (ICDF/FUC), Brasília, DF - Brazil.,Instituto de Cardiologia de Porto Alegre, Porto Alegre, RS - Brazil
| | - Marcelo Luiz Campos Vieira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brazil.,Hospital Israelita Albert Einstein, São Paulo, SP - Brazil
| | - Márcio Vinicius Lins de Barros
- Faculdade de Saúde e Ecologia Humana (FASEH), Vespasiano, MG - Brazil.,Rede Materdei de Saúde, Belo Horizonte, MG - Brazil.,Hospital Vera Cruz, Belo Horizonte, MG - Brazil
| | | | | | | | | | - Thais Harada Campos
- Diagnoson-Fleury, Salvador, BA - Brazil.,Hospital Ana Nery, Salvador, BA - Brazil
| | | | | |
Collapse
|
45
|
Park JH. Two-dimensional Echocardiographic Assessment of Myocardial Strain: Important Echocardiographic Parameter Readily Useful in Clinical Field. Korean Circ J 2019; 49:908-931. [PMID: 31456367 PMCID: PMC6753023 DOI: 10.4070/kcj.2019.0200] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023] Open
Abstract
Echocardiography is the first and is the most-available imaging modality for many cardiovascular diseases, and echocardiographic parameters can give much important information for diagnosis, treatment, and prognostic evaluations. Left ventricular ejection fraction (LVEF) is the most commonly used echocardiographic parameter for left ventricular (LV) systolic function. Although LVEF is used routinely in daily practice, it is calculated from volumetric change without representing true myocardial properties. Recently, strain echocardiography has been used to objectively measure myocardial deformation. Myocardial strain can give accurate information about intrinsic myocardial function, and it can be used to detect early-stage cardiovascular diseases, monitor myocardial changes with specific therapies, differentiate cardiomyopathies, and predict the prognosis of several cardiovascular diseases. Although strain echocardiography has been applied to measure the right ventricle and left atrium, in addition to analyzing the LV, many cardiologists who are not imaging specialists are unaware of its clinical use and importance. Therefore, this review describes the measurement and clinical utility of 2-dimensional strain analysis in various cardiovascular diseases.
Collapse
Affiliation(s)
- Jae Hyeong Park
- Department of Cardiology in Internal Medicine, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea.
| |
Collapse
|
46
|
Which sports are more at risk of physical exercise addiction: A systematic review. Addict Behav 2019; 93:257-262. [PMID: 30595420 DOI: 10.1016/j.addbeh.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/08/2018] [Accepted: 12/21/2018] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Excessive physical exercise may evolve into physical exercise addiction, a recently identified entity with many yet unclear aspects, such as global prevalence and variability according to different types of physical exercise. METHODS We systematically reviewed the current literature up to June 2018 to collect all studies screening exercise addiction with two of the most frequently used screening scales: the Exercise Addiction Inventory (EAI) and the Exercise Dependence Scale (EDS). RESULTS We detected forty-eight studies (20 using the EAI, 26 the EDS, and 2 both scales) reporting variable point prevalence of exercise addiction risk, depending on the target population and the investigated sport. The EAI identifies a higher proportion of people at risk for physical exercise addiction among endurance athletes (14,2%) followed by ball games (10,4%), fitness centre attendees (8,2%) and power disciplines (6,4%), while a frequency of 3,0% was reported in the general population. Studies using the EDS found discrepant results. DISCUSSION This systematic review suggests that sport disciplines are associated with different vulnerability for physical exercise addiction. Besides the different addictive potential of each sport, the heterogeneity of results may be also due to socio-demographic and cultural characteristics of the target populations. The EAI and the EDS identify different proportions of individuals at risk for exercise addiction both in general population and in specific sport categories. As the EAI screens a higher proportion of subjects at risk, especially in endurance disciplines, it could be more appropriate for early detection of at-risk subjects and/or disciplines. CONCLUSION Tailored prevention strategies for each discipline could help better preserving benefits of sports. More precision in research methods and the use of the most appropriate scale are required to allow a better comparability of prevalence among physical exercise disciplines and in general population.
Collapse
|
47
|
Niebauer J, Börjesson M, Carre F, Caselli S, Palatini P, Quattrini F, Serratosa L, Adami PE, Biffi A, Pressler A, Rasmusen HK, Schmied C, van Buuren F, Panhuyzen-Goedkoop N, Solberg EE, Halle M, Gerche AL, Papadakis M, Sharma S, Pelliccia A. Brief recommendations for participation in competitive sports of athletes with arterial hypertension: Summary of a Position Statement from the Sports Cardiology Section of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol 2019; 26:1549-1555. [DOI: 10.1177/2047487319852807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Owing to its undisputed multitude of beneficial effects, European Society of Cardiology guidelines advocate regular physical activity as a class IA recommendation for the prevention and treatment of cardiovascular disease. Nonetheless, competitive athletes with arterial hypertension may be exposed to an increased risk of cardiovascular events. Guidance to physicians will be given in this summary of our recently published recommendations for participation in competitive sports of athletes with arterial hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martin Halle
- Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | |
Collapse
|
48
|
Oggionni G, Spataro A, Pelliccia A, Malacarne M, Pagani M, Lucini D. Left ventricular hypertrophy in world class elite athletes is associated with signs of improved cardiac autonomic regulation. Eur J Prev Cardiol 2019; 28:1118-1124. [PMID: 37039767 DOI: 10.1177/2047487319830534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
AIM In this study we sought to assess whether in elite athletes the physiological increase in cardiac mass attending severe long-term training leading to athlete's heart is accompanied by an improvement of autonomic performance, as assessed by post exercise vagal indices and a novel unitary Autonomic Nervous System Index for sports (ANSIs). METHODS The study involved 500 elite athletes (23.9 ± 6.4 years) participating in a screening organised by the National Italian Olympic Committee. All subjects underwent a complete medical examination, rest and stand autonomic assessment (heart rate variability) as well as bicycle exercise. ANSIs was also derived as radar plot from rest, stand and heart rate recovery individual proxies of autonomic nervous system regulation. All subjects were grouped into those with left ventricular hypertrophy present (LVH(+)), or not (LVH(-)), according to recognised thresholds. RESULTS We observed that LVH(+) athletes (24.8%) showed a marked increase of post-exercise vagal indices ( p < 0.001) and of ANSIs ( p < 0.001), while no difference was observed for heart-rate variability indices. These changes were contingent upon sport intensity categories. CONCLUSIONS Elite athletes with physiological cardiac hypertrophy (LVH(+)) present a selective profile of indices of autonomic nervous system performance, characterised by increases of markers of vagal recovery and of the novel unitary autonomic index for sports while RR variance and spectral indices seem to be unmodified. Athlete's heart may be characterised by a specific combination of anatomical and neurocardiac remodeling. This approach might furnish potential warning signs differentiating normal training induced physiology from pathological adaptation.
Collapse
Affiliation(s)
| | | | | | - Mara Malacarne
- 1 BIOMETRA Department, University of Milan, Italy.,3 Exercise Medicine Unit, Humanitas Clinical and Research Center, Italy
| | | | - Daniela Lucini
- 1 BIOMETRA Department, University of Milan, Italy.,3 Exercise Medicine Unit, Humanitas Clinical and Research Center, Italy
| |
Collapse
|
49
|
Ten Years of 2D Longitudinal Strain for Early Myocardial Dysfunction Detection: A Clinical Overview. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8979407. [PMID: 30627581 PMCID: PMC6304576 DOI: 10.1155/2018/8979407] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/30/2022]
Abstract
In recent years, the role of left ventricular ejection fraction (EF) as the gold standard parameter for the evaluation of systolic function has been questioned, and many efforts have been concentrated in the clinical validation of new noninvasive tools for the study of myocardial contractility. Improvement in the accuracy of speckle-tracking echocardiography has resulted in a large amount of research showing the ability of two-dimensional strain to overcome EF limitations in the majority of primary and secondary heart diseases. Currently, global longitudinal strain (GLS) is considered the most accurate and sensitive parameter for the assessment of early left ventricular dysfunction. This review summarizes the advantages that this measurement can provide in several clinical settings. Moreover, the important cautions that should be considered in making the choice to use GLS also are addressed. Finally, a special focus on bull's-eye polar maps for the assessment of regional changes of longitudinal function and the usefulness of these maps in the differential diagnosis of several diseases is provided.
Collapse
|
50
|
Oláh A, Kovács A, Lux Á, Tokodi M, Braun S, Lakatos BK, Mátyás C, Kellermayer D, Ruppert M, Sayour AA, Barta BA, Merkely B, Radovits T. Characterization of the dynamic changes in left ventricular morphology and function induced by exercise training and detraining. Int J Cardiol 2018; 277:178-185. [PMID: 30442376 DOI: 10.1016/j.ijcard.2018.10.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/06/2018] [Accepted: 10/26/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although exercise-induced cardiac hypertrophy has been intensively investigated, its development and regression dynamics have not been comprehensively described. In the current study, we aimed to characterize the effects of regular exercise training and detraining on left ventricular (LV) morphology and function. METHODS Rats were divided into exercised (n = 12) and control (n = 12) groups. Exercised rats swam 200 min/day for 12 weeks. After completion of the training protocol, rats remained sedentary for 8 weeks (detraining period). Echocardiographic follow-up was performed regularly to obtain LV long- and short-axis recordings for speckle-tracking echocardiography analysis. Global longitudinal and circumferential strain and systolic strain rate were measured. LV pressure-volume analysis was performed using additional groups of rats to obtain haemodynamic data. RESULTS Echocardiographic examinations showed the development of LV hypertrophy in the exercised group. These differences disappeared during the detraining period. Strain and strain rate values were all increased after the training period, whereas supernormal values rapidly reversed to the control level after training cessation. Load-independent haemodynamic indices, e.g., preload recruitable stroke work, confirmed the exercise-induced systolic improvement and complete regression after detraining. CONCLUSIONS AND TRANSLATIONAL ASPECT Our results provide the first comprehensive data to describe the development and regression dynamics of morphological and functional aspects of physiological hypertrophy in detail. Speckle-tracking echocardiography has been proven to be feasible to follow-up changes induced by exercise training and detraining and might provide an early possibility to differentiate between physiological and pathological conditions.
Collapse
Affiliation(s)
- Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary.
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Árpád Lux
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|