1
|
Xu Z, Liu Z, He X, Shu H, Wang X, Liu T, Chen L, Zhang W, Xu P, Liu Y. Investigation of the transcriptome and metabolome of the cerebral cortex and testes in Cntnap4-deficient mice. J Psychiatr Res 2025; 186:252-262. [PMID: 40262286 DOI: 10.1016/j.jpsychires.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves challenges in social interaction and communication and repetitive behaviours. CNTNAP4 is implicated in neuronal signalling, and its deficiency plays a role in ASD. Transcriptomic analyses revealed similar gene expression between the brain and in humans as well as in mice. However, the relationships between the brain and testicular gene expression profiles and metabolism in ASD remain unclear. In this study, the effects of Cntnap4 deletion on gene expression and metabolic profiles in the cerebral cortex and testes were investigated to better understand ASD pathogenesis. METHODS Cntnap4 knockout mice were used to explore transcriptomic and metabolomic alterations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were employed to identify significantly altered pathways. RESULTS Cntnap4 deletion caused significant changes in both tissues. In the cerebral cortex, GO and KEGG analyses revealed differentially expressed genes (DEGs) related to mitochondrial energy production and synaptic signalling. Metabolomic analysis revealed altered levels of metabolites such as glutamic acid and glutamine. In the testes, 482 DEGs were linked to mitochondrial function and steroid biosynthesis. Additionally, commonly downregulated genes in both tissues highlighted disruptions in antioxidant activity and glutathione metabolism. CONCLUSIONS These findings suggest that Cntnap4 deletion impacts mitochondrial function, synaptic signalling, and metabolic processes, contributing to the ASD phenotype. By highlighting these mechanisms, this study provides insights into ASD pathogenesis and potential molecular targets for treatment and highlights the importance of the mitochondrial and synaptic pathways in the development of ASD associated with Cntnap4 deficiency.
Collapse
Affiliation(s)
- Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhongrui Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaozheng He
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hui Shu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaobei Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Tianni Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Lingyan Chen
- Department of Rehabilitation Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Yan Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| |
Collapse
|
2
|
Jia D, Chen DX, Guo QP, Ou HY, Liu B, Dai WP, Peng ZL, Liu YJ, Wang QP, Tan QY, Chen W, Liu JY. From TCM "Shen-nourishing" and "Yang-strengthening" theory to blood-testis barrier reorganization, GuiLuBuShen attenuates age-related male reproductive dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119899. [PMID: 40339836 DOI: 10.1016/j.jep.2025.119899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) provides a theoretical foundation for treating reproductive dysfunction via "Shen" system regulation. The classical formulation GuiLuBuShen pill (GLBS), recognized as a principal TCM therapy for male urogenital disorders, clinically enhances "Shen-Yang" nourishment in middle-aged and elderly males with genitourinary degeneration. AIM OF THE STUDY This study aims to elucidate the therapeutic efficacy and molecular mechanisms underlying GLBS in mitigating age-associated male genitourinary dysfunction, with particular focus on its regulatory effects on "Shen" deficiency-related pathophysiology during reproductive system senescence. MATERIALS AND METHODS In this study, 14-month-old Wistar rats were used to model natural male aging (vs. 6-week controls), and GLBS was administered at low (0.81 g/kg/d), medium (1.62 g/kg/d), and high (3.24 g/kg/d) doses for 8 weeks. The multimodal evaluation comprised physiological aging markers (body condition/fatigue recovery), reproductive competence (hormonal profiles/mating behavior/sperm parameters), organ integrity (morphometrics/urogenital histopathology) and molecular mechanisms (testicular transcriptomics & pathway validation). RESULTS GLBS treatment effectively attenuated age-related physiological decline, including weight loss, thermoregulatory dysfunction, and loco-motor impairment in open field test. Systemic anti physiological stress effects were demonstrated through reduced serum corticosterone, decreased organ degeneration and suppressed prostatic oxidative stress. GLBS restored reproductive function via reduced testicular oxidative damage, hormonal rebalancing, improved sperm motility/viability and attenuated seminiferous tubule degeneration with suppressed germ cell apoptosis. Mechanistic studies revealed that these effects were mechanistically linked to blood-testis barrier reinforcement and steroidogenic activation, collectively preserving spermatogenic homeostasis. CONCLUSIONS GLBS emerges as a multi-target therapeutic candidate for age-related urogenital disorders, uniquely combining systemic anti-aging effects with direct testicular rejuvenation. Its dual-action mechanism coordinates blood-testis barrier reinforcement through junctional remodeling with endocrine rebalancing, effectively preserving spermatogenic microenvironment homeostasis. The findings provide translational validation of traditional "Shen-nourishing" theory through contemporary molecular evidence, positioning GLBS as a promising intervention addressing both systemic senescence and organ-specific pathophysiology in male reproductive aging.
Collapse
Affiliation(s)
- Dan Jia
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, PR China.
| | - Di-Xin Chen
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Qiu-Ping Guo
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Hui-Yu Ou
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Bo Liu
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Wei-Ping Dai
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Zi-Lun Peng
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Yong-Jun Liu
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Qi-Peng Wang
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Qiu-Yi Tan
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China
| | - Wei Chen
- Guangzhou General Pharmaceutical Research Institute, Guangzhou, Guangdong, 510240, PR China.
| | - Ju-Yan Liu
- National Engineering Research Center of Pharmaceutical Processing Technology of Traditional Chinese Medicine and Drug Innovation, PR China.
| |
Collapse
|
3
|
Yan P, Guo Y, Muhammad S, Zhu J, Liu Y, Liu C. The effects of the Wnt/β-catenin signaling pathway on the in vitro differentiation of rat BMSCs into leydig cells. Sci Rep 2025; 15:1177. [PMID: 39775149 PMCID: PMC11707357 DOI: 10.1038/s41598-025-85674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process. BMSCs were extracted from rats and characterized by flow cytometry for positive rates of mesenchymal stem cell markers CD29, CD44, CD90, and the hematopoietic marker CD45. BMSCs were divided into three groups: Control, Wnt agonist (CHIR-99021), and Wnt inhibitor (LGK-974), each incubated for 14 days. ELISA and RT-qPCR were used to verify the protein and mRNA expression of β-catenin, LRP5 and TCF, the key factors in Wnt/β-catenin signaling pathway. The average fluorescence intensity of 3β-hydroxysteroid dehydrogenase (3β-HSD) on the surface of LCs was detected by immunofluorescence (IF) assay. The content of testosterone secreted in cell culture medium was detected by ELISA. The results of flow cytometry indicated that we successfully extracted and cultured BMSCs. Moreover, post 14 days of incubation, the changes of β-catenin, LRP5 and TCF, at the protein and mRNA level demonstrate successful intervention in the activation and inhibition of the intracellular Wnt/β-catenin signaling pathway. Compared with the control group, the LCs surface marker 3β-HSD expression intensity in the CHIR-99,021 group was significantly increased by 69% (p < 0.01), while significantly decreased by 59% in LGK-974 group (p < 0.01). The ELISA results indicated a higher testosterone concentration in the CHIR-99,021 group (359.58 ± 17.46 pg/mL) than in the control (225.31 ± 15.42 pg/mL) and LGK-974 groups (183.67 ± 4.47 pg/mL), and the difference was statistically significant (p < 0.05). This study successfully demonstrates the directed differentiation of BMSCs into LCs under the action of inducers. We verified that the Wnt/β-catenin signaling pathway is involved in this differentiation process. The idea proposed in our study for efficiently inducing differentiation of BMSCs into LC in vitro, may provide a safe and sustainable LC source for developing clinically feasible cell transplantation-based LOH therapies.
Collapse
Affiliation(s)
- Pengyu Yan
- First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, China
| | - Yaxiong Guo
- First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, China
| | - Shoaib Muhammad
- First Clinical Medical College, Shanxi Medical University, Taiyuan, 030001, China
| | - Jinxiong Zhu
- Department of Urology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxiang Liu
- Department of Nephrology, Shanxi Provincial People 's Hospital, No. 29, Shuangta Street, Taiyuan, 030012, China.
| | - Chun Liu
- Department of Urology, First Hospital of Shanxi Medical University, No. 85, Jiefang South Road, Taiyuan, 030001, China.
| |
Collapse
|
4
|
Liu W, Wang H, Mu Q, Gong T. Taste receptor T1R3 regulates testosterone synthesis via the cAMP-PKA-SP1 pathway in testicular Leydig cells. Theriogenology 2025; 231:210-221. [PMID: 39476553 DOI: 10.1016/j.theriogenology.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Taste receptor type 1 subunit 3 (T1R3) is a G protein-coupled receptor encoded by the TAS1R3 gene that can be specifically activated by certain sweeteners or umami agents for sweet/umami recognition. T1R3 is a potential target for regulating male reproduction. However, studies on the impact of non-nutritive sweeteners on reproduction are limited. In the present study, we evaluated the impact of the non-nutritive sweeteners (saccharin sodium, sucralose and acesulfame-K) on testosterone synthesis in testicular Leydig cells of Xiang pigs by comparing the relative abundance of mRNA transcripts and protein expression of T1R3, steroidogenic related factors, and intracellular cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), as well as testosterone levels using Western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). To clarify the specific mechanism, a dual luciferase assay was used to uncover the relationship between the transcription factors and steroidogenic enzyme. The acute intratesticular injection of a typical non-nutritive sweeteners was conducted to verify this impact in mouse. The results showed that saccharin sodium not only enhanced T1R3 expression in Leydig cells of Xiang pigs, but also caused significant increases in testosterone, cAMP, PKA, phosphorylation of specificity protein 1 (p-SP1), total protein of specificity protein 1 (SP1), steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1) (P < 0.05). Similarly, treatment of Leydig cells with sucralose and acesulfame-K also increased testosterone level, protein expression of T1R3, 17-α-hydroxylase/17, 20-lyase (CYP17A1), and 3β-HSD1 (P < 0.05). Treatment with SQ22536 (an adenylate cyclas inhibitor) or H89 (a PKA inhibitor) significantly reduced saccharin sodium-induced protein levels of p-SP1, StAR, CYP17A1, and 3β-HSD1 (P < 0.05). In addition, a dual luciferase assay further demonstrated that SP1 significantly increased the promoter activity of CYP17A1 (P < 0.05). When mouse testes were injected with saccharin sodium, T1R3, p-SP1, CYP17A1, and 3β-HSD1 were upregulated, leading to a significant testicular increase in testosterone and cAMP levels (P < 0.05). These results suggest a mechanism by which the taste receptor T1R3 regulates testosterone production, and this mechanism may be linked to the cAMP-PKA pathway. Understanding the interrelationship between T1R3 and the cAMP-PKA-SP1 pathway contributes to clarify the regulatory mechanisms of male reproduction.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Han Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Wang G, Duan L, Du Y, Fu X, Liu B, Zhang X, Yu F, Zhou G, Ba Y. Serum calcium improves the relationship between fluoride exposure and hypothalamic-pituitary-testicular axis hormones levels in males-a cross-sectional study on farmers in the lower reaches of the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125084. [PMID: 39374768 DOI: 10.1016/j.envpol.2024.125084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Numerous studies have reported the toxicity of fluoride to the male reproductive system, but epidemiological evidence is limited. We conducted a cross-sectional study in Kaifeng City, Henan Province in 2011 to explore the association between fluoride exposure and hypothalamic-pituitary-testicular (HPT) axis hormones in men. Morning urinary fluoride (UF), serum HPT axis hormones and serum calcium (SC) concentrations were detected. Percent changes and 95% confidence intervals in HPT axis hormones associated with UF were estimated using adjusted linear regression models, and performed subgroup analysis based on SC levels. The restricted cubic spline model was used to fit nonlinear relationships. For every 10% increase in UF, the concentrations of serum GnRH, T, SHBG and TSI decreased by 2.13%, 2.39%, 2.19% and 1.96%, while E2 and FEI increased by 1.11% and 3.33%. Subgroup analysis showed that for every 10% increase in UF, the levels of GnRH, T, TSI and FTI decreased by approximately 3.15%, 5.49%, 4.47% and 5.14%, while the E2 level increased by 2.92% in low-serum-calcium group (LCG). The levels of GnRH and T decreased by approximately 2.97% and 1.82% in medium-serum-calcium group (MCG). In high-serum-calcium group (HCG), serum SHBG levels decreased by 4.70%, while FTI and FEI levels increased by 4.93% and 4.20% as UF concentration increased (P < 0.05, respectively). The non-linear relationship between serum GnRH and UF concentrations presented an approximately inverted U-shaped curve, with a turning point UF concentration of 1.164 mg/L (P < 0.001), and their nonlinear relationship in LCG and MCG were similar to that in the overall subjects. In conclusion, excessive exposure to fluoride can interfere with male serum HPT axis hormones, and a moderate increase in SC alleviates the effect of fluoride. Prospective cohort studies are essential to confirm the causality.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Leizhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuhui Du
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xiaoli Fu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Bin Liu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuanyin Zhang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Guoyu Zhou
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
6
|
Baker C, Piasecki J, Hunt JA, Foulds G, Hough J. Plasma and salivary hormone responses to a 30-min exercise stress test in young, healthy, physically active females. Physiol Rep 2024; 12:e70168. [PMID: 39722131 DOI: 10.14814/phy2.70168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Overreaching, a consequence of intensified training, is used by athletes to enhance performance. A blunted hormonal response to a 30-min interval exercise stress test (55/80) has been shown in males after intensified training, highlighting cortisol and testosterone as potential biomarkers of overreaching. Despite accounting for ~50% of the population, studies into hormonal responses to exercise in females are lacking. The menstrual cycle and oral contraceptives profoundly affect hormonal responses, necessitating separate investigations into the female response to the same exercise-stress test. On three separate visits, 13 females (6 oral contraceptive users, 7 eumenorrheic) completed a VO2max test, resting control trial, and 55/80 stress test. The 55/80 involves alternating between 1 min at 55% VO2max and 4 min at 80% VO2max. Blood and saliva were collected pre, post, and 30 min post-55/80, and at coinciding time points during the resting control trial. Plasma progesterone, estrogen, and plasma and salivary cortisol and testosterone were analyzed via ELISA. A significant elevation of salivary and plasma cortisol (~141% and ~87%, respectively, p < 0.001), salivary testosterone (~93%, p < 0.001), and plasma progesterone (~58%, p = 0.004) were evident from pre- to post-55/80. Plasma testosterone remained unchanged. Hormonal responses were attenuated in oral contraceptive users. The 55/80 induces hormonal elevations in females, similar in magnitude as males.
Collapse
Affiliation(s)
- Carla Baker
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - Jessica Piasecki
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, UK
| | - John A Hunt
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, UK
| | - Gemma Foulds
- John Van-Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - John Hough
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
7
|
De Silva NL, Papanikolaou N, Grossmann M, Antonio L, Quinton R, Anawalt BD, Jayasena CN. Male hypogonadism: pathogenesis, diagnosis, and management. Lancet Diabetes Endocrinol 2024; 12:761-774. [PMID: 39159641 DOI: 10.1016/s2213-8587(24)00199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024]
Abstract
Organic male hypogonadism due to irreversible hypothalamic-pituitary-testicular (HPT) pathology is easily diagnosed and treated with testosterone-replacement therapy. However, controversy surrounds the global practice of prescribing testosterone to symptomatic men with low testosterone and non-gonadal factors reducing health status, such as obesity, type 2 diabetes, and ageing (ie, functional hypogonadism), but without identifiable HPT axis pathology. Health optimisation remains the gold-standard management strategy. Nevertheless, in the last decade large clinical trials and an individual patient data meta-analysis of smaller clinical trials confirmed that testosterone therapy induces modest, yet statistically significant, improvements in sexual function without increasing short-term to medium-term cardiovascular or prostate cancer risks in men with functional hypogonadism. Although testosterone improves bone mineral density and insulin sensitivity in these men, trials from the last decade suggest insufficient evidence to determine the safety and effectiveness of use of this hormone for the prevention of fractures or type 2 diabetes. This Review discusses the pathogenesis and diagnosis of male hypogonadism and appraises the evidence underpinning the management of this condition.
Collapse
Affiliation(s)
- Nipun Lakshitha De Silva
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Faculty of Medicine, General Sir John Kotelawala Defence University, Colombo, Sri Lanka
| | - Nikoleta Papanikolaou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Mathis Grossmann
- Department of Medicine (Austin Health), The University of Melbourne, Melbourne, VIC, Australia; Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Leen Antonio
- Department of Chronic Diseases and Metabolism (CHROMETA), Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Richard Quinton
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK; Northern Regional Gender Dysphoria Service, Cumbria Northumberland Tyne & Wear NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Bradley David Anawalt
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Channa N Jayasena
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
8
|
Odetayo AF, Abdulrahim HA, Yusuf AM, Aromokhame WO, Olaitan AM, Ugoji MC, Hamed MA, Olayaki LA. Combination Therapy with Vitamin D and Metformin: A Potential Approach to Mitigate Testicular Dysfunction in Type 2 Diabetes Mellitus. Reprod Sci 2024:10.1007/s43032-024-01708-3. [PMID: 39317887 DOI: 10.1007/s43032-024-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disease that cannot be linked to a single pathway, causing the observed heterogeneity among T2DM patients. Despite this level of heterogeneity, T2DM is majorly managed by metformin (MET) monotherapy. However, recent findings have associated long-term metformin intake with progressive oxidative pancreatic β cell damage as the disease progresses. Hence, a significant number of patients treated with MET need an alternate therapy. Hence, identifying drug combinations that can effectively alleviate different diabetes complications would serve as a more promising therapy that can translate into active use. Hence, this study was designed to explore the possible synergistic effect of vitamin D and metformin on T2DM-induced testicular dysfunction. Thirty healthy male Wistar rats (weight: 120-150 g and age: 10 ± 2 weeks) were randomly divided into control, diabetes untreated (HFD+STZ), diabetes + vitamin D (1000 IU/kg), diabetes + metformin (180 mg/kg), and diabetes + vitamin D + metformin. All treatments lasted for 28 days and animals were sacrificed using IP injection of ketamine and xylaxine (40 and 4 mg/kg respectively). Vitamin D improved the ameliorative effect of metformin on T2DM-induced hyperglycemia and lipid dysmetabolism, accompanied by a significant decrease in testicular lactate dehydrogenase and lactate. Also, vitamin D + metformin significantly increased serum luteinizing hormone, follicle-stimulating hormone, testosterone, and testicular 5α reductase activities. Furthermore, vitamin D improved the anti-inflammatory and antioxidant effects of metformin by significantly decreasing T2DM-induced increase in testicular interleukin 1beta, interleukin 6, TNF-α, nitric oxide, and NF-κB and increasing T2DM-induced decrease in interleukin 10, glutathione, superoxide dismutase, catalase, GPx, and Nrf2. Vitamin D enhanced the ameliorative effect of metformin on T2DM-induced testicular dysfunction.
Collapse
Affiliation(s)
- Adeyemi Fatai Odetayo
- Physiology Department, Faculty of Basic Medical Sciences, Federal University of Health Sciences, Ila-Orangun, Nigeria.
| | - Halimat Amin Abdulrahim
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adedotun Muiz Yusuf
- Physiology Department, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | | | - Mirabel Chisom Ugoji
- Physiology Department, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratory, Osogbo, Nigeria
| | | |
Collapse
|
9
|
Gallegos JL. Testosterone replacement therapy for hypogonadism: A primer for primary care. Nurse Pract 2024; 49:21-27. [PMID: 39049149 DOI: 10.1097/01.npr.0000000000000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
ABSTRACT Testosterone replacement therapy (TRT) is a crucial intervention for men diagnosed with hypogonadism, a condition characterized by inadequate testosterone production. As primary care NPs play an essential role in managing patients with hypogonadism, they must comprehensively understand TRT. This article serves as a primer for primary care NPs, based on current guidelines, to provide evidence-based care for men with hypogonadism. It offers an overview of the etiology, clinical presentation, diagnostic criteria, and treatment options for hypogonadism, focusing on using TRT appropriately in primary care settings.
Collapse
Affiliation(s)
- Julian L Gallegos
- Julian L. Gallegos is director of the DNP program, interim assistant head of graduate programs, and a clinical associate professor in the School of Nursing, College of Health and Human Sciences at Purdue University in West Lafayette, Ind. Dr. Gallegos is also an adjunct clinical assistant professor of family medicine at Indiana University School of Medicine in West Lafayette, Ind
| |
Collapse
|
10
|
Dourson AJ, Darken RS, Baranski TJ, Gereau RW, Ross WT, Nahman-Averbuch H. The role of androgens in migraine pathophysiology. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100171. [PMID: 39498299 PMCID: PMC11532460 DOI: 10.1016/j.ynpai.2024.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024]
Abstract
Migraine affects ∼12 % of the worldwide population and is more prevalent in females, which suggests a role of sex hormones in migraine pathophysiology. Most studies have focused on estrogen and progesterone, and the involvement of androgens has been less studied. However, due to the recent advances in androgen interventions, which could advance new androgen-based migraine treatments, it is critical to better understand the role of androgens in migraine. Testosterone, the most studied androgen, was found to have an antinociceptive effect in various animal and human pain studies. Thus, it could also have a protective effect related to lower migraine severity and prevalence. In this review, we discuss studies examining the role of androgens on migraine-related symptoms in migraine animal models. Additionally, we summarize the results of human studies comparing androgen levels between patients with migraine and healthy controls, studies assessing the relationships between androgen levels and migraine severity, and intervention studies examining the impact of testosterone treatment on migraine severity. Many of the studies have limitations, however, the results suggest that androgens may have a minor effect on migraine. Still, it is possible that androgens are involved in migraine pathophysiology in a sub-group of patients such as in adolescents or postmenopausal women. We discuss potential mechanisms in which testosterone, as the main androgen tested, can impact migraine. These mechanisms range from the cellular level to systems and behavior and include the effect of testosterone on sensory neurons, the immune and vascular systems, the stress response, brain function, and mood. Lastly, we suggest future directions to advance this line of research.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel S. Darken
- Department of Neurology, Washington University School of Medicine, St. Louis Missouri, USA
| | - Thomas J. Baranski
- Division of Endocrinology, Diabetes and Metabolism Washington University School of Medicine in St. Louis Missouri, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney Trotter Ross
- Division of Minimally Invasive Gynecologic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Aerts A, Temmerman A, Vanhie A, Vanderschueren D, Antonio L. The Effect of Endurance Exercise on Semen Quality in Male Athletes: A Systematic Review. SPORTS MEDICINE - OPEN 2024; 10:72. [PMID: 38861008 PMCID: PMC11166609 DOI: 10.1186/s40798-024-00739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Endurance exercise has the potential to affect reproductive function, with amenorrhea in female athletes. However, most studies focus on women. Evidence on the association between endurance exercise and male fertility is limited. OBJECTIVE To synthesise existing literature on exercise-induced alterations in semen parameters and to assess the clinical impact on male fertility. METHODS Studies reporting on the association between semen parameters and endurance exercise in healthy men were eligible. Men attending fertility clinics were excluded. We searched MEDLINE (PubMed), Embase, SPORTDiscus, Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov and International Clinical Trials Registry Platform (ICTRP) from their inception to May 28th 2022. JBI Critical Appraisal Tool was used to assess the potential risk of bias. RESULTS Thirteen studies met inclusion criteria, reporting on 280 subjects. Eight articles reported on endurance runners, three on cyclists and four on triathletes. Four studies did not find any statistically significant sperm alterations. Five reported significant changes in semen parameters, but these were not clinically relevant, as semen parameters remained well above World Health Organisation (WHO) thresholds. Four articles reported a decrease in semen quality with potential clinical consequences as they found a reduced number of sperm cells exhibiting normal morphology in cyclists and triathletes and a greater amount of DNA fragmentation in triathletes. CONCLUSION Endurance exercise can have a negative effect on semen quality, although rarely with a clinically relevant impact on male fertility. Evidence is however limited, with poor quality of the included studies. REGISTRATION PROSPERO International prospective register of systematic reviews (CRD42022336753).
Collapse
Affiliation(s)
- Alex Aerts
- Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Annelien Temmerman
- Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Arne Vanhie
- Leuven University Fertility Centre, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Liu JL, Chen LJ, Liu Y, Li JH, Zhang KK, Hsu C, Li XW, Yang JZ, Chen L, Zeng JH, Xie XL, Wang Q. The gut microbiota contributes to methamphetamine-induced reproductive toxicity in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116457. [PMID: 38754198 DOI: 10.1016/j.ecoenv.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Methamphetamine (METH) is a psychostimulant drug belonging to the amphetamine-type stimulant class, known to exert male reproductive toxicity. Recent studies suggest that METH can disrupt the gut microbiota. Furthermore, the gut-testis axis concept has gained attention due to the potential link between gut microbiome dysfunction and reproductive health. Nonetheless, the role of the gut microbiota in mediating the impact of METH on male reproductive toxicity remains unclear. In this study, we employed a mouse model exposed to escalating doses of METH to assess sperm quality, testicular pathology, and reproductive hormone levels. The fecal microbiota transplantation method was employed to investigate the effect of gut microbiota on male reproductive toxicity. Transcriptomic, metabolomic, and microbiological analyses were conducted to explore the damage mechanism to the male reproductive system caused by METH. We found that METH exposure led to hormonal disorders, decreased sperm quality, and changes in the gut microbiota and testicular metabolome in mice. Testicular RNA sequencing revealed enrichment of several Gene Ontology terms associated with reproductive processes, as well as PI3K-Akt signaling pathways. FMT conveyed similar reproductive damage from METH-treated mice to healthy recipient mice. The aforementioned findings suggest that the gut microbiota plays a substantial role in facilitating the reproductive toxicity caused by METH, thereby highlighting a prospective avenue for therapeutic intervention in the context of METH-induced infertility.
Collapse
Affiliation(s)
- Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Zhu P, Bi X, Su D, Li X, Chen B, Li J, Zhao L, Wang Y, Xu S, Wu X. Thiolutin, a selective NLRP3 inflammasome inhibitor, attenuates cyclophosphamide-induced impairment of sperm and fertility in mice. Immunopharmacol Immunotoxicol 2024; 46:172-182. [PMID: 38174705 DOI: 10.1080/08923973.2023.2298894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The activation of the NLRP3 inflammasome has been implicated in male infertility. Our study aimed to investigate the therapeutic role of Thiolutin (THL), an inhibitor of the NLRP3 inflammasome, on oligoasthenospermia (OA) and to elucidate its mechanisms. MATERIALS AND METHODS Semen from 50 OA and 20 healthy males were analyzed to assess the sperm quality and levels of inflammatory markers. Their correlation was determined using Pearson's correlation coefficient. The BALB/c mice were intraperitoneal injected by cyclophosphamide at 60 mg/kg/day for five days to induce OA, followed by a two-week treatment with THL or L-carnitine. Reproductive organ size and H&E staining were determined to observe the organ and seminiferous tubule morphology. ELISA and western blotting were utilized to measure sex hormone levels, inflammatory markers, and NLRP3 inflammasome levels. Furthermore, male and female mice were co-housed to observe pregnancy success rates. RESULTS OA patients exhibited a decrease in sperm density and motility compared to healthy individuals, along with elevated levels of IL-1β, IL-18 and NLRP3 inflammasome. In vivo, THL ameliorated OA-induced atrophy of reproductive organs, hormonal imbalance, and improved sperm density, motility, spermatogenesis and pregnancy success rates with negligible adverse effects on weight or liver-kidney function. THL also demonstrated to be able to inhibit the activation of NLRP3 inflammasome and associated proteins in OA mice. DISCUSSION THL can improve sperm quality and hormonal balance in OA mice through the inhibition of NLRP3 inflammasome activation. Thus, THL holds promising potential as a therapeutic agent for OA.
Collapse
Affiliation(s)
- Pengfei Zhu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xingyu Bi
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Dan Su
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xiaoling Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Bingbing Chen
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Juhua Li
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Lijiang Zhao
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Yaoqing Wang
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Suming Xu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| | - Xueqing Wu
- Center of Reproductive Medicine, Children's Hospital of Shanxi and Women Health Center, Taiyuan, China
| |
Collapse
|
14
|
Yan K, Wang X, Liu Z, Bo Z, Zhang C, Guo M, Zhang X, Wu Y. QX-type infectious bronchitis virus infection in roosters can seriously injure the reproductive system and cause sex hormone secretion disorder. Virulence 2023; 14:2185380. [PMID: 36883685 PMCID: PMC10012921 DOI: 10.1080/21505594.2023.2185380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Since its discovery, QX-type avian infectious bronchitis virus (IBV) has rapidly spread worldwide and become the most prevalent dominant genotype in Asia and Europe. Currently, although the pathogenicity of QX-type IBV in the reproductive system of hens is widely and deeply understood, its pathogenicity in the reproductive system of roosters remains largely unknown. In this study, 30-week-old specific pathogen-free (SPF) roosters were used to investigate the pathogenicity of QX-type IBV in the reproductive system after infection. The results showed that QX-type IBV infection caused abnormal testicular morphology, moderate atrophy and obvious dilatation of seminiferous tubules, and produced intense inflammation and obvious pathological injuries in the ductus deferens of infected chickens. Immunohistochemistry results showed that QX-type IBV can replicate in spermatogenic cells at various stages and in the mucous layer of the ductus deferens. Further studies showed that QX-type IBV infection affects plasma levels of testosterone, luteinizing hormone, and follicle-stimulating hormone as well as causes changes in transcription levels of their receptors in the testis. Furthermore, the transcription levels of StAR, P450scc, 3βHSD and 17βHSD4 also changed during testosterone synthesis after QX-type IBV infection, indicating that the virus can directly affect steroidogenesis. Finally, we found that QX-type IBV infection leads to extensive germ cell apoptosis in the testis. Collectively, our results suggest that QX-type IBV replicates in the testis and ductus deferens, causing severe tissue damage and disruption of reproductive hormone secretion. These adverse events eventually lead to mass germ cell apoptosis in the testis, affecting the reproductive function of roosters.
Collapse
Affiliation(s)
- Kun Yan
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zifan Liu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongyi Bo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,International Joint Research Laboratory of Agricultural and Agri-product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,International Joint Research Laboratory of Agricultural and Agri-product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Mitrović-Ajtić O, Đikić D, Subotički T, Bižić-Radulović S, Beleslin-Čokić B, Dragojević T, Živković E, Miljatović S, Vukotić M, Stanisavljević D, Santibanez J, Čokić VP. Sex Differences and Cytokine Profiles among Patients Hospitalized for COVID-19 and during Their Recovery: The Predominance of Adhesion Molecules in Females and Oxidative Stress in Males. Vaccines (Basel) 2023; 11:1560. [PMID: 37896963 PMCID: PMC10610714 DOI: 10.3390/vaccines11101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The severity and mortality of coronavirus disease 2019 (COVID-19) are greater in males than in females, though the infection rate is the same in the two sexes. We investigated sex hormone differences associated with the hyperinflammatory immune response to SARS-CoV-2 on the basis of patients' cytokine profiles and vaccination statuses. Clinical and laboratory data of 117 patients with COVID-19 were collected to examine sex differences associated with oxidative stress markers, neutrophil extracellular traps (NETs), and plasma cytokine levels up to 5 months from hospital admission. The testosterone and free testosterone levels were low in male patients with COVID-19 and returned to normal values after recovery from the disease. The dihydrotestosterone (DHT) levels were transiently reduced, while the sex hormone-binding globulin levels were decreased in post-COVID-19 male patients. The levels of the inflammatory cytokines interleukin-6 (IL-6) and IL-10 appeared generally increased at diagnosis and decreased in post-COVID-19 patients. In females, the concentration of tumor necrosis factor-alpha was increased by four times at diagnosis. The levels of the coagulation markers intercellular adhesion molecule-1 (ICAM-1) and E-selectin were consistently upregulated in post-COVID-19 female patients, in contrast to those of vascular cell adhesion molecule-1 (VCAM-1), P-selectin, and chemokine IL-8. DHT increased the levels of reactive oxygen species in the neutrophils of male patients, while estradiol decreased them in females. Markers for NET, such as circulating DNA and myeloperoxidase, were significantly more abundant in the patients' plasma. Sex hormones have a potential protective role during SARS-CoV-2 infection, which is weakened by impaired testosterone synthesis in men.
Collapse
Affiliation(s)
- Olivera Mitrović-Ajtić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| | - Dragoslava Đikić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| | - Tijana Subotički
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| | - Sandra Bižić-Radulović
- Clinic of Hematology, University Clinical Center of Serbia, Dr. Koste Todorovica 2, 11000 Belgrade, Serbia;
| | - Bojana Beleslin-Čokić
- Clinic of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Dr. Subotica starijeg 13, 11000 Belgrade, Serbia;
| | - Teodora Dragojević
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| | - Emilija Živković
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| | - Sanja Miljatović
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Bulevar oslobođenja 16, 11000 Belgrade, Serbia
| | - Milica Vukotić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| | - Dejana Stanisavljević
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Juan Santibanez
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370854, Chile
| | - Vladan P. Čokić
- Institute for Medical Research, University of Belgrade, National Institute of Republic of Serbia, Dr. Subotica starijeg 4, 11129 Belgrade, Serbia; (O.M.-A.); (D.Đ.); (T.S.); (T.D.); (E.Ž.); (M.V.); (J.S.)
| |
Collapse
|
16
|
Azhar NA, Paul BT, Jesse FFA, Mohd-Lila MA, Chung ELT, Kamarulrizal MI. Pro-inflammatory cytokines and reproductive hormone responses in bucks post-challenge with Mannheimia haemolytica A2 and its outer membrane protein. Trop Anim Health Prod 2023; 55:291. [PMID: 37589856 DOI: 10.1007/s11250-023-03706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The lipopolysaccharide (LPS) endotoxin and outer membrane protein (OMP) are among the virulence factors of Gram-negative bacteria responsible for inducing pathogenicity in the infected host. OMP and LPS occur on the outer membrane of M. haemolytica A2, the primary aetiological agent of pneumonic mannheimiosis in small ruminants. While the LPS is known to mediate Gram-negative bacterial infection by activating downstream inflammatory pathways, the potential role of OMP during inflammatory responses remained unclear. Hence, this study determined the effect of the OMP of M. haemolytica A2 on the serum concentration of pro-inflammatory cytokines and the male reproductive hormones (testosterone and Luteinizing Hormone). We randomly assigned twelve bucks to three groups (n = 4 bucks each): Group 1 was challenged with 2 mL PBS buffer (pH 7.0) intranasally; Group 2 received 2 mL of 1.2 X 109 CFU/mL whole M. haemolytica A2 intranasally; and Group 3 received 2 mL of OMP extract obtained from 1.2 X 109 CFU/mL M. haemolytica A2 intramuscularly. Serum samples collected at pre-determined intervals were used for the quantitative determination of the pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and reproductive hormones (testosterone and LH) using commercial sandwich enzyme-linked immunosorbent assay (ELISA). The serum concentration of IL1β was initially increased within the first-hour post-challenge in Groups 2 and 3, followed by a significant decrease in concentration at 21d and 35d (p < 0.05) in Group 3. Only mild fluctuations in IL-6 occurred in group 2, as opposed to the 1.7-fold rapid increase in TNFα within 2 h post-challenge before decreasing at 6 h. An increase in pro-inflammatory cytokines was accompanied by an acute febrile response of 39.5 ± 0.38 °C (p < 0.05) at 2 h and 40.1 ± 0.29 °C (p < 0.05) at 4 h in Group 2 and Group 3, respectively. Serum testosterone decreased significantly (p < 0.05) in both treatment groups but remained significantly (p > 0.05) lower than in Group 1 throughout the study. There was a moderate negative association between testosterone and IL1β (r = -0.473; p > 0.05) or TNFα (r = -0.527; p < 0.05) in Group 2. Serum LH also showed moderate negative associations with TNFα in Group 2 (r = -0.63; p < 0.05) and Group 3 (r = -0.54; p > 0.05). The results of this study demonstrated that M. haemolytica A2 and its OMP produced marked alterations in serum levels of pro-inflammatory cytokines and male reproductive hormones. The negative correlations between serum testosterone and inflammatory cytokines would suggest the potential role of OMP in causing male infertility by mediating innate inflammatory responses to suppress testosterone production in bucks.
Collapse
Affiliation(s)
- Nur Amira Azhar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Bura Thlama Paul
- Department of Animal Science and Fisheries, Faculty of Agriculture and Forestry Science, Universiti Putra Malaysia Campus Bintulu Sarawak, 97003, Bintulu, Malaysia
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, 600230, Maiduguri, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Mohd-Azmi Mohd-Lila
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mat Isa Kamarulrizal
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
He M, Liu K, Cao J, Chen Q. An update on the role and potential mechanisms of clock genes regulating spermatogenesis: A systematic review of human and animal experimental studies. Rev Endocr Metab Disord 2023; 24:585-610. [PMID: 36792803 DOI: 10.1007/s11154-022-09783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/25/2022] [Indexed: 02/17/2023]
Abstract
Circadian clocks can be traced in nearly all life kingdoms, with the male reproductive system no exception. However, our understanding of the circadian clock in spermatogenesis seems to fall behind other scenarios. The present review aims to summarize the current knowledge about the role and especially the potential mechanisms of clock genes in spermatogenesis regulation. Accumulating studies have revealed rhythmic oscillation in semen parameters and some physiological events of spermatogenesis. Disturbing the clock gene expression by genetic mutations or environmental changes will also notably damage spermatogenesis. On the other hand, the mechanisms of spermatogenetic regulation by clock genes remain largely unclear. Some recent studies, although not revealing the entire mechanisms, indeed attempted to shed light on this issue. Emerging clues hinted that gonadal hormones, retinoic acid signaling, homologous recombination, and the chromatoid body might be involved in the regulation of spermatogenesis by clock genes. Then we highlight the challenges and the promising directions for future studies so as to stimulate attention to this critical field which has not gained adequate concern.
Collapse
Affiliation(s)
- Mengchao He
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Kun Liu
- Center for Disease Control and Prevention of Southern Theatre Command, Guangzhou, 510630, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
18
|
Yang X, Song W, Zhang K, Wang Y, Chen F, Chen Y, Huang T, Jiang Y, Wang X, Zhang C. p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114695. [PMID: 36857919 DOI: 10.1016/j.ecoenv.2023.114695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
T-2 toxin is an unavoidable food and feed contaminant that seriously threatens human and animal health. Exposure to T-2 toxin can cause testosterone synthesis disorder in male animals, but the molecular mechanism is still not completely clear. The MAPK pathway participates in the regulation of testosterone synthesis by Leydig cells, but it is unclear whether the MAPK pathway participates in T-2 toxin-induced testosterone synthesis disorders. In this research, testosterone synthesis capacity, testosterone synthase expression and MAPK pathway activation were examined in male mice and TM3 cells exposed to T-2 toxin. The results showed that T-2 toxin exposure decreased testicular volume and caused pathological changes in the microstructure and ultrastructure of testicular Leydig cells. T-2 toxin exposure also decreased testicular testosterone content and the protein expression of testosterone synthase. In vitro, T-2 toxin inhibited cell viability and decreased the expression of testosterone synthase in TM3 cells, and it decreased the testosterone contents in cell culture supernatants. Moreover, T-2 toxin activated the MAPK pathway by increasing the expression of p38, JNK and ERK as well as the expression of p-p38, p-JNK and p-ERK in testis and TM3 cells. The p38 molecular inhibitor (SB203580) significantly alleviated the T-2 toxin-induced decrease in testosterone synthase expression in TM3 cells and the T-2 toxin-induced reduction in testosterone content in TM3 cell culture supernatants. In summary, p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
19
|
Liu W, Gong T, Xu Y. The co-expression of steroidogenic enzymes with T1R3 during testicular development in the Congjiang Xiang pig. Anim Reprod Sci 2023; 251:107216. [PMID: 37011421 DOI: 10.1016/j.anireprosci.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Testosterone is a key crucial hormone synthesized by steroidogenic enzymes that initiate and maintain spermatogenesis and secondary sexual characteristics in adult males. The taste receptor family 1 subunit 3 (T1R3) is reported to be associated with male reproduction. T1R3 can regulate the expressions of steroidogenic enzymes and affect testosterone synthesis. In this study, we addressed the question of whether the expression of steroid synthase was associated with T1R3 and its downstream-tasting molecules during testicular development. The results showed an overall upward trend in testosterone and morphological development in testes from Congjiang Xiang pigs from pre-puberty to sexual maturity. Gene expression levels of testicular steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450c17 (CYP17A1) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were increased from pre-puberty to sexual maturity. Protein expression changes of CYP17A1 and 3β-HSD were consistent with mRNA. The relative abundance of tasting molecules (TAS1R3, phospholipase Cβ2, PLCβ2) was increased from pre-puberty to puberty (P < 0.05), with no further significant changes in expression from puberty to sexual maturity. Steroidogenic enzymes (3β-HSD and CYP17A1) were strongly detected in Leydig cells from pre-puberty to sexual maturity, while tasting molecules were localized in Leydig cells and spermatogenic cells. Correlation analysis showed that the genes mentioned above (except for PLCβ2) were positively correlated with testosterone levels and morphological characteristics of the testes at different developmental stages of Congjiang Xiang pigs. These results suggest that steroidogenic enzymes regulate testosterone synthesis and testicular development, and that taste receptor T1R3, but not PLCβ2, may associate with this process.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
20
|
Krentz AJ. Complex metabolic–endocrine syndromes: associations with cardiovascular disease. CARDIOVASCULAR ENDOCRINOLOGY AND METABOLISM 2023:39-81. [DOI: 10.1016/b978-0-323-99991-5.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Abstract
Compared to women, increasing male age is not accompanied by such marked changes in reproductive function but changes certainly do happen. These include alterations to the hypothalamo-pituitary-testicular axis, with resultant implications for testosterone production and bioavailability as well as spermatogenesis. There is a decline in sexual function as men age, with a dramatic increase in the prevalence of erectile dysfunction after the age of 40, which is a marker for both clinically evident as well as covert coronary artery disease. Despite a quantitative decline in spermatogenesis and reduced fecundability, the male potential for fertility persists throughout adult life, however there are also increasingly recognised alterations in sperm quality and function with significant implications for offspring health. These changes are relevant to both natural and medically assisted conception.
Collapse
Affiliation(s)
- Sarah Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, Dundee, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK.
| |
Collapse
|