1
|
Liu T, Li Y, Yang B, Wang H, Lu C, Chang AK, Huang X, Zhang X, Lu Z, Lu X, Gao B. Suppression of neuronal cholesterol biosynthesis impairs brain functions through insulin-like growth factor I-Akt signaling. Int J Biol Sci 2021; 17:3702-3716. [PMID: 34671194 PMCID: PMC8495388 DOI: 10.7150/ijbs.63512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Some relationship between abnormal cholesterol content and impairment of insulin/insulin-like growth factor I (IGF-1) signaling has been reported in the pathogenesis of Alzheimer's disease (AD). However, the underlying mechanism of this correlation remains unclear. It is known that 3-β hydroxycholesterol Δ 24 reductase (DHCR24) catalyzes the last step of cholesterol biosynthesis. To explore the function of cholesterol in the pathogenesis of AD, we depleted cellular cholesterol by targeting DHCR24 with siRNA (siDHCR24) or U18666A, an inhibitor of DHCR24, and studied the effect of the loss of cholesterol on the IGF-1-Akt signaling pathway in vitro and in vivo. Treatment with U18666A reduced the cellular cholesterol level and blocked the anti-apoptotic function of IGF-1 by impairing the formation of caveolae and the localization of IGF-1 receptor in caveolae of the PC12 cells. Downregulation of the DHCR24 expression induced by siRNA against DHCR24 also yielded similar results. Furthermore, the phosphorylation levels of IGF-1 receptor, insulin receptor substrate (IRS), Akt, and Bad in response to IGF-1 were all found to decrease in the U18666A-treated cells. Rats treated with U18666A via intracerebral injection also exhibited a significant decrease in the cholesterol level and impaired activities of IGF-1-related signaling proteins in the hippocampus region. A significant accumulation of amyloid β and a decrease in the expression of neuron-specific enolase (NSE) was also observed in rats with U18666A. Finally, the Morris water maze experiment revealed that U18666A-treated rats showed a significant cognitive impairment. Our findings provide new evidence strongly supporting that a reduction in cholesterol level can result in neural apoptosis via the impairment of the IGF-1-Akt survival signaling in the brain.
Collapse
Affiliation(s)
- Ting Liu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China.,China Medical University-The Queen's University Belfast Joint College, China Medical University, Shenyang, 110122, China
| | - Yang Li
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Baoyu Yang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Haozhen Wang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Chen Lu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Alan K Chang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Xiuting Huang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Xiujin Zhang
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Ziyin Lu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Xiuli Lu
- The School of Life Science, Liaoning University, Chongshanzhong-lu No.66, Huanggu-qu, Shenyang 110036, China
| | - Bing Gao
- School of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
2
|
Akintola AA, van Opstal AM, Westendorp RG, Postmus I, van der Grond J, van Heemst D. Effect of intranasally administered insulin on cerebral blood flow and perfusion; a randomized experiment in young and older adults. Aging (Albany NY) 2017; 9:790-802. [PMID: 28291957 PMCID: PMC5391232 DOI: 10.18632/aging.101192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Insulin, a vasoactive modulator regulating peripheral and cerebral blood flow, has been consistently linked to aging and longevity. In this proof of principle study, using a randomized, double-blinded, placebo-controlled crossover design, we explored the effects of intranasally administered insulin (40IU) on cerebral blood flow (CBF) and perfusion in older (60-69 years, n=11) and younger (20-26 years, n=8) adults. Changes in CBF through the major cerebropetal arteries were assessed via phase contrast MR-angiography, and regional cortical tissue perfusion via pseudo-continuous arterial spin labelling. Total flow through the major cerebropetal arteries was unchanged in both young and old. In the older participants, intranasal insulin compared to placebo increased perfusion through the occipital gray matter (65.2±11.0 mL/100g/min vs 61.2±10.1 mL/100g/min, P=0.001), and in the thalamus (68.28±6.75 mL/100g/min versus 63.31±6.84 mL/100g/min, P=0.003). Thus, intranasal insulin improved tissue perfusion of the occipital cortical brain region and the thalamus in older adults.
Collapse
Affiliation(s)
- Abimbola A Akintola
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Anna M van Opstal
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rudi G Westendorp
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Public Health and Center for Healthy Aging, University of Copenhagen, Denmark
| | - Iris Postmus
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands.,Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands.,Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| |
Collapse
|
3
|
Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake. Int J Obes (Lond) 2016; 40:1687-1692. [PMID: 27349694 PMCID: PMC5116051 DOI: 10.1038/ijo.2016.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals-that is, resting-state brain activity-in the context of food intake are, however, less well studied. OBJECTIVE To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). METHODS Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m-2) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m-2), both before and 30 min after consumption of a standardized meal (~260 kcal). RESULTS Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. CONCLUSION Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans.
Collapse
|
4
|
Heni M, Wagner R, Kullmann S, Preissl H, Fritsche A. Response to Comment on Heni et al. Central insulin administration improves whole-body insulin sensitivity via hypothalamus and parasympathetic outputs in men. Diabetes 2014;63:4083-4088. Diabetes 2015; 64:e8-9. [PMID: 25999545 DOI: 10.2337/db15-0209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Robert Wagner
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Tübingen, Germany Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Tübingen, Germany Institute of Medical Psychology and Behavioral Neurobiology/fMEG Center, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| |
Collapse
|
5
|
Modulation of glucose metabolism by balanced deep-sea water ameliorates hyperglycemia and pancreatic function in streptozotocin-induced diabetic mice. PLoS One 2014; 9:e102095. [PMID: 25013896 PMCID: PMC4094501 DOI: 10.1371/journal.pone.0102095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.
Collapse
|
6
|
de la Monte SM. Intranasal insulin therapy for cognitive impairment and neurodegeneration: current state of the art. Expert Opin Drug Deliv 2013; 10:1699-709. [PMID: 24215447 PMCID: PMC4551402 DOI: 10.1517/17425247.2013.856877] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also the ability to minimize the potentially hazardous off-target effects. AREAS COVERED This review covers the role of intranasal insulin therapy for cognitive impairment and neurodegeneration, particularly AD. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The review provides evidence that brain insulin resistance is an important and early abnormality in AD, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. EXPERT OPINION Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy and specificity of intranasal insulin therapy.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Departments of Pathology (Neuropathology), Neurology, and Neurosurgery , Pierre Galletti Research Building, Claverick Street, Room 419, Providence, RI 02903 , USA +1 401 444 7364 ; +1 401 444 2939 ;
| |
Collapse
|
7
|
Neuroendocrine link between stress, depression and diabetes. Pharmacol Rep 2013; 65:1591-600. [DOI: 10.1016/s1734-1140(13)71520-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/15/2013] [Indexed: 12/13/2022]
|
8
|
Zhou X, Chai Y, Chen K, Yang Y, Liu Z. A meta-analysis of reference values of leptin concentration in healthy postmenopausal women. PLoS One 2013; 8:e72734. [PMID: 24023638 PMCID: PMC3758328 DOI: 10.1371/journal.pone.0072734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023] Open
Abstract
Objective There are numerous reports about the leptin concentration (LC) in postmenopausal women (PW). Changes in LC can elicit different clinical outcomes. We systematically analyzed the LC in PW. Methods A search was conducted in original English-language studies published from 1994 to October 2012 in the following databases: Medline (78), Cochrane Center (123) Embase (505), Biological abstracts (108), Cochrane (53) and Science Finder Scholar (0). A meta-analysis was undertaken on the correction coefficient (r) between the serum LC and body mass index (BMI) for healthy PW across studies containing a dataset and sample size. Pre-analytical and analytical variations were examined. Pre-analytical variables included fasting status (FS) and sampling timing. Analytical variation comprised assay methodology, LC in those undertaking hormone replacement therapy (HRT) and those not having HRT as well as LC change according to age. Results Twenty-seven studies met the inclusion criteria. Eighteen studies detected LC in the morning in a FS, 15 studies denoted the r between leptin and the BMI. A combined r was counted for the 15 studies (r = 0.51 [95% confidence interval (CI), 0.46–0.54], P = 0.025), and if sampling collection was in the FSat morning, a combined r was form 10 studies (r = 0.54 [95% CI, 0.45–0.54], P = 0.299) and heterogeneity was diminished. LC did not change between HRT users and non-users in 7 studies. Five studies analyzed changes in LC according to age. Conclusion Based on all studies that investigated both LC and BMI, LC was positively correlated with the BMI. No studies established reference ranges according to the Clinical and Laboratory Standards Institute (CLSI) in healthy PW, and there was a wide variation in LC values. These differences suggest that caution should be used in the interpretation and comparison between studies.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
- Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - YanLan Chai
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
| | - Ke Chen
- Department of Physiology and Pathophysiology, Health Science Center, Xi'an Jiaotong University, China
| | - YunYi Yang
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
| | - Zi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of the Medical College, Xi'an Jiaotong University, China
- * E-mail:
| |
Collapse
|