1
|
Natale P, Green SC, Tunnicliffe DJ, Pellegrino G, Toyama T, Strippoli GF. Glucagon-like peptide 1 (GLP-1) receptor agonists for people with chronic kidney disease and diabetes. Cochrane Database Syst Rev 2025; 2:CD015849. [PMID: 39963952 PMCID: PMC11834151 DOI: 10.1002/14651858.cd015849.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Approximately 40% of people with diabetes develop kidney failure and experience an accelerated risk of cardiovascular complications. Glucagon-like peptide 1 (GLP-1) receptor agonists are glucose-lowering agents that manage glucose and weight control. OBJECTIVES We assessed the benefits and harms of GLP-1 receptor agonists in people with chronic kidney disease (CKD) and diabetes. SEARCH METHODS The Cochrane Kidney and Transplant Register of Studies was searched to 10 September 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled studies were eligible if participants with diabetes and CKD were randomly allocated to a GLP-1 receptor agonist, placebo, standard care or a second glucose-lowering agent. CKD included all stages (from 1 to 5). DATA COLLECTION AND ANALYSIS Three authors independently extracted data and assessed the risk of bias using the risk of bias assessment tool 2. Pooled analyses using summary estimates of effects were obtained using a random-effects model, and results were expressed as risk ratios (RR) and/or hazard ratio (HR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. The primary outcomes included death (all-cause and cardiovascular), 3- and 4-point major adverse cardiovascular events (MACE), kidney failure, composite kidney outcome, and severe hypoglycaemia. The secondary outcomes included non-fatal or fatal myocardial infarction (MI) or stroke, non-fatal peripheral arterial events, heart failure, hospitalisation due to heart failure, estimated glomerular filtration rate or creatinine clearance, doubling of serum creatinine, urine albumin-to-creatinine ratio, albuminuria progression, vascular access outcomes, body weight, body mass index, fatigue, life participation, peritoneal dialysis infection, peritoneal dialysis failure, adverse events, serious adverse events, withdrawal due to adverse events, HbA1c, sudden death, acute MI, ischaemic stroke, and coronary revascularisation. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS Forty-two studies involving 48,148 participants were included. All studies were conducted on people with type 2 diabetes, and no studies were carried out on children. The median study age was 66 years. The median study follow-up was 26 weeks. Six studies were conducted in people with CKD stages 1-2, 11 studies in people with CKD stages 3-5, one study in people on dialysis, and the remaining studies included people with both CKD stages 1-2 and 3-5. Risks of bias in the included studies for all the primary outcomes in studies that compared GLP-1 receptor agonists to placebo were low in most methodological domains, except one study that was assessed at high risk of bias due to missing outcome data for death (all-cause and cardiovascular). The overall risk of bias for all-cause and cardiovascular death in studies that reported the treatment effects of GLP-1 receptor agonists compared to standard care, dipeptidyl peptidase-4 (DPP-4) inhibitors or sodium-glucose cotransporter 2 (SGLT2) inhibitors were assessed as unclear or at high risk of bias due to deviations from intended interventions or missing data. For GLP-1 receptor agonists compared to insulin or another GLP-1 receptor agonist, the risk of bias for all-cause and cardiovascular death was low or unclear. Compared to placebo, GLP-1 receptor agonists probably reduced the risk of all-cause death (RR 0.85, 95% CI 0.74 to 0.98; I2 = 23%; 8 studies, 17,861 participants; moderate-certainty evidence), but may have little or no effect on cardiovascular death (RR 0.84, 95% CI 0.68 to 1.05; I2 = 42%; 7 studies, 17,801 participants; low-certainty evidence). Compared to placebo, GLP-1 receptor agonists probably decreased 3-point MACE (RR 0.84, 95% CI 0.73 to 0.98; I² = 65%; 4 studies, 19,825 participants; moderate-certainty evidence), and 4-point MACE compared to placebo (RR 0.77, 95% CI 0.67 to 0.89; 1 study, 2,158 participants; moderate-certainty evidence). Based on absolute risks of clinical outcomes, it is likely that GLP-1 receptor agonists prevent all-cause death in 52 people with CKD stages 1-2 and 116 in CKD stages 3-5, cardiovascular death in 34 people with CKD stages 1-2 and 71 in CKD stages 3-5, while 95 CKD stages 1-2 and 153 in CKD stages 3-5 might experience a major cardiovascular event for every 1000 people treated over 1 year. Compared to placebo, GLP-1 receptor agonists probably had little or no effect on kidney failure, defined as starting dialysis or kidney transplant (RR 0.86, 95% CI 0.66 to 1.13; I2 = 0%; 3 studies, 4,134 participants; moderate-certainty evidence), or on composite kidney outcomes (RR 0.89, 95% CI 0.78 to 1.02; I2 = 0%; 2 studies, 16,849 participants; moderate-certainty evidence). Compared to placebo, GLP-1 receptor agonists may have little or no effect on the risk of severe hypoglycaemia (RR 0.82, 95% CI 0.54 to 1.25; I2 = 44%; 4 studies, 6,292 participants; low-certainty evidence). The effects of GLP-1 receptor agonists compared to standard care or other hypoglycaemic agents were uncertain. No studies evaluated treatment on risks of fatigue, life participation, amputation or fracture. AUTHORS' CONCLUSIONS GLP-1 receptor agonists probably reduced all-cause death but may have little or no effect on cardiovascular death in people with CKD and diabetes. GLP-1 receptor agonists probably lower major cardiovascular events, probably have little or no effect on kidney failure and composite kidney outcomes, and may have little or no effect on the risk of severe hypoglycaemia in people with CKD and diabetes.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Suetonia C Green
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | | | - Giovanni Pellegrino
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
| | - Tadashi Toyama
- Department of Nephrology, Kanazawa University, Kanazawa, Japan
- Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| | - Giovanni Fm Strippoli
- Department of Precision and Regenerative Medicine and Ionian Area (DIMEPRE-J), University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
2
|
Davis TME, Davis WA, Bringans SD, Lui JKC, Lumbantobing TSC, Peters KE, Lipscombe RJ. Application of a validated prognostic plasma protein biomarker test for renal decline in type 2 diabetes to type 1 diabetes: the Fremantle Diabetes Study Phase II. Clin Diabetes Endocrinol 2024; 10:30. [PMID: 39385270 PMCID: PMC11466018 DOI: 10.1186/s40842-024-00191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND There are scant data relating to prognostic biomarkers for chronic kidney disease (CKD) complicating type 1 diabetes. The aim of this study was to assess the performance of the plasma protein biomarker-based PromarkerD test developed and validated for predicting renal decline in type 2 diabetes in the context of type 1 diabetes. METHODS The baseline PromarkerD test score was determined in 91 community-based individuals (mean age 46.2 years, 56.5% males) with confirmed type 1 diabetes recruited to the longitudinal observational Fremantle Diabetes Study Phase II. The performance of the PromarkerD test in predicting the risk of incident CKD (estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73m2 in people without CKD at baseline) or an eGFR decline of ≥ 30% over the next four years was determined. The score can range from 0 to 100%, and is categorized as representing low (< 10%), moderate (10% to < 20%) or high (≥ 20%) risk. RESULTS The area under the receiver operating characteristic curve was 0.93 (95% confidence interval 0.87-0.99) for the composite renal endpoint, indicating strong predictive accuracy. The positive and negative predictive values at moderate (10% to < 20%) and high (≥ 20%) risk PromarkerD cut-offs were 46.7-50.0% and ≥ 92.0%, respectively. CONCLUSIONS These preliminary data suggest that PromarkerD is at least as good a prognostic test for renal decline in type 1 as type 2 diabetes.
Collapse
Affiliation(s)
- Timothy M E Davis
- Medical School, University of Western Australia, Fremantle Hospital, PO Box 480, WA, 6959, Fremantle, Australia.
- Department of Endocrinology and Diabetes, Fiona Stanley and Fremantle Hospitals, Murdoch, WA, Australia.
- Australian Centre for Accelerating Diabetes Innovations, The University of Melbourne, Melbourne, VIC, Australia.
| | - Wendy A Davis
- Medical School, University of Western Australia, Fremantle Hospital, PO Box 480, WA, 6959, Fremantle, Australia
- Australian Centre for Accelerating Diabetes Innovations, The University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | | | |
Collapse
|
3
|
Sivaprasad M, Shalini T, Sahay M, Sahay R, Satyanarayanan M, Reddy GB. Plasma levels and dietary intake of minerals in patients with type 2 diabetes and chronic kidney disease: A case-control study. J Trace Elem Med Biol 2024; 84:127425. [PMID: 38484635 DOI: 10.1016/j.jtemb.2024.127425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND AIM Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease (CKD) worldwide. Altered mineral levels leading to adverse outcomes are widely reported in diabetes but limited in DKD, in the Indian scenario, hence this study was taken up to address this issue. METHODS A hospital-based case-control study was taken up with 54 healthy controls (C) and 140 subjects with type 2 diabetes wherein 74 subjects with diabetes and CKD formed the DKD group, and 66 subjects with diabetes but no CKD formed the diabetic no-chronic kidney disease (DNCKD) group. High-resolution inductively coupled plasma mass spectrometry was used to evaluate the blood levels of minerals (calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)), and a raw food-based food frequency questionnaire for dietary intakes. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (mL/min/1.73 m2) and albuminuria. Spearman's rank correlation was used to evaluate the relationship between the categorical variables. RESULTS The median values of plasma Ca in the DKD group were significantly lower compared with the DNCKD and C groups (10.5 mg/dL vs. 11.0 mg/dL and 11.7 mg/dL, p<0.001). Furthermore, plasma Ca levels lowered with declining kidney function, as evidenced by the eGFR and albuminuria segregation. Dietary intake of minerals did not correlate with the corresponding plasma levels. However, in the DKD group, eGFR correlated positively with the plasma levels of Ca (r= 0.422, p=0.001), Cr (r= 0.351, p=0.008), Mn (r= 0.338, p=0.011), Fe (r= 0.403, p=0.002), Cu (r= 0.274, p=0.041) and negatively with Se (r= -0.486, p<0.001). CONCLUSION Plasma Ca levels are lower in the DKD group with a strong positive association with eGFR, indicating its role in predicting the onset and progression of kidney function decline.
Collapse
Affiliation(s)
- Mudili Sivaprasad
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Tattari Shalini
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Manisha Sahay
- Nephrology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | - Rakesh Sahay
- Endocrinology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | | | | |
Collapse
|
4
|
Arici M, Altun B, Araz M, Atmaca A, Demir T, Ecder T, Guz G, Gogas Yavuz D, Yildiz A, Yilmaz T. The significance of finerenone as a novel therapeutic option in diabetic kidney disease: a scoping review with emphasis on cardiorenal outcomes of the finerenone phase 3 trials. Front Med (Lausanne) 2024; 11:1384454. [PMID: 38947237 PMCID: PMC11214281 DOI: 10.3389/fmed.2024.1384454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
This scoping review prepared by endocrinology and nephrology experts aimed to address the significance of finerenone, as a novel therapeutic option, in diabetic kidney disease (DKD), based on the biological prospect of cardiorenal benefit due to non-steroidal mineralocorticoid receptor antagonist (MRA) properties, and the recent evidence from the finerenone phase 3 program clinical trials. The importance of finerenone in slowing DKD progression was critically reviewed in relation to the role of MR overactivation in the pathogenesis of cardiorenal disease and unmet needs in the current practice patterns. The efficacy and safety outcomes of finerenone phase III study program including FIDELIO-DKD, FIGARO-DKD and FIDELITY were presented. Specifically, perspectives on inclusion of patients with preserved estimated glomerular filtration rate (eGFR) or high albuminuria, concomitant use of sodium-glucose co-transporter-2 inhibitor (SGLT2i) or glucagon-like peptide 1 receptor agonist (GLP-1 RA), baseline glycated hemoglobin (HbA1c) level and insulin treatment, clinically meaningful heart failure outcomes and treatment-induced hyperkalemia were addressed. Finerenone has emerged as a new therapeutic agent that slows DKD progression, reduces albuminuria and risk of cardiovascular complications, regardless of the baseline HbA1c levels and concomitant treatments (SGLT2i, GLP-1 RA, or insulin) and with a favorable benefit-risk profile. The evolving data on the benefit of SGLT2is and non-steroidal MRAs in slowing or reducing cardiorenal risk seem to provide the opportunity to use these pillars of therapy in the management of DKD, after a long-period of treatment scarcity in this field. Along with recognition of the albuminuria as a powerful marker to detect those patients at high risk of cardiorenal disease, these important developments would likely to impact standard-of-care options in the setting of DKD.
Collapse
Affiliation(s)
- Mustafa Arici
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Bulent Altun
- Department of Nephrology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Mustafa Araz
- Department of Endocrinology and Metabolic Diseases, Gaziantep University Faculty of Medicine, Gaziantep, Türkiye
| | - Aysegul Atmaca
- Department of Endocrinology and Metabolic Diseases, Ondokuz Mayis University Faculty of Medicine, Samsun, Türkiye
| | - Tevfik Demir
- Department of Endocrinology and Metabolic Diseases, Dokuz Eylul University Faculty of Medicine, Izmir, Türkiye
| | - Tevfik Ecder
- Department of Nephrology, Istinye University Faculty of Medicine, Istanbul, Türkiye
| | - Galip Guz
- Department of Nephrology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Dilek Gogas Yavuz
- Section of Endocrinology and Metabolism, Marmara University School of Medicine, Istanbul, Türkiye
| | - Alaattin Yildiz
- Department of Nephrology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Türkiye
| | - Temel Yilmaz
- Clinics of Endocrinology and Metabolic Diseases, Florence Nightingale Hospital, Istanbul, Türkiye
| |
Collapse
|
5
|
Ali MM, Parveen S, Williams V, Dons R, Uwaifo GI. Cardiometabolic comorbidities and complications of obesity and chronic kidney disease (CKD). J Clin Transl Endocrinol 2024; 36:100341. [PMID: 38616864 PMCID: PMC11015524 DOI: 10.1016/j.jcte.2024.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and clinical care significance. Because of their growing prevalence, chronic indolent course and consequent complications both these conditions place significant burden on the health care delivery system especially in developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of the journal on " The Cross roads between Endocrinology and Nephrology" we review the epidemiology of obesity related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on the cardio metabolic consequences and then review the current body of evidence for available strategies for chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and management strategies in its improvement and risk reduction.
Collapse
Affiliation(s)
- Mariam M. Ali
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Sanober Parveen
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Vanessa Williams
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Robert Dons
- Southern Illinois School of Medicine, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, 751 North Rutledge Street, Moy Building, Suite 1700, Springfield, Il 62702, United States
| | - Gabriel I. Uwaifo
- Section of Endocrinology, Dept of Medicine, SIU School of Medicine, 751 N Rutledge St, Moy Building, Suite 1700, Room #1813, Springfield, Il 62702, United States
| |
Collapse
|
6
|
Natale P, Tunnicliffe DJ, Toyama T, Palmer SC, Saglimbene VM, Ruospo M, Gargano L, Stallone G, Gesualdo L, Strippoli GF. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors for people with chronic kidney disease and diabetes. Cochrane Database Syst Rev 2024; 5:CD015588. [PMID: 38770818 PMCID: PMC11106805 DOI: 10.1002/14651858.cd015588.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Diabetes is associated with high risks of premature chronic kidney disease (CKD), cardiovascular diseases, cardiovascular death and impaired quality of life. People with diabetes are more likely to develop kidney impairment, and approximately one in three adults with diabetes have CKD. People with CKD and diabetes experience a substantially higher risk of cardiovascular outcomes. Sodium-glucose co-transporter protein 2 (SGLT2) inhibitors have shown potential effects in preventing kidney and cardiovascular outcomes in people with CKD and diabetes. However, new trials are emerging rapidly, and evidence synthesis is essential to summarising cumulative evidence. OBJECTIVES This review aimed to assess the benefits and harms of SGLT2 inhibitors for people with CKD and diabetes. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 17 November 2023 using a search strategy designed by an Information Specialist. Studies in the Register are continually identified through regular searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Randomised controlled studies were eligible if they evaluated SGLT2 inhibitors versus placebo, standard care or other glucose-lowering agents in people with CKD and diabetes. CKD includes all stages (from 1 to 5), including dialysis patients. DATA COLLECTION AND ANALYSIS Two authors independently extracted data and assessed the study risk of bias. Treatment estimates were summarised using random effects meta-analysis and expressed as a risk ratio (RR) or mean difference (MD), with a corresponding 95% confidence interval (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The primary review outcomes were all-cause death, 3-point and 4-point major adverse cardiovascular events (MACE), fatal or nonfatal myocardial infarction (MI), fatal or nonfatal stroke, and kidney failure. MAIN RESULTS Fifty-three studies randomising 65,241 people with CKD and diabetes were included. SGLT2 inhibitors with or without other background treatments were compared to placebo, standard care, sulfonylurea, dipeptidyl peptidase-4 (DPP-4) inhibitors, or insulin. In the majority of domains, the risks of bias in the included studies were low or unclear. No studies evaluated the treatment in children or in people treated with dialysis. No studies compared SGLT2 inhibitors with glucagon-like peptide-1 receptor agonists or tirzepatide. Compared to placebo, SGLT2 inhibitors decreased the risk of all-cause death (20 studies, 44,397 participants: RR 0.85, 95% CI 0.78 to 0.94; I2 = 0%; high certainty) and cardiovascular death (16 studies, 43,792 participants: RR 0.83, 95% CI 0.74 to 0.93; I2 = 29%; high certainty). Compared to placebo, SGLT2 inhibitors probably make little or no difference to the risk of fatal or nonfatal MI (2 studies, 13,726 participants: RR 0.95, 95% CI 0.80 to 1.14; I2 = 24%; moderate certainty), and fatal or nonfatal stroke (2 studies, 13,726 participants: RR 1.07, 95% CI 0.88 to 1.30; I2 = 0%; moderate certainty). Compared to placebo, SGLT2 inhibitors probably decrease 3-point MACE (7 studies, 38,320 participants: RR 0.89, 95% CI 0.81 to 0.98; I2 = 46%; moderate certainty), and 4-point MACE (4 studies, 23,539 participants: RR 0.82, 95% CI 0.70 to 0.96; I2 = 77%; moderate certainty), and decrease hospital admission due to heart failure (6 studies, 28,339 participants: RR 0.70, 95% CI 0.62 to 0.79; I2 = 17%; high certainty). Compared to placebo, SGLT2 inhibitors may decrease creatinine clearance (1 study, 132 participants: MD -2.63 mL/min, 95% CI -5.19 to -0.07; low certainty) and probably decrease the doubling of serum creatinine (2 studies, 12,647 participants: RR 0.70, 95% CI 0.56 to 0.89; I2 = 53%; moderate certainty). SGLT2 inhibitors decrease the risk of kidney failure (6 studies, 11,232 participants: RR 0.70, 95% CI 0.62 to 0.79; I2 = 0%; high certainty), and kidney composite outcomes (generally reported as kidney failure, kidney death with or without ≥ 40% decrease in estimated glomerular filtration rate (eGFR)) (7 studies, 36,380 participants: RR 0.68, 95% CI 0.59 to 0.78; I2 = 25%; high certainty) compared to placebo. Compared to placebo, SGLT2 inhibitors incur less hypoglycaemia (16 studies, 28,322 participants: RR 0.93, 95% CI 0.89 to 0.98; I2 = 0%; high certainty), and hypoglycaemia requiring third-party assistance (14 studies, 26,478 participants: RR 0.75, 95% CI 0.65 to 0.88; I2 = 0%; high certainty), and probably decrease the withdrawal from treatment due to adverse events (15 studies, 16,622 participants: RR 0.94, 95% CI 0.82 to 1.08; I2 = 16%; moderate certainty). The effects of SGLT2 inhibitors on eGFR, amputation and fracture were uncertain. No studies evaluated the effects of treatment on fatigue, life participation, or lactic acidosis. The effects of SGLT2 inhibitors compared to standard care alone, sulfonylurea, DPP-4 inhibitors, or insulin were uncertain. AUTHORS' CONCLUSIONS SGLT2 inhibitors alone or added to standard care decrease all-cause death, cardiovascular death, and kidney failure and probably decrease major cardiovascular events while incurring less hypoglycaemia compared to placebo in people with CKD and diabetes.
Collapse
Affiliation(s)
- Patrizia Natale
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Tadashi Toyama
- Department of Nephrology, Kanazawa University, Kanazawa, Japan
- Innovative Clinical Research Center, Kanazawa University, Kanazawa, Japan
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Valeria M Saglimbene
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Marinella Ruospo
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Letizia Gargano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Fm Strippoli
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J) Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
7
|
Yan S, Wang H, Feng B, Ye L, Chen A. Causal relationship between gut microbiota and diabetic nephropathy: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1332757. [PMID: 38533501 PMCID: PMC10964483 DOI: 10.3389/fimmu.2024.1332757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Emerging evidence has provided compelling evidence linking gut microbiota (GM) and diabetic nephropathy (DN) via the "gut-kidney" axis. But the causal relationship between them hasn't been clarified yet. We perform a Two-Sample Mendelian randomization (MR) analysis to reveal the causal connection with GM and the development of DN, type 1 diabetes nephropathy (T1DN), type 2 diabetes nephropathy (T2DN), type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM). Methods We used summary data from MiBioGen on 211 GM taxa in 18340 participants. Generalized MR analysis methods were conducted to estimate their causality on risk of DN, T1DN, T2DN, T1DM and T2DM from FinnGen. To ensure the reliability of the findings, a comprehensive set of sensitivity analyses were conducted to confirm the resilience and consistency of the results. Results It was showed that Class Verrucomicrobiae [odds ratio (OR) =1.5651, 95%CI:1.1810-2.0742,PFDR=0.0018], Order Verrucomicrobiales (OR=1.5651, 95%CI: 1.1810-2.0742, PFDR=0.0018) and Family Verrucomicrobiaceae (OR=1.3956, 95%CI:1.0336-1.8844, PFDR=0.0296) had significant risk of DN. Our analysis found significant associations between GM and T2DN, including Class Verrucomimicrobiae (OR=1.8227, 95% CI: 1.2414-2.6763, PFDR=0.0139), Order Verrucomimicrobiae (OR=1.5651, 95% CI: 1.8227-2.6764, PFDR=0.0024), Rhodospirillales (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0026), and Family Verrucomicroniaceae (OR=1.8226, 95% CI: 1.2412-2.6763, PFDR=0.0083). The Eubacteriumprotogenes (OR=0.4076, 95% CI: 0.2415-0.6882, PFDR=0.0021) exhibited a protection against T1DN. Sensitivity analyses confirmed that there was no significant heterogeneity and pleiotropy. Conclusions At the gene prediction level, we identified the specific GM that is causally linked to DN in both T1DM and T2DM patients. Moreover, we identified distinct microbial changes in T1DN that differed from those seen in T2DN, offering valuable insights into GM signatures associated with subtype of nephropathy.
Collapse
Affiliation(s)
- Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baiyu Feng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Lin Ye
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Anqun Chen
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| |
Collapse
|
8
|
Nabipoorashrafi SA, Adeli A, Seyedi SA, Rabizadeh S, Arabzadeh Bahri R, Mohammadi F, Yadegar A, Nakhjavani M, Esteghamati A. Comparison of insulin resistance indices in predicting albuminuria among patients with type 2 diabetes. Eur J Med Res 2023; 28:166. [PMID: 37161502 PMCID: PMC10170852 DOI: 10.1186/s40001-023-01134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
PURPOSE Diabetes is the leading cause of kidney disease. Up to 40% of the population with diabetes experience diabetic kidney disease (DKD). The correlation of DKD with insulin resistance (IR) indices has been shown in previous studies. In this study, the objective was to evaluate surrogate IR indices, including the Triglyceride-Glucose (TyG) index, Visceral Adiposity Index (VAI), Lipid Accumulation Product (LAP), and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) to find the most valuable index for the correlation between albuminuria and IR in the type 2 diabetes (T2D) population. Albuminuria is defined as urine albumin excretion of > 30 mg/day. METHODS In this cross-sectional study, 2934 participants were enrolled and evaluated for urinary albumin excretion, and albuminuria was detected in 526 of the entries. The logistic regression models and Receiver Operating Characteristic (ROC) curve analysis were performed to assess the relationship of TyG index, VAI, LAP, and HOMA-IR's with albuminuria in patients with T2D. RESULTS The TyG index had the highest association (OR 1.67) with the presence of albuminuria in patients with T2D, followed by HOMA-IR (OR 1.127), VAI (OR 1.028), and LAP (OR 1.004). These four indices remained independent after adjustment for multiple confounders. Based on the ROC curve, TyG revealed the best area under the curve (AUC) for revealing albuminuria with sufficient accuracy (AUC: 0.62) in comparison with other measured indices. The calculated TyG index cut-off point for the presence of albuminuria was 9.39. CONCLUSION Among the indices, TyG index had the most significant correlation with albuminuria in patients with T2D.
Collapse
Affiliation(s)
- Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Azam Adeli
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Soghra Rabizadeh
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Razman Arabzadeh Bahri
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Fatemeh Mohammadi
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Amirhossein Yadegar
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), School of Medicine, Vali-Asr Hospital, P.O.Box 13145784, Tehran, Iran.
| |
Collapse
|
9
|
Abstract
The prevalence of obesity has increased dramatically during the past decades, which has been a major health problem. Since 1975, the number of people with obesity worldwide has nearly tripled. An increasing number of studies find obesity as a driver of chronic kidney disease (CKD) progression, and the mechanisms are complex and include hemodynamic changes, inflammation, oxidative stress, and activation of the renin-angiotensin-aldosterone system (RAAS). Obesity-related kidney disease is characterized by glomerulomegaly, which is often accompanied by localized and segmental glomerulosclerosis lesions. In these patients, the early symptoms are atypical, with microproteinuria being the main clinical manifestation and nephrotic syndrome being rare. Weight loss and RAAS blockers have a protective effect on obesity-related CKD, but even so, a significant proportion of patients eventually progress to end-stage renal disease despite treatment. Thus, it is critical to comprehend the mechanisms underlying obesity-related CKD to create new tactics for slowing or stopping disease progression. In this review, we summarize current knowledge on the mechanisms of obesity-related kidney disease, its pathological changes, and future perspectives on its treatment.
Collapse
Affiliation(s)
- Zongmiao Jiang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Kelly M, Lewis J, Rao H, Carter J, Portillo I, Beuttler R. Effects of GLP-1 receptor agonists on cardiovascular outcomes in patients with type 2 diabetes and chronic kidney disease: A systematic review and meta-analysis. Pharmacotherapy 2022; 42:921-928. [PMID: 36271706 PMCID: PMC10099849 DOI: 10.1002/phar.2737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
AIM To evaluate the cardiovascular outcomes of glucagon-like peptide-1 receptor agonists (GLP1-RA) in patients with type 2 diabetes (T2DM) and chronic kidney disease (CKD). MATERIALS AND METHODS We searched PubMed, Ovid MEDLINE, CINAHL, and Web of Science databases for randomized controlled trials reporting event rates for a composite cardiovascular outcome of cardiovascular death, myocardial infarction, and stroke in patients with T2DM and CKD receiving GLP1-RA or placebo. Studies were restricted to those reporting specific event rates for patients with CKD separately from the overall population. We conducted a meta-analysis using a random-effects model. This meta-analysis was registered on PROSPERO (CRD42022320157). RESULTS A total of four studies comprising 7130 patients was included in our analysis. Four different GLP1-RA were assessed in a population with CKD defined as estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2 . Treatment with GLP1-RA was not associated with a significant reduction in the composite cardiovascular end point of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke (odds ratio (OR) 0.80; 95% confidence interval (CI), 0.59-1.07; p = 0.13) among patients with T2DM and CKD. Individual components of the composite cardiovascular end point were assessed in two trials and did not show evidence of an effect of GLP1-RA in reducing cardiovascular end points. CONCLUSIONS Pooled analysis of clinical trials reporting separate cardiovascular events rates in patients with T2DM and CKD did not find GLP1-RA to be associated with a reduction in composite cardiovascular event rates. Select GLP1-RA may offer cardiovascular event reduction in patients with T2DM and CKD, but this does not appear to be a class effect. Use of GLP1-RA with demonstrated cardiovascular benefits should be preferred in patients with CKD and T2DM to further reduce cardiovascular risk.
Collapse
Affiliation(s)
- Michael Kelly
- Thomas Jefferson University College of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Jelena Lewis
- Chapman University School of Pharmacy, Irvine, California, USA
| | - Hindu Rao
- Chapman University School of Pharmacy, Irvine, California, USA
| | - Jessica Carter
- Chapman University School of Pharmacy, Irvine, California, USA
| | - Ivan Portillo
- Chapman University School of Pharmacy, Irvine, California, USA
| | | |
Collapse
|
11
|
SGLT2 inhibitors for treating diabetes in people with chronic kidney disease. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2022; 2022:CD015588. [PMCID: PMC9534313 DOI: 10.1002/14651858.cd015588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: This review aims to assess the benefits and harms of SGLT2 inhibitors for lowering glucose levels in people with diabetes and CKD.
Collapse
|
12
|
Serum uric acid as a predictor of cardio- and cerebro-vascular diseases in maintenance hemodialysis patients. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2022; 60:115-122. [DOI: 10.2478/rjim-2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background: Hyperuricemia is associated with an increased risk of cardio-and cerebrovascular disease (CVD) in general population. However, in the hemodialysis (HD) patients, low serum uric acid (SUA) increases the risk of mortality. Considering that CVD is the principal cause of death among maintenance HD patients, the present study aimed to determine the predictive value of SUA for CVD outcome in this population.
Methods: In this two-year follow-up prospective study, 205 outpatients under maintenance HD were enrolled from March 2017 to 2020. Patients’ demographic data, underlying diseases, and the results of serum tests, as well as two-year follow-up results of CVD events and mortality were recorded.
Results: A total of 130 (63%) patients were eligible for analysis; 62.9% were male; mean age of participants was 59±13years. At follow-up, coronary artery disease was observed in 43.2%, peripheral artery disease in 26.5%, and cerebrovascular disease in 20.5%; angiography was required in 52.3% and 4.5% died of CVD. SUA was ≤5.4 mg/dL in 52 patients, 5.5–6.1 mg/dL in 19, and ≥6.2 mg/dL in 59 patients with significant difference based on mean age, sex distribution, occurrence of cerebrovascular disease and cardiovascular mortality (P<0.05). Patients with cerebrovascular disease had a significantly lower SUA levels (P=0.006). Logistic regression showed the significant effect of SUA on the occurrence of cerebrovascular disease (P=0.008).
Conclusion: Low SUA can predict two-year incidence of cerebrovascular disease in HD patients. However, SUA levels did not show significant predictive effect on two-year coronary events, peripheral artery disease and cardiovascular mortality.
Collapse
|
13
|
Agarwal R, Anker SD, Bakris G, Filippatos G, Pitt B, Rossing P, Ruilope L, Gebel M, Kolkhof P, Nowack C, Joseph A, on behalf of the FIDELIO-DKD and FIGARO-DKD Investigators. Investigating new treatment opportunities for patients with chronic kidney disease in type 2 diabetes: the role of finerenone. Nephrol Dial Transplant 2022; 37:1014-1023. [PMID: 33280027 PMCID: PMC9130026 DOI: 10.1093/ndt/gfaa294] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the standard of care, patients with chronic kidney disease (CKD) and type 2 diabetes (T2D) progress to dialysis, are hospitalized for heart failure and die prematurely. Overactivation of the mineralocorticoid receptor (MR) causes inflammation and fibrosis that damages the kidney and heart. Finerenone, a nonsteroidal, selective MR antagonist, confers kidney and heart protection in both animal models and Phase II clinical studies; the effects on serum potassium and kidney function are minimal. Comprising the largest CKD outcomes program to date, FIDELIO-DKD (FInerenone in reducing kiDnEy faiLure and dIsease prOgression in Diabetic Kidney Disease) and FIGARO-DKD (FInerenone in reducinG cArdiovascular moRtality and mOrbidity in Diabetic Kidney Disease) are Phase III trials investigating the efficacy and safety of finerenone on kidney failure and cardiovascular outcomes from early to advanced CKD in T2D. By including echocardiograms and biomarkers, they extend our understanding of pathophysiology; by including quality of life measurements, they provide patient-centered outcomes; and by including understudied yet high-risk cardiorenal subpopulations, they have the potential to widen the scope of therapy in T2D with CKD. Trial registration number: FIDELIO-DKD (NCT02540993) and FIGARO-DKD (NCT02545049).
Collapse
Affiliation(s)
- Rajiv Agarwal
- Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Stefan D Anker
- Department of Cardiology (CVK) and Berlin Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research Partner Site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - George Bakris
- Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Bertram Pitt
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Luis Ruilope
- Cardiorenal Translational Laboratory and Hypertension Unit, Institute of Research imas12, Madrid, Spain
- IBER-CV, Hospital Universitario, 12 de Octubre, Madrid, Spain
- Faculty of Sport Sciences, European University of Madrid, Madrid, Spain
| | - Martin Gebel
- Research and Development, Statistics and Data Insights, Bayer AG, Berlin, Germany
| | - Peter Kolkhof
- Research and Development, Preclinical Research Cardiovascular, Bayer AG, Wuppertal, Germany
| | - Christina Nowack
- Research and Development, Clinical Development Operations, Bayer AG, Wuppertal, Germany
| | - Amer Joseph
- Cardiology and Nephrology Clinical Development, Bayer AG, Berlin, Germany
| | | |
Collapse
|
14
|
Pieber TR, Bajaj HS, Heller SR, Jia T, Khunti K, Klonoff DC, Ladelund S, Leiter LA, Wagner L, Philis‐Tsimikas A. Impact of kidney function on the safety and efficacy of insulin degludec versus insulin glargine U300 in people with type 2 diabetes: A post hoc analysis of the CONCLUDE trial. Diabetes Obes Metab 2022; 24:332-336. [PMID: 34605127 PMCID: PMC9298323 DOI: 10.1111/dom.14564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Thomas R. Pieber
- Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazGrazAustria
| | | | - Simon R. Heller
- Academic Unit of Diabetes, Endocrinology and MetabolismUniversity of SheffieldSheffieldUK
| | | | - Kamlesh Khunti
- Diabetes Research CentreUniversity of LeicesterLeicesterUK
| | - David C. Klonoff
- Diabetes Research InstituteMills‐Peninsula Medical CenterSan MateoCaliforniaUSA
| | | | - Lawrence A. Leiter
- Li Ka Shing Knowledge Institute, Division of Endocrinology & Metabolism, St Michael's HospitalUniversity of TorontoTorontoOntarioCanada
| | | | | |
Collapse
|
15
|
Zaky A, Glastras SJ, Wong MYW, Pollock CA, Saad S. The Role of the Gut Microbiome in Diabetes and Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:9641. [PMID: 34502562 PMCID: PMC8431784 DOI: 10.3390/ijms22179641] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is a progressive disorder, which is increasing globally in prevalence due to the increased incidence of obesity and diabetes mellitus. Despite optimal clinical management, a significant number of patients with diabetes develop DKD. Hence, hitherto unrecognized factors are likely to be involved in the initiation and progression of DKD. An extensive number of studies have demonstrated the role of microbiota in health and disease. Dysregulation in the microbiota resulting in a deficiency of short chain fatty acids (SCFAs) such as propionate, acetate, and butyrate, by-products of healthy gut microbiota metabolism, have been demonstrated in obesity, type 1 and type 2 diabetes. However, it is not clear to date whether such changes in the microbiota are causative or merely associated with the diseases. It is also not clear which microbiota have protective effects on humans. Few studies have investigated the centrality of reduced SCFA in DKD development and progression or the potential therapeutic effects of supplemental SCFAs on insulin resistance, inflammation, and metabolic changes. SCFA receptors are expressed in the kidneys, and emerging data have demonstrated that intestinal dysbiosis activates the renal renin-angiotensin system, which contributes to the development of DKD. In this review, we will summarize the complex relationship between the gut microbiota and the kidney, examine the evidence for the role of gut dysbiosis in diabetes and obesity-related kidney disease, and explore the mechanisms involved. In addition, we will describe the role of potential therapies that modulate the gut microbiota to prevent or reduce kidney disease progression.
Collapse
Affiliation(s)
- Amgad Zaky
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - May Y. W. Wong
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
| |
Collapse
|
16
|
Triposkiadis F, Xanthopoulos A, Bargiota A, Kitai T, Katsiki N, Farmakis D, Skoularigis J, Starling RC, Iliodromitis E. Diabetes Mellitus and Heart Failure. J Clin Med 2021; 10:3682. [PMID: 34441977 PMCID: PMC8396967 DOI: 10.3390/jcm10163682] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for new-onset heart failure (HF) and vice versa. The pathogenesis of new-onset HF in DM is complex and has been largely attributed to the toxic cardiovascular effects of hyperglycemia and relevant metabolic abnormalities (diabetic cardiomyopathy) as well as the frequently coexisting morbidities such as hypertension (HTN), coronary artery disease (CAD), and diabetic nephropathy. In patients with type 1 DM (T1DM), HF develops in the setting of a dysregulated immune response, whereas in most patients with type 2 DM (T2DM), against a background of overweight/obesity. HF prevention in DM is feasible with rigorous treatment of cardiovascular risk factors and selective antidiabetic agents. Conversely, development of new-onset T2DM in HF (cardiogenic DM) is common and has been attributed to an increase in the resistance to insulin, especially in the skeletal muscle, liver, and adipose tissue as well as in diminished insulin secretory response to hyperglycemia by pancreatic β-cells. Cardiogenic DM further deteriorates cardiac dysfunction and adversely affects outcome in HF. Novel lifesaving medications employed in HF management such as sacubitril/valsartan and sodium glucose cotransporter 2 inhibitors (SGLT-2i) have a favorable metabolic profile and lower the incidence of cardiogenic diabetes. Whether mitigation of cardiogenic DM should be a treatment target in HF deserves further investigation.
Collapse
Affiliation(s)
- Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, 411 10 Larissa, Greece; (A.X.); (J.S.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, 411 10 Larissa, Greece; (A.X.); (J.S.)
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, University General Hospital of Larissa, 411 10 Larissa, Greece;
| | - Takeshi Kitai
- National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan;
| | - Niki Katsiki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54124 Thessaloniki, Greece;
| | - Dimitrios Farmakis
- University of Cyprus Medical School, P.O. Box 20537, Nicosia 1678, Cyprus;
| | - John Skoularigis
- Department of Cardiology, University General Hospital of Larissa, 411 10 Larissa, Greece; (A.X.); (J.S.)
| | - Randall C. Starling
- Kaufman Center for Heart Failure Treatment and Recovery, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Efstathios Iliodromitis
- Second Department of Cardiology, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece;
| |
Collapse
|
17
|
Piko N, Bevc S, Ekart R, Petreski T, Vodošek Hojs N, Hojs R. Diabetic patients with chronic kidney disease: Non-invasive assessment of cardiovascular risk. World J Diabetes 2021; 12:975-996. [PMID: 34326949 PMCID: PMC8311487 DOI: 10.4239/wjd.v12.i7.975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/04/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence and burden of diabetes mellitus and chronic kidney disease on global health and socioeconomic development is already heavy and still rising. Diabetes mellitus by itself is linked to adverse cardiovascular events, and the presence of concomitant chronic kidney disease further amplifies cardiovascular risk. The culmination of traditional (male gender, smoking, advanced age, obesity, arterial hypertension and dyslipidemia) and non-traditional risk factors (anemia, inflammation, proteinuria, volume overload, mineral metabolism abnormalities, oxidative stress, etc.) contributes to advanced atherosclerosis and increased cardiovascular risk. To decrease the morbidity and mortality of these patients due to cardiovascular causes, timely and efficient cardiovascular risk assessment is of huge importance. Cardiovascular risk assessment can be based on laboratory parameters, imaging techniques, arterial stiffness parameters, ankle-brachial index and 24 h blood pressure measurements. Newer methods include epigenetic markers, soluble adhesion molecules, cytokines and markers of oxidative stress. In this review, the authors present several non-invasive methods of cardiovascular risk assessment in patients with diabetes mellitus and chronic kidney disease.
Collapse
Affiliation(s)
- Nejc Piko
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
- Medical Faculty, University of Maribor, Maribor 2000, Slovenia
| | - Robert Ekart
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
- Medical Faculty, University of Maribor, Maribor 2000, Slovenia
| | - Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
- Medical Faculty, University of Maribor, Maribor 2000, Slovenia
| | - Nina Vodošek Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Maribor 2000, Slovenia
- Medical Faculty, University of Maribor, Maribor 2000, Slovenia
| |
Collapse
|
18
|
Deligiannis A, D'Alessandro C, Cupisti A. Exercise training in dialysis patients: impact on cardiovascular and skeletal muscle health. Clin Kidney J 2021; 14:ii25-ii33. [PMID: 33981417 PMCID: PMC8101623 DOI: 10.1093/ckj/sfaa273] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Dialysis patients show a high rate of reduced functional capacity, morbidity and mortality. Cardiovascular disorders, muscle atrophy and malnutrition play an essential role among the aetiological factors. Sedentary lifestyle characterizes them and contributes to the aggravation of the disorders. On the contrary, exercise training is an important preventive and therapeutic tool both for cardiovascular problems and for the appearance of muscle atrophy in dialysis patients. Regular exercise causes both central (cardiac) and peripheral (muscular) adaptations, improving functional capacity. In particular, circulatory system clinical trials in haemodialysis (HD) patients documented that exercise has favourable effects on heart function, promotes balance on the cardiac autonomic nervous system and contributes to the management of arterial hypertension. In the muscular system, it prevents muscle atrophy or contributes significantly to its treatment. The main preventive mechanisms of the beneficial effect of exercise on the muscles constitute the inhibition of the apoptotic processes and protein degradation. Exercise training in HD patients leads to an increase of muscle fibers, mitochondria and capillaries, and the combination of regular exercise and dietary strategies is even more effective in preventing or treating muscle atrophy. Finally, an improvement in functional capacity and quality of life was found also in peritoneal dialysis patients following exercise training.
Collapse
Affiliation(s)
- Asterios Deligiannis
- Sports Medicine Laboratory, School of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thermi, Greece
| | - Claudia D'Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Srithongkul T, Ungprasert P. Coffee Consumption is Associated with a Decreased Risk of Incident Chronic Kidney Disease: A Systematic Review and Meta-analysis of Cohort Studies. Eur J Intern Med 2020; 77:111-116. [PMID: 32317238 DOI: 10.1016/j.ejim.2020.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/03/2020] [Accepted: 04/04/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recent studies have suggested a renal protective effect of coffee consumption against development of chronic kidney disease (CKD) although the results remain inconclusive. This systematic review and meta-analysis aimed to comprehensively investigate this association by summarizing all available data. METHODS A systematic review was performed using MEDLINE and EMBASE database from inception to November 2019 to identify all cohort studies that compared the risk of developing CKD after index date among coffee-drinkers versus non-drinkers. Pooled risk ratio and 95% confidence interval (CI) were calculated using random-effect, generic inverse-variance method of DerSimonian and Laird. RESULTS A total of 4 cohort studies comprising of 25,849 participants met the inclusion criteria and were analyzed in the meta-analysis. The meta-analysis found a significantly decreased risk of incident CKD among coffee-drinkers compared with non-drinkers with the pooled risk ratio of 0.87 (95% CI, 0.81-0.95; I2 of 57%). The funnel plot of this study was relatively symmetric and was not indicative of publication bias CONCLUSIONS: A significant association between coffee consumption and a lower risk of incident CKD was demonstrated in this study.
Collapse
Affiliation(s)
- Thatsaphan Srithongkul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Ungprasert
- Clinical Epidemiology Unit, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
20
|
Lewinski AA, Patel UD, Diamantidis CJ, Oakes M, Baloch K, Crowley MJ, Wilson J, Pendergast J, Biola H, Boulware LE, Bosworth HB. Addressing Diabetes and Poorly Controlled Hypertension: Pragmatic mHealth Self-Management Intervention. J Med Internet Res 2019; 21:e12541. [PMID: 30964439 PMCID: PMC6477575 DOI: 10.2196/12541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with diabetes and poorly controlled hypertension are at increased risk for adverse renal and cardiovascular outcomes. Identifying these patients early and addressing modifiable risk factors is central to delaying renal complications such as diabetic kidney disease. Mobile health (mHealth), a relatively inexpensive and easily scalable technology, can facilitate patient-centered care and promote engagement in self-management, particularly for patients of lower socioeconomic status. Thus, mHealth may be a cost-effective way to deliver self-management education and support. OBJECTIVE This feasibility study aimed to build a population management program by identifying patients with diabetes and poorly controlled hypertension who were at risk for adverse renal outcomes and evaluate a multifactorial intervention to address medication self-management. We recruited patients from a federally qualified health center (FQHC) in an underserved, diverse county in the southeastern United States. METHODS Patients were identified via electronic health record. Inclusion criteria were age between 18 and 75 years, diagnosis of type 2 diabetes, poorly controlled hypertension over the last 12 months (mean clinic systolic blood pressure [SBP] ≥140 mm Hg and/or diastolic blood pressure [DBP] ≥90 mm Hg), access to a mobile phone, and ability to receive text messages and emails. The intervention consisted of monthly telephone calls for 6 months by a case manager and weekly, one-way informational text messages. Engagement was defined as the number of phone calls completed during the intervention; individuals who completed 4 or more calls were considered engaged. The primary outcome was change in SBP at the conclusion of the intervention. RESULTS Of the 141 patients enrolled, 84.0% (118/141) of patients completed 1 or more phone calls and had follow-up SBP measurements for analysis. These patients were on average 56.9 years of age, predominately female (73/118, 61.9%), and nonwhite by self-report (103/118, 87.3%). The proportion of participants with poor baseline SBP control (50/118, 42.4%) did not change significantly at study completion (53/118, 44.9%) (P=.64). Participants who completed 4 or more phone calls (98/118, 83.1%) did not experience a statistically significant decrease in SBP when compared to those who completed fewer calls. CONCLUSION We did not reduce uncontrolled hypertension even among the more highly engaged. However, 83% of a predominately minority and low-income population completed at least 67% of the multimodal mHealth intervention. Findings suggest that combining an automated electronic health record system to identify at-risk patients with a tailored mHealth protocol can provide education to this population. While this intervention was insufficient to effect behavioral change resulting in better hypertension control, it does suggest that this FQHC population will engage in low-cost population health applications with a potentially promising impact. TRIAL REGISTRATION ClinicalTrials.gov NCT02418091; https://clinicaltrials.gov/ct2/show/NCT02418091 (Archived by WebCite at http://www.webcitation.org/76RBvacVU).
Collapse
Affiliation(s)
- Allison A Lewinski
- Durham Center of Innovation to Accelerate Discovery and Practice Transformation, Durham Veterans Affairs Health Care System, Durham, NC, United States
| | - Uptal D Patel
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, United States
- Gilead Sciences, Inc, Foster City, CA, United States
| | - Clarissa J Diamantidis
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Megan Oakes
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Khaula Baloch
- Outcomes Research Group, Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, United States
| | - Matthew J Crowley
- Durham Center of Innovation to Accelerate Discovery and Practice Transformation, Durham Veterans Affairs Health Care System, Durham, NC, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Jonathan Wilson
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Jane Pendergast
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Holly Biola
- Department of Family Medicine, Lincoln Community Health Center, Durham, NC, United States
| | - L Ebony Boulware
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Hayden B Bosworth
- Durham Center of Innovation to Accelerate Discovery and Practice Transformation, Durham Veterans Affairs Health Care System, Durham, NC, United States
- Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
- School of Nursing, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Activation of catalase via co-administration of aspirin and pioglitazone: Experimental and MLSD simulation approaches. Biochimie 2019; 156:100-108. [DOI: 10.1016/j.biochi.2018.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
|
22
|
Archakova TV, Nedosugova LV, Nikitina NA, Melnichenko AA, Sobenin IA. Immunogenic lipid markers of atherosclerosis in type 2 diabetic patients on program haemodialysis. TERAPEVT ARKH 2018. [DOI: 10.26442/terarkh201890104-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim. Determination of desialized apolipoprotein-B-100 (apoB-100) and lipoprotein-containing circulating immune complexes in patients with chronic kidney disease (CKD) in program hemodialysis with type 2 diabetes mellitus. Materials and methods. We examined 81 patients with CKD (50 men / 31 women) treated with program hemodialysis, of which 36 (17/19) with type 2 diabetes mellitus, 45 (33/12) non-diabetic patients. The levels of total cholesterol, triglycerides and desialylated apoB-100 in blood plasma and lipoprotein-containing circulating immune complexes. A color duplex scan of brachiocephalic arteries was used to assess the extent of development of atherosclerosis with the determination of the thickness of the intima-medial complex. Results and discussion. Patients with diabetes had high values of total cholesterol, triglycerides (p
Collapse
|
23
|
Shawahna R, Shanti Y, Al Zabadi H, Sharabati M, Alawneh A, Shaqu R, Taha I, Bustami A. Prevalence and association of clinical characteristics and biochemical factors with complications of diabetes mellitus in Palestinians treated in primary healthcare practice. Diabetes Metab Syndr 2018; 12:693-704. [PMID: 29693548 DOI: 10.1016/j.dsx.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023]
Abstract
AIMS The current study was carried out to examine prevalence of complications related to diabetes mellitus (DM) and to investigate association between clinical variables and biochemical factors with complications of DM in patients treated in primary healthcare settings in the West Bank of Palestine. MATERIALS AND METHODS Sociodemographic, clinical, and biochemical variables were collected from 385 patients visiting 17 primary healthcare settings in the West Bank. Patients provided blood and urine samples, responded to a questionnaire interview, and were subjected to ophthalmic examination. RESULTS HbA1c levels were predicted by duration of DM (p < 0.001), HDL (p = 0.011), alkaline phosphatase (p = 0.001), blood urea (p = 0.006), and LDL (p = 0.008). Triglycerides levels were predicted by blood urea (p = 0.002), HDL (p < 0.001), and total cholesterol (p < 0.001). GOT levels were predicted by LDL (p = 0.002) and GPT (p < 0.001). GPT levels were predicted by HDL (p = 0.003) and blood urea (p = 0.025). Urine albumin were predicted by total cholesterol (p = 0.001), LDL (p = 0.005), and blood urea (p = 0.036). CD ratio was predicted by the IOP and the IOP was predicted by the CD ratio (p = 0.001). CONCLUSIONS Prevalence of complications related to DM was high among patients with DM treated in primary healthcare practice. These complications and risk factors were predicted by certain clinical characteristics and biochemical factors. Policies and programs are needed to manage these modifiable risk factors.
Collapse
Affiliation(s)
- Ramzi Shawahna
- Department of Physiology, Pharmacology, and Toxicology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine; An-Najah BioSciences Unit, Centre for Poisons Control, Chemical and Biological Analyses, An-Najah National University, Nablus, Palestine.
| | - Yousef Shanti
- An-Najah National University Hospital, Nablus, Palestine.
| | - Hamzeh Al Zabadi
- Department of Public Health, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mutassem Sharabati
- Faculty of Medicine and Health Sciences, (undergraduate program), An-Najah National University, Nablus, Palestine
| | - Ammar Alawneh
- Faculty of Medicine and Health Sciences, (undergraduate program), An-Najah National University, Nablus, Palestine
| | - Rakan Shaqu
- Faculty of Medicine and Health Sciences, (undergraduate program), An-Najah National University, Nablus, Palestine
| | - Ibrahim Taha
- Faculty of Medicine and Health Sciences, (undergraduate program), An-Najah National University, Nablus, Palestine
| | - Adnan Bustami
- Faculty of Medicine and Health Sciences, (undergraduate program), An-Najah National University, Nablus, Palestine
| |
Collapse
|