1
|
Romero A, Heidenreich AC, Román CL, Algañarás M, Nazer E, Gagliardino JJ, Maiztegui B, Flores LE, Rodríguez-Seguí SA. Transcriptional signature of islet neogenesis-associated protein peptide-treated rat pancreatic islets reveals induction of novel long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1226615. [PMID: 37842306 PMCID: PMC10570750 DOI: 10.3389/fendo.2023.1226615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Background Diabetes mellitus is characterized by chronic hyperglycemia with loss of β-cell function and mass. An attractive therapeutic approach to treat patients with diabetes in a non-invasive way is to harness the innate regenerative potential of the pancreas. The Islet Neogenesis-Associated Protein pentadecapeptide (INGAP-PP) has been shown to induce β-cell regeneration and improve their function in rodents. To investigate its possible mechanism of action, we report here the global transcriptional effects induced by the short-term INGAP-PP in vitro treatment of adult rat pancreatic islets. Methods and findings Rat pancreatic islets were cultured in vitro in the presence of INGAP-PP for 4 days, and RNA-seq was generated from triplicate treated and control islet samples. We performed a de novo rat gene annotation based on the alignment of RNA-seq reads. The list of INGAP-PP-regulated genes was integrated with epigenomic data. Using the new gene annotation generated in this work, we quantified RNA-seq data profiled in INS-1 cells treated with IL1β, IL1β+Calcipotriol (a vitamin D agonist) or vehicle, and single-cell RNA-seq data profiled in rat pancreatic islets. We found 1,669 differentially expressed genes by INGAP-PP treatment, including dozens of previously unannotated rat transcripts. Genes differentially expressed by the INGAP-PP treatment included a subset of upregulated transcripts that are associated with vitamin D receptor activation. Supported by epigenomic and single-cell RNA-seq data, we identified 9 previously unannotated long noncoding RNAs (lncRNAs) upregulated by INGAP-PP, some of which are also differentially regulated by IL1β and vitamin D in β-cells. These include Ri-lnc1, which is enriched in mature β-cells. Conclusions Our results reveal the transcriptional program that could explain the enhancement of INGAP-PP-mediated physiological effects on β-cell mass and function. We identified novel lncRNAs that are induced by INGAP-PP in rat islets, some of which are selectively expressed in pancreatic β-cells and downregulated by IL1β treatment of INS-1 cells. Our results suggest a relevant function for Ri-lnc1 in β-cells. These findings are expected to provide the basis for a deeper understanding of islet translational results from rodents to humans, with the ultimate goal of designing new therapies for people with diabetes.
Collapse
Affiliation(s)
- Agustín Romero
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana C. Heidenreich
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina L. Román
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Macarena Algañarás
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Ezequiel Nazer
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Juan J. Gagliardino
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Bárbara Maiztegui
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Luis E. Flores
- Centro de Endocrinología Experimental y Aplicada (CENEXA) - Universidad Nacional de La Plata (UNLP) - CONICET- Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CeAs CICPBA), Facultad de Ciencias Médicas UNLP, La Plata, Argentina
| | - Santiago A. Rodríguez-Seguí
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Gupta P, Bala M, Gupta S, Dua A, Dabur R, Injeti E, Mittal A. Efficacy and risk profile of anti-diabetic therapies: Conventional vs traditional drugs—A mechanistic revisit to understand their mode of action. Pharmacol Res 2016; 113:636-674. [DOI: 10.1016/j.phrs.2016.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022]
|
4
|
Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:171742. [PMID: 26788106 PMCID: PMC4693015 DOI: 10.1155/2015/171742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings.
Collapse
|
5
|
Lo MC, Lansang MC. Recent and emerging therapeutic medications in type 2 diabetes mellitus: incretin-based, Pramlintide, Colesevelam, SGLT2 Inhibitors, Tagatose, Succinobucol. Am J Ther 2014; 20:638-53. [PMID: 20838206 DOI: 10.1097/mjt.0b013e3181ec9eb2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nearly 285 million people worldwide, with 10% being Americans, suffer from diabetes mellitus and its associated comorbidities. This is projected to increase by 6.5% per year, with 439 million inflicted by year 2030. Both morbidity and mortality from diabetes stem from the consequences of microvascular and macrovascular complications. Of the 285 million with diabetes, over a quarter of a million die per year from related complications, making diabetes the fifth leading cause of death in high-income countries. These startling statistics illustrate the therapeutic failure of current diabetes drugs to retard the progression of diabetes. These statistics further illustrate the continual need for further research and development of alternative drugs with novel mechanisms to slow disease progression and disease complications. The treatment algorithm updated in 2008 by American Diabetes Association and the European Association for the Study of Diabetes currently recommends the traditional medications of metformin, either as monotherapy or in combination with sulfonylurea or insulin, as the preferred choice in the tier 1 option. The algorithm only suggests addition of alternative medications such as pioglitazone and incretin-based drugs as second-line agents in the tier 2 "less well-validated" option. However, these traditional medications have not proven to delay the progressive course of diabetes as evidence of increasing need over time for multiple drug therapy to maintain sufficient glycemic control. Because current diabetes medications have limited efficacy and untoward side effects, the development of diabetes mellitus drugs with newer mechanisms of action continues. This article will review the clinical data on the newly available incretin-based drugs on the market, including glucagon-like peptide agonists and of dipeptidyl peptidase type-4 inhibitors. It will also discuss 2 unique medications: pramlintide, which is indicated for both type and type-2 diabetes, and colesevelam, which is approved by the United States Food and Drug Administration for both type-2 diabetes and hyperlipidemia. It will further review the clinical data on the novel emerging agents of sodium-glucose cotransporter-2 inhibitors, tagatose, and succinobucol, all currently in phase III clinical trials. This review article can serve as an aid for clinicians to identify clinical indications in which these new agents can be applied in the treatment algorithm.
Collapse
Affiliation(s)
- Margaret C Lo
- 1Division of Internal Medicine, University of Florida, College of Medicine, Department of Medicine, Gainesville, FL; and 2Division of Endocrinology, University of Florida, College of Medicine, Department of Medicine, Gainesville, FL
| | | |
Collapse
|
6
|
Kaur P, Mishra SK, Mithal A, Saxena M, Makkar A, Sharma P. Clinical experience with Liraglutide in 196 patients with type 2 diabetes from a tertiary care center in India. Indian J Endocrinol Metab 2014; 18:77-82. [PMID: 24701434 PMCID: PMC3968738 DOI: 10.4103/2230-8210.126572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
CONTEXT GLP-1 receptor agonists (GLP-1 RA) are unique antidiabetic agents that have the ability to lower blood glucose without causing hypoglycemia, while at the same time promoting weight loss. Information on the efficacy and safety of GLP-1 RA in the Indian diabetic population is limited. AIMS (1) To evaluate the effect of GLP-1 RA, Liraglutide on glycemic control, and weight in obese Indian patients with type 2 diabetes. (2) To study the adverse event profile of Liraglutide in these patients in real-world clinical setting. SETTINGS AND DESIGN Observational study conducted in a tertiary care hospital. MATERIALS AND METHODS Liraglutide was prescribed to 196 obese patients with type 2 diabetes who had poor glycemic control on oral medications ± insulin. The initial dose of Liraglutide was 0.6 mg, which was up-titrated to 1.2 mg after 1 week; further up-titration to 1.8 mg was done based on tolerance. Dipeptidyl peptidase-IV (DPP-IV) inhibitors were discontinued and dose of other medications adjusted according to clinical judgment during the study period. RESULTS Mean age of patients was 49.9 ± 9.6 years. Three month data were available for 175 patients out of a total of 196. At 3 months, glycosylated hemoglobin (HbA1c) was 7.6 ± 0.9% vs. 9.2 ± 1.9% at baseline (P = 0.007) and mean body weight was 96.0 ± 16.5 kg vs. 100.1 ± 17.5 kg at baseline (P < 0.001). Most common adverse events were nausea, burping, and eructation (10%). CONCLUSION Liraglutide significantly improves glycemic control with low risk of hypoglycemia and is associated with significant weight loss in obese Indian patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Parjeet Kaur
- Department of Endocrinology, Medanta the Medicity, Gurgaon, Haryana, India
| | - Sunil Kumar Mishra
- Department of Endocrinology, Medanta the Medicity, Gurgaon, Haryana, India
| | - Ambrish Mithal
- Department of Endocrinology, Medanta the Medicity, Gurgaon, Haryana, India
| | - Meenal Saxena
- Department of Endocrinology, Medanta the Medicity, Gurgaon, Haryana, India
| | - Anshu Makkar
- Department of Endocrinology, Medanta the Medicity, Gurgaon, Haryana, India
| | - Pooja Sharma
- Department of Clinical Research, Medanta the Medicity, Gurgaon, Haryana, India
| |
Collapse
|
7
|
Jain S, Gupta N, Jindal R, Dubey T, Agarwal N, Siddiqui A, Wangnoo S. Newer anti-hyperglycemic agents in type 2 diabetes mellitus – Expanding the horizon. APOLLO MEDICINE 2013. [DOI: 10.1016/j.apme.2013.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
8
|
Petropavlovskaia M, Daoud J, Zhu J, Moosavi M, Ding J, Makhlin J, Assouline-Thomas B, Rosenberg L. Mechanisms of action of islet neogenesis-associated protein: comparison of the full-length recombinant protein and a bioactive peptide. Am J Physiol Endocrinol Metab 2012; 303:E917-27. [PMID: 22850686 PMCID: PMC3469614 DOI: 10.1152/ajpendo.00670.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Islet neogenesis-associated protein (INGAP) was discovered in the partially duct-obstructed hamster pancreas as a factor inducing formation of new duct-associated islets. A bioactive portion of INGAP, INGAP(104-118) peptide (INGAP-P), has been shown to have neogenic and insulin-potentiating activity in numerous studies, including recent phase 2 clinical trials that demonstrated improved glucose homeostasis in both type 1 and type 2 diabetic patients. Aiming to improve INGAP-P efficacy and to understand its mechanism of action, we cloned the full-length protein (rINGAP) and compared the signaling events induced by the protein and the peptide in RIN-m5F cells that respond to INGAP with an increase in proliferation. Here, we show that, although both rINGAP and INGAP-P signal via the Ras/Raf/ERK pathway, rINGAP is at least 100 times more efficient on a molar basis than INGAP-P. For either ligand, ERK1/2 activation appears to be pertussis toxin sensitive, suggesting involvement of a G protein-coupled receptor(s). However, there are clear differences between the peptide and the protein in interactions with the cell surface and in the downstream signaling. We demonstrate that fluorescent-labeled rINGAP is characterized by clustering on the membrane and by slow internalization (≤5 h), whereas INGAP-P does not cluster and is internalized within minutes. Signaling by rINGAP appears to involve Src, in contrast to INGAP-P, which appears to activate Akt in addition to the Ras/Raf/ERK1/2 pathway. Thus our data suggest that interactions of INGAP with the cell surface are important to consider for further development of INGAP as a pharmacotherapy for diabetes.
Collapse
Affiliation(s)
- Maria Petropavlovskaia
- Department of Surgery, the Research Institute of the McGill University Health Center, McGill University, Montreal, Québec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kaygisiz Z, Ozden H, Erkasap N, Koken T, Gunduz T, Ikizler M, Kural T. Positive inotropic, positive chronotropic and coronary vasodilatory effects of rat amylin: mechanisms of amylin-induced positive inotropy. ACTA ACUST UNITED AC 2010; 97:362-74. [DOI: 10.1556/aphysiol.97.2010.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
|
11
|
Hoogwerf BJ, Doshi KB, Diab D. Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc Health Risk Manag 2008; 4:355-62. [PMID: 18561511 PMCID: PMC2496974 DOI: 10.2147/vhrm.s1978] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pramlintide is a synthetic version of the naturally occurring pancreatic peptide called amylin. Amylin and pramlintide have similar effects on lowering postprandial glucose, lowering postprandial glucagon and delaying gastric emptying. Pramlintide use in type 1 and insulin requiring type 2 diabetes mellitus (DM) is associated with modest reductions in HbA1c often accompanied by weight loss. Limited data show a neutral effect on blood pressure. Small studies suggest small reductions in LDL-cholesterol in type 2 DM and modest reductions in triglycerides in type 1 DM. Markers of oxidation are also reduced in conjunction with reductions in postprandial glucose. Nausea is the most common side effect. These data indicate that pramlintide has a role in glycemic control of both type 1 and type 2 DM. Pramlintide use is associated with favorable effects on weight, lipids and other biomarkers for atherosclerotic disease.
Collapse
Affiliation(s)
- Byron J Hoogwerf
- Department of Endocrinology, Diabetes and Metabolism, Cleveland Clinic Foundation, Cleveland, USA.
| | | | | |
Collapse
|
12
|
Lee HY, Yea K, Kim J, Lee BD, Chae YC, Kim HS, Lee DW, Kim SH, Cho JH, Jin CJ, Koh DS, Park KS, Suh PG, Ryu SH. Epidermal growth factor increases insulin secretion and lowers blood glucose in diabetic mice. J Cell Mol Med 2007; 12:1593-604. [PMID: 18053093 PMCID: PMC3918075 DOI: 10.1111/j.1582-4934.2007.00169.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Epidermal growth factor (EGF) is synthesized in the pancreas and diabetic animals have low levels of EGF. However, the role of EGF in regulating the major function of the pancreas, insulin secretion, has not been studied. Here, we show that EGF rapidly increased insulin secretion in mouse pancreatic islets, as well as in a pancreatic β-cell line. These events were dependent on a Ca2+ influx and phospholipase D (PLD) activity, particularly PLD2, as determined using pharmacological blockers and molecular manipulations such as over-expression and siRNA of PLD isozymes. In addition, EGF also increased plasma insulin levels and mediated glucose lowering in normal and diabetic mice. Here, for the first time, we provide evidence that EGF is a novel secretagogue that regulates plasma glucose levels and a candidate for the development of therapeutics for diabetes.
Collapse
Affiliation(s)
- H Y Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Objective: To review new hypoglycemic and antihyperglycemic agents recently approved for the treatment of type 1 and type 2 diabetes mellitus.Data Sources: A MEDLINE search of articles published from 1966 to March 2006 was conducted to identify English-language literature
available on the newer therapies approved for the treatment of diabetes. Search terms used were: Byetta, exenatide, insulin detemir, NN304, Exubera inhaled insulin, Levemir, pramlintide, Symlin, AC137, AC0137, and Tripro-Amylin. These articles, abstracts, and data provided by the pharmaceutical
manufacturers were reviewed to identify pertinent data. Additional references were obtained from the bibliographies of these publications.Study Selection: Randomized, English-language studies investigating safety or efficacy data on these newer agents with a focus on human studies.Data
Extraction: These hypoglycemic and antihyperglycemic agents were reviewed with regard to background information, pharmacokinetic and pharmacodynamic data, relevant clinical studies, U.S. Food and Drug Administration-approved indications, dosing and administration, contraindications, drug
interactions, adverse effects, storage, cost, availability, and role in therapy.Data Synthesis: Over the last decade, management options for the treatment of diabetes have exploded. Among these are the incretin mimetics, amylin analogs, insulin analogs, and inhaled insulin. Short-term
studies demonstrate that each of these therapies may offer specific advantages such as improved glycemia, convenience, and/or weight loss. Continued study of the incretin mimetics, amylin analogs, and inhaled insulin will be needed to verify long-term safety and efficacy of these agents.Conclusions:
These agents with novel mechanisms of action and a new insulin-delivery device offer patients and clinicians additional options that improve glycemic and nonglycemic factors while addressing some of the concerns of older agents. Longerterm studies will help providers weigh the benefits, adverse
effects, cost, and unknown long-term risks of these medications.
Collapse
Affiliation(s)
- Brigitte L Sicat
- School of Pharmacy, Virginia Comonwealth University, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
14
|
Affiliation(s)
- Brian L Mealey
- Department of Periodontics, University of Texas Health Sciences Center at San Antonio, USA
| | | |
Collapse
|
15
|
Abstract
The increasing pervasiveness of diabetes mellitus on a global stage has been well documented. Many groundbreaking studies have detailed the consequences of inadequate glycemic control, but only recently have data supported evidence that demonstrates benefits in the acute setting. Consensus is lacking with regard to how to achieve glycemic control in the hospital setting. This article discusses glycemic control, with special emphasis on the perioperative patient. Emerging therapeutic treatments and less frequently encountered protocols such as insulin pump management and insulin infusion are considered.
Collapse
Affiliation(s)
- John M Giurini
- Harvard Medical School, Division of Podiatric Surgery, Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
16
|
Abstract
Cardiovascular disease (CVD) burden remains the predominant cause of mortality and morbidity in the United States and in most of the developed world. The ongoing twin epidemics of obesity and type 2 diabetes mellitus provide a groundswell source for sustaining this trend for the foreseeable future (increasing the prevalence of CVD by 2-4 times), unless radical changes are made in public health policy. Oral hypoglycemic agents (OHAs) remain a mainstay for management of type 2 diabetes in most practice settings. Although these agents are primarily prescribed to achieve better glycemic control, it is important to evaluate what effects they have on cardiovascular risk and whether there are significant differences in effects among the different OHAs. This review presents the available data on the effects of the various OHAs on cardiovascular risk surrogates and actual events in retrospective and prospective study design settings.
Collapse
Affiliation(s)
- Gabriel I Uwaifo
- Georgetown University College of Medicine, Washington, District of Columbia 20003, USA.
| | | |
Collapse
|
17
|
Abstract
Exenatide (synthetic exendin-4) is the analog of glucagon-like peptide 1 (GLP-1), the major physiologic incretin. The latter is an intestinal hormone that enhances glucose-induced insulin secretion after meals. In addition, GLP-1 stimulates insulin synthesis, inhibits glucagon secretion, delays gastric emptying, and may promote satiety. These glucoregulatory actions help control plasma glucose in the postprandial period. However, in diabetes, the GLP-1 response to nutrient intake is impaired, leading to exacerbation of postprandial hyperglycemia. Exenatide was recently approved as adjunctive therapy in diabetic patients failing sulfonylureas and/or metformin. In clinical trials lasting 30 weeks, exenatide therapy was associated with moderate reduction in mean hemoglobin A1c (HbA1c) levels of approximately 0.8%, and an average weight loss of approximately 2 kg compared with baseline. Hypoglycemia was generally mild and occurred more commonly when exenatide was used in conjunction with sulfonylureas. The requirement of subcutaneous injections twice a day, and the frequent occurrence of nausea and vomiting, represent the main limitations of exenatide. Nevertheless, this agent may be a useful add-on therapy in obese diabetic patients with suboptimal control as a result of continuing weight gain and/or severe postprandial hyperglycemia. The introduction of GLP-1-based antidiabetic drugs is a novel and promising strategy to treat diabetes.
Collapse
Affiliation(s)
- Nasser Mikhail
- Endocrinology Division, Olive View-UCLA Medical Center, 14445 Olive View Drive, Sylmar, CA 91342, USA.
| |
Collapse
|
18
|
Abstract
OBJECTIVE To present an evidence-based evaluation of the antidiabetic drug exenatide. METHODS The English literature from 1965 to January 2006 was reviewed by using data sources from MED-LINE, endocrinology textbooks, and manual searching of cross-references from original articles and reviews. RESULTS Glucagon-like peptide-1 (GLP-1) is the major physiologic incretin, a gut-derived hormone that enhances glucose-induced insulin secretion. Moreover, GLP-1 inhibits glucagon secretion, delays gastric emptying, and may promote satiety, leading to reduction of postprandial glucose levels. Exenatide (AC-2993, synthetic exendin-4) is a GLP-1 analogue that was recently approved as adjunctive therapy in patients with diabetes in whom sulfonylureas, metformin, or both have failed. Exenatide is administered by subcutaneous injections twice daily. The use of exenatide has been associated with a mean reduction in hemoglobin A1c levels of approximately 0.8% and a mean weight loss of approximately 2 kg after 30 weeks of therapy in comparison with baseline. Treatment-related hypoglycemia was generally mild and occurred more commonly in association with the use of sulfonylureas. In 5% to 10% of patients, however, exenatide could not be tolerated, mainly because of nausea and vomiting. CONCLUSION Exenatide is a moderately effective antidiabetic agent. Mild degrees of weight loss and hypoglycemia are its main advantages, whereas the frequent occurrence of nausea and vomiting and the requirement of subcutaneous administration are its strongest limitations. Nevertheless, this new drug may be a useful add-on therapy in obese patients with diabetes who have suboptimal control of their disease as a result of continuing weight gain, severe postprandial hyperglycemia, or both.
Collapse
Affiliation(s)
- Nasser E Mikhail
- Endocrinology Division, Department of Medicine, Olive View University of California at Los Angeles (UCLA) Medical Center, UCLA School of Medicine, Sylmar, California, USA
| |
Collapse
|
19
|
Abstract
Observational studies have provided evidence that a consistent fraction (approximately 15-20%) of hypertensive patients displays a glucose intolerance state that may be aggravated by antihypertensive drug regimens based on thiazide diuretics or beta-blockers. This review examines the relative and absolute diabetogenic effects of antihypertensive drugs, by comparing the impact of 'new' (calcium antagonists, angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists) versus 'old' (diuretics and beta-blockers) drugs on new-onset diabetes in recent clinical trials. Evidence is provided that compared with diuretics and beta-blockers, new-onset diabetes is less common with 'new' drugs, and that conventional antihypertensive compounds, particularly when combined together, may amplify the natural time-dependent tendency towards the development of this metabolic disease. This paper provides new insights into the potential mechanisms responsible for the phenomenon and the clinical significance of antihypertensive drug-induced diabetes.
Collapse
Affiliation(s)
- Giuseppe Mancia
- Clinica Medica, Dipartimento di Medicina Clinica, Prevenzione e Biotecnologie Sanitarie, Università Milano, Bicocca, Italy. giuesppe,
| | | | | |
Collapse
|
20
|
Tam J, Diamond J, Maysinger D. Dual-action peptides: a new strategy in the treatment of diabetes-associated neuropathy. Drug Discov Today 2006; 11:254-60. [PMID: 16580602 DOI: 10.1016/s1359-6446(05)03722-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral neuropathy is one of the most common and debilitating complications of type 1 and type 2 diabetes mellitus. Recent studies have shown that several small, non-neural peptides possess neurotrophic activity and exert beneficial effects on nervous system function in experimental and clinical diabetes. Two of these, C-peptide and islet neogenesis-associated protein peptide, are derived from pancreatic proteins and use related signal transduction mechanisms. Derivatives of erythropoietin possess similar properties in the nervous system. As a group, these peptides are of increasing interest as leads to potential new approaches in the treatment of diabetes-associated neuropathies and other neurodegenerative conditions. This review addresses the recent advances made with these peptides in the context of diabetic neuropathy, and highlights similarities and differences in their mechanisms of action from the perspective of combination therapy.
Collapse
Affiliation(s)
- Joseph Tam
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1314, Montreal, QC, Canada H3G 1Y6
| | | | | |
Collapse
|
21
|
Jacobson-Dickman E, Levitsky L. Oral agents in managing diabetes mellitus in children and adolescents. Pediatr Clin North Am 2005; 52:1689-703. [PMID: 16301089 DOI: 10.1016/j.pcl.2005.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Type 2 diabetes mellitus is a chronic disease with potentially devastating long-term complications. Despite the tremendous body of research and experience in the adult population, relatively little is established regarding this condition and its optimal management in children and adolescents. The pediatric community awaits results of ongoing trials as well as further study of optimal intervention in children, as they continue to extrapolate management practices from their adult counterparts.
Collapse
Affiliation(s)
- Elka Jacobson-Dickman
- Department of Pediatrics, Massachusetts General Hospital for Children and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | | |
Collapse
|
22
|
Mayhew M. News on Diabetic Medications. J Nurse Pract 2005. [DOI: 10.1016/j.nurpra.2005.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|