1
|
Kim YM, Lim HH, Kim E, Kim G, Kim M, So H, Lee BK, Kwon Y, Min J, Lee YS. Exploring the Genetic Causes for Postnatal Growth Failure in Children Born Non-Small for Gestational Age. J Clin Med 2023; 12:6508. [PMID: 37892645 PMCID: PMC10607479 DOI: 10.3390/jcm12206508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The most common causes of short stature (SS) in children are familial short stature (FSS) and idiopathic short stature (ISS). Recently, growth plate dysfunction has been recognized as the genetic cause of FSS or ISS. The aim of this study was to investigate monogenic growth failure in patients with ISS and FSS. Targeted exome sequencing was performed in patients categorized as ISS or FSS and the subsequent response to growth hormone (GH) therapy was analyzed. We found 17 genetic causes involving 12 genes (NPR2, IHH, BBS1, COL1A1, COL2A1, TRPS1, MASP1, SPRED1, PTPTN11, ADNP, NADSYN1, and CERT1) and 2 copy number variants. A genetic cause was found in 45.5% and 35.7% of patients with FSS and ISS, respectively. The genetic yield in patients with syndromic and non-syndromic SS was 90% and 23.1%, respectively. In the 11 genetically confirmed patients, a gain in height from -2.6 to -1.3 standard deviations after 2 years of GH treatment was found. The overall diagnostic yield in this study was 41.7%. We identified several genetic causes involving paracrine signaling, the extracellular matrix, and basic intracellular processes. Identification of the causative gene may provide prognostic evidence for the use of GH therapy in non-SGA children.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Han-Hyuk Lim
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eunhee Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Geena Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyejin So
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Byoung Kook Lee
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
- Department of Pediatrics, School of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yoowon Kwon
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Jeesu Min
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| | - Young Seok Lee
- Department of Radiology, Chungnam National University Sejong Hospital, Sejong 30099, Republic of Korea
| |
Collapse
|
2
|
Ahn J, Oh J, Suh J, Song K, Kwon A, Chae HW, Oh JS, Lee HI, Lee MS, Kim HS. Next-generation sequencing-based mutational analysis of idiopathic short stature and isolated growth hormone deficiency in Korean pediatric patients. Mol Cell Endocrinol 2022; 544:111489. [PMID: 34653508 DOI: 10.1016/j.mce.2021.111489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
We investigated the distribution of short stature-associated mutations in Korean pediatric patients with idiopathic short stature (ISS) and isolated growth hormone deficiency (IGHD) via targeted next-generation sequencing (TNGS). We employed a 96-gene TNGS panel for short stature in a total of 144 patients (5-19 years-old) previously diagnosed with ISS or IGHD and identified heterozygous pathogenic or likely pathogenic genetic variants in 14 (10%) patients. Of the mutated genes, PROKR2 (n = 3) is associated with gonadotropin-releasing hormone deficiency or hypopituitarism, while FGFR1 (n = 1) and NPR2 (n = 3) encode growth plate paracrine factors. FBN1 (n = 1), COL9A1 (n = 1), MATN3 (n = 1), and ACAN (n = 3) regulate the cartilage extracellular matrix, while PTPN11 (n = 1) controls intracellular pathways. Six patients had IGHD, and eight patients had ISS. The current findings highlight the utility of TNGS for determining the genetic etiology in these patients.
Collapse
Affiliation(s)
- Jungmin Ahn
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea; Department of Pediatrics, Jeju National University, College of Medicine and Graduate, School of Medicine, Jeju, South Korea
| | - Jiyoung Oh
- Division of Clinical Genetics, Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Junghwan Suh
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Kyungchul Song
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Ahreum Kwon
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Hyun Wook Chae
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Jun Suk Oh
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Hae In Lee
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Myeong Seob Lee
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, College of Medicine Yonsei University, Seoul, South Korea.
| |
Collapse
|
3
|
Focused Revision: ACMG practice resource: Genetic evaluation of short stature. Genet Med 2021; 23:813-815. [PMID: 33514815 DOI: 10.1038/s41436-020-01046-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/31/2023] Open
|
4
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Andrade AC, Jee YH, Nilsson O. New Genetic Diagnoses of Short Stature Provide Insights into Local Regulation of Childhood Growth
. Horm Res Paediatr 2018; 88:22-37. [PMID: 28334714 DOI: 10.1159/000455850] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
Idiopathic short stature is a common condition with a heterogeneous etiology. Advances in genetic methods, including genome sequencing techniques and bioinformatics approaches, have emerged as important tools to identify the genetic defects in families with monogenic short stature. These findings have contributed to the understanding of growth regulation and indicate that growth plate chondrogenesis, and therefore linear growth, is governed by a large number of genes important for different signaling pathways and cellular functions, including genetic defects in hormonal regulation, paracrine signaling, cartilage matrix, and fundamental cellular processes. In addition, mutations in the same gene can cause a wide phenotypic spectrum depending on the severity and mode of inheritance of the mutation.
.
Collapse
Affiliation(s)
- Anenisia C Andrade
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Youn Hee Jee
- Section of Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Örebro University and University Hospital, Örebro, Sweden
| |
Collapse
|
6
|
Kim YM, Lee YJ, Park JH, Lee HD, Cheon CK, Kim SY, Hwang JY, Jang JH, Yoo HW. High diagnostic yield of clinically unidentifiable syndromic growth disorders by targeted exome sequencing. Clin Genet 2017; 92:594-605. [PMID: 28425089 DOI: 10.1111/cge.13038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND As syndromic short stature and overgrowth are heterogeneous and the list of causative genes is rapidly expanding, there is an unmet need for identifying genetic causes based on conventional gene testing or karyotyping. Early diagnosis leads to the proper management of the patient and providing genetic counseling for family members at risk in a timely manner. MATERIALS AND METHODS We conducted targeted exome sequencing to identify the genetic causes of undiagnosed syndromic short stature or overgrowth in 15 pediatric patients from 13 families in Korea. We applied targeted exome sequencing using the Next Seq platform and a TruSight One panel. RESULTS Among the 13 families, 6 different disorders in 8 patients with short stature or overgrowth were identified, and the diagnostic yield was 46.2%. One boy with overgrowth had a TGFB3 gene mutation. In the short stature group, Coffin-Lowry syndrome (CLS), trichorhinophalangeal syndrome, DYRK1A haploinsufficiency syndrome, short stature with optic atrophy and Pelger-Huët anomaly syndrome with recurrent hepatitis, and type 4 Meier-Gorlin syndrome were identified. One CLS patient had a co-existing monogenic disease, congenital glaucoma, caused by the compound heterozygote mutations of the CYP1B1 gene. CONCLUSION Targeted exome sequencing is a powerful method for diagnosing syndromic growth disorders. It enables us to understand molecular pathophysiology and investigate new treatments for growth disorders.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Jae Hong Park
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Hyoung-Doo Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Su-Young Kim
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Korea
| | - Jae-Yeon Hwang
- Department of Radiology, Pusan National University College of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Ja-Hyun Jang
- Laboratory Medicine, Green Cross Genome, Yongin, Korea
| | - Han-Wook Yoo
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|